抽屉原理讲义
《抽屉原理》(PPT课件

在算法分析中,抽屉原理可以用于分析算法的时间复杂度和空间复杂度,以及确 定算法的最坏情况下的性能。
在日常生活中的应用
资源分配
在资源分配问题中,可以将资源视为抽屉,将待分配的物品 或任务视为物体,根据抽屉原理得出最优的分配方案。
排队理论
在排队理论中,抽屉原理可以用于分析排队系统的性能和稳 定性,以及确定最优的排队策略。
有限制的抽屉原理的证明
有限制的抽屉原理是指
如果 n+1 个物体要放入 n 个容器中,且每个容器最多只能容纳 k 个物体(k < n),那么至少有一个容器包含两个或以上的物体。
证明方法
假设 n+1 个物体放入 n 个容器中,且每个容器最多只能容纳 k 个物体(k < n)。如果存在一个容器只包含一个物体,那么我们可以将这个物体放入另一个 容器中,从而证明了至少有一个容器包含两个或以上的物体。
在数论中的应用
质数分布
根据抽屉原理,如果将自然数按 照质数和非质数进行分类,则质 数在自然数中的比例趋近于 $frac{1}{2}$。
同余方程
在解同余方程时,可以将模数视 为抽屉,方程的解为物体,根据 抽屉原理得出解的存在性和个数 。
在计算机科学中的应用
数据结构
在计算机科学中,抽屉原理可以应用于各种数据结构的设计和分析,如数组、链 表、哈希表等。
现代研究
现代数学研究中对抽屉原理进行了深入的探讨和研究,不断拓展其 应用范围和理论体系。
02
抽屉原理的证明特殊形式,其基本思想是
如果 n 个物体要放入 n-1 个容器中,且每个容器至少有一个物体,则至少有一个容器包含两个或以上的物体。
证明方法
假设 n 个物体放入 n-1 个容器中,且每个容器至少有一个物体。如果存在一个容器只包含一个物体,那么我们 可以将这个物体放入另一个容器中,从而证明了至少有一个容器包含两个或以上的物体。
抽屉原理讲义-教师

第一抽屉原理原理1:把多于n+k个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。
原理2 :把多于mn(m乘以n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。
原理1 、2 、3都是第一抽屉原理的表述。
第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。
运用抽屉原理的核心是分析清楚问题中,哪个是物件,哪个是抽屉。
例如,属相是有12个,那么任意37个人中,有几个人属相相同呢?这时将属相看成12个抽屉,则一个抽屉中有37/12,即3余1,余数不考虑,而向上考虑取整数,所以这里是3+1=4个人,(但这里需要注意的是,前面的余数1和这里加上的1是不一样的。
)比如:由于一年最多有366天,因此在367人中至少有2人出生在同月同日。
这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。
例1一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。
问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?分析与解:将1,2,3,4四种号码看成4个抽屉。
要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。
所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。
例2在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。
六年级数学专题讲义抽屉原理

抽屉原理把n+1(或更多)个苹果放到n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果;把(m×n+1)(或更多)个苹果放到n个抽屉里,必有一个抽屉里有(m+1)个(或更多个)苹果。
在抽屉原理的应用中,涉及三个数:苹果数、抽屉数、结论数。
在实际应用中,首先我们要去判断哪个量代表“抽屉”,哪个量代表“苹果”,哪个量代表“结论”,然后具体确定各自的数值。
〖经典例题〗例1、①一小队有13名同学,小明说:他们中必有两人是一个属相。
请你说明为什么?②要想保证至少有5个人的属相相同,但不能保证有6个人属相相同,那么人的总数应在什么范围内?【分析】①共有12个属相,将13个人放到12个抽屉里面,肯定有2人在同一个抽屉里,即同一个属相。
②要保证有5个人的属相相同,总人数最少为:4×12+1=49人,不能保证有6个人属相相同的最多人数为5×12=60人。
所以,总人数应在49人到60人的范围内。
例2、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
【分析】首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
〖方法总结〗这两个是抽屉原理的一个基本应用,主要考察对抽屉原理概念的理解。
这时最重要的是要去判断哪个量代表“抽屉”,哪个量代表“苹果”,哪个量代表“结论”,然后具体确定各自的数值。
〖巩固练习〗练习1:某班有52名同学,他们分别来自10所小学,请你证明,至少有一所小学来的人数超过5人。
练习2:一副扑克牌(去掉两张王),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?练习3:口袋里放有足够多的红、白、蓝三种颜色的球,现有31个人轮流从袋中取球,每人各取三个球。
《抽屉原理例》课件

