2018年高三数学模拟试题理科(四)含答案
2018年高考数学命题角度5.2直线与椭圆位置关系大题狂练理

命题角度5.2 :直线与椭圆位置关系1.已知椭圆 的两个焦点为且经过点 ⑴求椭圆•的方程; ⑵过 的直线与椭圆-交于| ■两点(点」位于 轴上方),若人 ;,且—■:: ,求直线的斜率的取值范围.£十几1 並【答案】(1);( 2).【解析】试题分析:(2)联立直线与椭圆的方程,结合韦达定理得到关于实数 £斜率 的取值范围是k=.试题解析;⑴由椭圆定义2。
= |阴| + |跖| = 4,有a = 2f c =从而W +-w 3(y =+1) ⑵设直线=比& + i)(A >0),有|兰+邑=]设百0") 玖%y)有% = -久仏y 1y 3=^(y 1+y 3)S 讐二戏戶人#一ST2 <A<3f注洁訂》解得0C 冬乎.3^4Jt==a, A = +y,由已矢皿=¥・2.已知椭圆C 的中心在原点,焦点在 x 轴上,离心率e 2 •以两个焦点和短轴的两个端点2为顶点的四边形的周长为 8,面积为2^3 •(I)求椭圆C 的方程;(n)若点P X o ,y 。
为椭圆C 上一点,直线I 的方程为3x °x • 4y °y -12=0,求证:直线I 与椭圆C 有且只有一个交点.(1)由题意可得 , i — -- + —,—则椭圆方程为k 的不等式,求解不等式可得直线的J 整理得任+斗a+^fc 2 ■【来源】【全国市级联考】广西桂林 ,百色,梧州,北海,崇左五市2017届高三5月联合模拟理 科数学试题2 2【答案】(I )- y 1 ;( II )详见解析•4 3【解析】试题分析:2 2(1) 利用题意求得b 「3, c =1,椭圆C 的方程为 —1 .4 3(2) 首先讨论当y 。
=0的情况,否则联立直线与椭圆的方程, 结合直线的特点整理可得直线 I 与 椭圆C 有且只有一个交点.试题解析:(I >依题意,设椭圆c 的方程为4 + = 焦距为丸,由题设条件知,4^=8, “2,2x 丄x 2c xb= 2-^5 , b 1= / = 4』所以“省,c = b 或— C = j3 (经检验不合题意舍去), 故椭圆。
高三数学模拟试题(含答案)

高三数学模拟试题(含答案)一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.1.记复数z=a+bi(i为虚数单位)的共轭复数为,已知z=2+i,则.2.已知集合U={1,3,5,9},A={1,3,9},B={1,9},则?U(A∪B)=.3.某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为.4.角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(1,2),则sin(π﹣α)的值是.5.执行以下语句后,打印纸上打印出的结果应是:.6.设α、β为互不重合的平面,m,n是互不重合的直线,给出下列四个命题:①若m∥n,则m∥α;②若m?α,n?α,m∥β,n∥β,则α∥β;③若α∥β,m?α,n?β,则m∥n;④若α⊥β,α∩β=m,n?α,m⊥n,则n⊥β;其中正确命题的序号为.7.已知函数f(x),若关于x的方程f(x)=kx有两个不同的实根,则实数k的取值范围是.8.已知关于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为.9.已知双曲线(a>0,b>0)的两个焦点为、,点P是第一象限内双曲线上的点,且,tan∠PF2F1=﹣2,则双曲线的离心率为.10.记S k=1k+2k+3k+……+n k,当k=1,2,3,……时,观察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推测,A﹣B=.11.设函数f(x)=x|x﹣a|,若对于任意的x1,x2∈[2,+∞),x1≠x2,不等式0恒成立,则实数a的取值范围是.12.已知平面向量,,满足||=1,||=2,,的夹角等于,且()?()=0,则||的取值范围是.13.在平面直角坐标系xOy中,直角三角形ABC的三个顶点都在椭圆上,其中A(0,1)为直角顶点.若该三角形的面积的最大值为,则实数a的值为.14.设f(x)=e tx(t>0),过点P(t,0)且平行于y轴的直线与曲线C:y=f(x)的交点为Q,曲线C 过点Q的切线交x轴于点R,若S(1,f(1)),则△PRS的面积的最小值是.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三角形ABC中,角A,B,C所对的边分别为a,b,c,若sin A,tan(A﹣B),角C为钝角,b =5.(1)求sin B的值;(2)求边c的长.16.