计算几何
计算几何是计算机科学中的一个重要分支,它涉及到图形处理、计算机图形学等领域。抽 屉原理在计算几何中也有着重要的应用,例如在处理几何形状的交、并、差等运算时,抽 屉原理可以帮助我们理解和分析问题。
03
抽屉原理的实例
生活中的实例
鸽巢原理
如果$n$个鸽子飞进$m$个鸽巢 中,且$n > m$,那么至少有一 个鸽巢里有两只或以上的鸽子。
生日悖论
在不到33人的房间里,存在至少 两个人生日相同的概率大于50% 。
数学中的实例
整数划分问题
给定整数$n$,求证存在至少两个正 整数,它们的和等于$n$。
与组合数学的联系
抽屉原理是组合数学中的基本原理之 一,与其他组合数学原理存在密切联 系。
与概率论的关系
与其他数学分支的交叉
抽屉原理可以应用于其他数学分支中 ,如代数、几何、离散概率等。
在概率论中,抽屉原理常被用于证明 一些概率性质和结论。
06
抽屉原理的应用前景和 展望
在数学领域的应用前景
01 02
从整数到实数的推广
在整数上成立的抽屉原理可以推广到实数上。例如,如果无穷多的实数被放入有限个区间中,那么至少有一个区间包含无穷 多的实数。这个结论被称为巴拿赫定理。
另一个推广是将抽屉原理应用到测度理论中。在测度论中,一个集合的测度可以被视为“体积”,而集合的子集可以被视为 “物品”。在这种情况下,抽屉原理表明:如果无穷多的子集被放入有限个测度不为零的集合中,那么至少有一个集合包含 无穷多的子集。
组合数学
抽屉原理是组合数学中的基础原理之一,在计数、排列组合等领域有广 泛的应用。通过抽屉原理,可以解决一些经典的数学问题,如鸽巢原理 问题。
《抽屉原理》公开课PPT课件

原理三: 把M个物体放进N个抽屉,且满足M÷N=n……k(其中M、 N、n、k都为正整数),则至少有一个抽屉里至少要放进n+1 个物体
4 人是同一属相? 习题2.பைடு நூலகம்意找40人,至少有_____
二、一展身手
2 只兔 1.把19只小兔子关在18个笼子里,至少有____ 子要关在同一个笼子里?
2.把98个苹果放到10个抽屉中, 无论怎么放, 我们 一定能找到一个含苹果最多的抽屉,它里面至少含 有 10 个苹果。 3.数学课外活动小组38名学生,他们中年龄最大的 15岁,最小的13岁,试证:总可以找到两名学生是 同年同月出生的.
神奇现象:
1.任意给出5个整数,求证:从中必能选出3个,使它们的和 能被3整除. 2.在任意6个人的集会上,求证:总有3个人互相认识或者总 有3个人互不认识. 3.围着一张可以转动的圆桌,均匀地放8把椅子,在桌上对着 椅子放有8人的名片,8人入座后,发现谁都没有对着自己的 名片;求证:适当地转动桌子,最少能使两人对上自己的名 片.
一、动手做一做
例1.把4个苹果放入3个抽屉中有几种方法? (4,0,0) (3,1,0) (2,2,0) (2,1,1)
总结:不管怎么放总有一个抽屉里至少放进2个苹果 例2.把5个苹果放进4个抽屉里面,总有一个抽屉至少多少 个苹果?
原理一: 把N+1个物件放进N个抽屉里,则其中必有一个抽屉里 面至少有两个物件
习题1.任意的13 个人中,至少有2名学生的生肖一样。 为什么?
2个 例3.把11个苹果放进9个抽屉里面,总有一个抽屉至少___ 苹果?
原理二: 把M个物件放进N(M>N)个抽屉里,则其中必有一个抽屉 里面至少有两个物件
例4.把12个苹果放进5个抽屉里面,总有一个抽屉至少 ______ 3 个苹果? 12÷5=2……2
六年级上册奥数第29讲 抽屉原理(1)

第29讲抽屉原理(1)讲义专题简析如果给你5盒饼干,让你把它们放到4个抽屉里,那么肯定有一个抽屉里至少有2盒饼干。
如果把4封信投到3个邮箱中,那么背定有一个邮箱中至少有2封信。
如果把3本练习册分给两名同学,那么肯定其中有一名同学至少分到2本练习册。
这些事例中蕴含着数学中的“抽屉原理”。
基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。
(2)如果把m×x+k(k≥1)个元素放到x个抽屜里,那么至少有一个抽屉里含有(m+1)个或(m+1)个以上的元素。
利用抽屉原理解题时要注意区分哪些是“抽屉”,哪些是“元素”。
然后按以下步骤解答:a.构造抽屉,指出元素;b.把元素放入(或取出)抽屉。
C.说明理由,得出结论。
本周我们先来学习第一条原理及其应用。
例1、某校六年级有367名学生,请问有没有2名学生的生日是在同一天?为什么?练习:1、某校有370名1992年出生的学生,其中至少有2名学生的生日是在同一天,为什么?2、某校有30名学生是2月份出生的。
能否至少有2名学生的生日是在同一天?3、15个小朋友中,至少有几个小朋友在同一个月出生?例2、某班学生去买语文书、数学书、英语书。
买书的情况是:有买一本的、两本的,也有买三本的,问至少要去几名学生才能保证一定有2名学生买到相同的书?(每种书最多买一本)练习:1、某班学生去买数学书、语文书、美术书、自然书。
买书的情况是:有买一本、两本、三本或四本的。
问至少去几名学生才能保证一定有2名学生买到相同的书?(每种书最多买一本)2、学校图书室有历史、文艺、科普三种图书。
每名学生从中任意借两本,那么至少要几名学生才能保证一定有2名学生所借的图书属于同一种?3、一个布袋中装有许多规格相同但颜色不同的玻璃珠子,颜色有绿、红、黄三种。
问最少要取出多少个珠子才能保证有2个是同色的?例3、一个布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种。
《抽屉原理》第-课PPT课件

有限制条件的抽屉原理证明
有限制条件的抽屉原理是指在某些特 定条件下,抽屉原理仍然成立。例如 ,当容器的形状、大小、质量等因素 受到限制时,抽屉原理仍然适用。
证明方法:根据具体条件,通过数学 推导和逻辑推理,证明在满足特定条 件下,抽屉原理仍然成立。
抽屉原理的推广证明
抽屉原理的推广是指将抽屉原理应用到更广泛的领域和问题中,例如集合论、概 率论、组合数学等。
有n个人和n把椅子(n>3),将它们 随机就座。求证:至少有两把椅子被 两个人同时坐。
5
有100枚硬币,将它们放入10个盒子 里,每个盒子至少放10枚硬币。求证: 至少有一个盒子里放了10枚硬币。
05 总结与思考
CHAPTER
抽屉原理的重要性和意义
数学基础
抽屉原理是组合数学中的 基础原理,对于理解许多 数学概念和证明许多数学 定理具有重要意义。
《抽屉原理》第-课ppt课件
目录
CONTENTS
• 抽屉原理简介 • 抽屉原理的应用 • 抽屉原理的证明 • 抽屉原理的练习题 • 总结与思考
01 抽屉原理简介
CHAPTER
抽屉原理的定义
抽屉原理
如果n+1个物体要放入n个抽屉中 ,那么至少有一个抽屉包含两个 或两个以上的物体。
数学表达
如果将m个物体放入n个抽屉中 (m>n),那么至少有一个抽屉包 含多于一个物体。
进阶练习题
01
02
03
总结词
考察较复杂情况下的抽屉 原理应用
3
有100个苹果和91个抽屉, 要将苹果放入抽屉中,至 少有一个抽屉里放了多少 个苹果?
4
有1000只鸽子飞过天空, 它们要飞进100个鸽笼里, 至少有一个鸽笼里飞进了 几只鸽子?
高中数学竞赛讲义-抽屉原理

§23抽屉原理在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。
这类存在性问题中,“存在”的含义是“至少有一个”。
在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。
这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。
“抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。
这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。
这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。
抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。
(一)抽屉原理的基本形式定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。
证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n 个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。
在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。
同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。
“鸽笼原理”由此得名。
例题讲解1.已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。
证明:至少有两个点之间的距离不大于2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽屉原理讲义本页仅作为文档封面,使用时可以删除
This document is for reference only-rar21year.March
鸽巢原理讲义
教学重难点重点:掌握抽屉原理的两种基本形式。
难点:能够将实际问题转化成抽屉原理所反映的典型形式。
掌握抽屉的设计,苹果的设计以及苹果的放法。
教学内容知识纵横:
“ 抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。
“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
下面我们应用这一原理解决问题。
三个苹果放进两个抽屉,总有某个抽屉的苹果数不止一个,这个结论是很明显的,但这当中蕴含着一个有趣的数学现象被称为抽屉原理。
抽屉原理一般有两种基本形式:
一、将n+1个苹果放入n个抽屉中,则必有一个抽屉中至少有2个苹果;
二、将m×n+1个苹果放入n个抽屉中,则必须有一个抽屉中至少有(m+1)
个苹果
应用抽屉原理解题的一般步骤是:。