如图,四棱锥V﹣ABCD中,底面ABCD是菱形,对角线AC与BD交于点O,VO⊥平面ABCD,E是棱VC的中点.(1)求证:VA∥平面BDE;(2)求证:平面VAC⊥平面BDE.17.已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.(Ⅰ)求圆的方程;(Ⅱ)设直线ax﹣y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;(Ⅲ)在(Ⅱ)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(﹣2,4),若存在,求出实数a的值;若不存在,请说明理由.18.如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角∠CAD=60°.(1)求BC的长度;(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为∠APB=α,∠DPC=β,问点P在何处时,α+β最小?19.设首项为1的正项数列{a n}的前n项和为S n,数列的前n项和为T n,且,其中p为常数.(1)求p的值;(2)求证:数列{a n}为等比数列;(3)证明:“数列a n,2x a n+1,2y a n+2成等差数列,其中x、y均为整数”的充要条件是“x=1,且y=2”.20.已知函数f(x)=(x﹣x1)(x﹣x2)(x﹣x3),x1,x2,x3∈R,且x1<x2<x3.(1)当x1=0,x2=1,x3=2时,求函数f(x)的减区间;(2)求证:方程f′(x)=0有两个不相等的实数根;(3)若方程f′(x)=0的两个实数根是α,β(α<β),试比较,与α,β的大小,并说明理由.本题包括A,B共1小题,每小题10分,共20分.把答案写在答题卡相应的位置上.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换]21.试求曲线y=sin x在矩阵MN变换下的函数解析式,其中M,N.[选修4-4:极坐标与参数方程]22.已知直线l的极坐标方程为,圆C的参数方程为为参数).(1)请分别把直线l和圆C的方程化为直角坐标方程;(2)求直线l被圆截得的弦长.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.23.在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,点P在棱DF上.(1)若P是DF的中点,求异面直线BE与CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值为,求PF的长度.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.24.甲、乙、丙三名射击运动员射中目标的概率分别为(0<a<1),三人各射击一次,击中目标的次数记为ξ.(1)求ξ的分布列及数学期望;(2)在概率P(ξ=i)(i=0,1,2,3)中,若P(ξ=1)的值最大,求实数a的取值范围.参考答案一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上. 1.∵z=2+i,∴z2=(2+i)2=3+4i,则.故答案为:3﹣4i.2.∵集合U={1,3,5,9},A={1,3,9},B={1,9}∴A∪B={1,3,9}∴?U(A∪B)={5},故答案为{5}.3.分层抽样的抽取比例为:,∴抽取学生的人数为60030.故答案为30.4.由题意可得x=1,y=2,r,∴sinα,∴sin(π﹣α)=sinα.故答案为:.5.程序在运行过程中各变量的取值如下所示:是否继续循环i x循环前 1 4第一圈是 4 4+2第二圈是 7 4+2+8第三圈是 10 4+2+8+14退出循环,所以打印纸上打印出的结果应是:28故答案为:28.6.对于①,当m∥n时,由直线与平面平行的定义和判定定理,不能得出m∥α,①错误;对于②,当m?α,n?α,且m∥β,n∥β时,由两平面平行的判定定理,不能得出α∥β,②错误;对于③,当α∥β,且m?α,n?β时,由两平面平行的性质定理,不能得出m∥n,③错误;对于④,当α⊥β,且α∩β=m,n?α,m⊥n时,由两平面垂直的性质定理,能够得出n⊥β,④正确;综上知,正确命题的序号是④.故答案为:④.7.如图所示:①当x≥2时,由函数f(x)单调递减可得:0<f(x);②当0<x<2时,由函数f(x)=(x﹣1)3单调递增可得:﹣1<f(x)<1.由图象可知:由0<2k<1可得,故当时,函数y=kx与y=f(x)的图象有且只有两个交点,∴满足关于x的方程f(x)=kx有两个不同的实根的实数k的取值范围是.故答案为.8.已知关于x的不等式(ax﹣a2﹣4)(x﹣4)>0,①a<0时,[x﹣(a)](x﹣4)<0,其中a0,故解集为(a,4),由于a(﹣a)≤﹣24,当且仅当﹣a,即a=﹣2时取等号,∴a的最大值为﹣4,当且仅当a4时,A中共含有最少个整数,此时实数a的值为﹣2;②a=0时,﹣4(x﹣4)>0,解集为(﹣∞,4),整数解有无穷多,故a=0不符合条件;③a>0时,[x﹣(a)](x﹣4)>0,其中a4,∴故解集为(﹣∞,4)∪(a,+∞),整数解有无穷多,故a>0不符合条件;综上所述,a=﹣2.故答案为:﹣2.9.∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,…①又∵,tan∠PF2F1=﹣2,∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,△PF1F2中用余弦定理,得2PF1?PF2cos∠F1PF23,…②①②联解,得,可得,∴双曲线的,结合,得离心率故答案为:10.根据所给的已知等式得到:各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,∴A,A1,解得B,所以A﹣B.故答案为:.11.由题意知f(x)=x|x﹣a|在[2,+∞)上单调递增.(1)当a≤2时,若x∈[2,+∞),则f(x)=x(x﹣a)=x2﹣ax,其对称轴为x,此时2,所以f(x)在[2,+∞)上是递增的;(2)当a>2时,①若x∈[a,+∞),则f(x)=x(x﹣a)=x2﹣ax,其对称轴为x,所以f(x)在[a,+∞)上是递增的;②若x∈[2,a),则f(x)=x(a﹣x)=﹣x2+ax,其对称轴为x,所以f(x)在[,a)上是递减的,因此f(x)在[2,a)上必有递减区间.综上可知a≤2.故答案为(﹣∞,2].12.由()?()=0 可得()?||?||cosα﹣1×2cos||?||cosα﹣1,α为与的夹角.再由2?1+4+2×1×2cos7 可得||,∴||cosα﹣1,解得cosα.∵0≤α≤π,∴﹣1≤cosα≤1,∴1,即||+1≤0.解得||,故答案为.13.设直线AB的方程为y=kx+1则直线AC的方程可设为y x+1,(k≠0)由消去y,得(1+a2k2)x2+2a2kx=0,所以x=0或x∵A的坐标(0,1),∴B的坐标为(,k?1),即B(,)因此,AB?,同理可得:AC?∴Rt△ABC的面积为S AB?AC?令t,得S∵t2,∴S△ABC当且仅当,即t时,△ABC的面积S有最大值为解之得a=3或a∵a时,t2不符合题意,∴a=3故答案为: 314.∵PQ∥y轴,P(t,0),∴Q(t,f(t))即(t,),又f(x)=e tx(t>0)的导数f′(x)=xe tx,∴过Q的切线斜率k=t,设R(r,0),则k t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,e t),∴△PRS的面积为S,导数S′,由S′=0得t=1,当t>1时,S′>0,当0<t<1时,S′<0,∴t=1为极小值点,也为最小值点,∴△PRS的面积的最小值为.故答案为:.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(1)角C为钝角,由sin A,则cos A.那么:tan A∵tan(A﹣B),即,即,sin2B+cos2B=1,解得:sin B.(2)由(1)可知:sin B,则cos B那么:sin C=sin(A+B)=sin A cos B+cos A sin B 正弦定理:,可得:c=13.16.证明:(1)连结OE.因为底面ABCD是菱形,所以O为AC的中点,又因为E是棱VC的中点,所以VA∥OE,又因为OE?平面BDE,VA?平面BDE,所以VA∥平面BDE;(2)因为VO⊥平面ABCD,又BD?平面ABCD,所以VO⊥BD,因为底面ABCD是菱形,所以BD⊥AC,又VO∩AC=O,VO,AC?平面VAC,所以BD⊥平面VAC.又因为BD?平面BDE,所以平面VAC⊥平面BDE.17.(本小题满分14分)解:(Ⅰ)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y﹣29=0相切,且半径为5,所以,即|4m﹣29|=25.因为m为整数,故m=1.故所求圆的方程为(x﹣1)2+y2=25.…(Ⅱ)把直线ax﹣y+5=0,即y=ax+5,代入圆的方程,消去y,整理,得(a2+1)x2+2(5a﹣1)x+1=0,由于直线ax﹣y+5=0交圆于A,B两点,故△=4(5a﹣1)2﹣4(a2+1)>0,即12a2﹣5a>0,由于a>0,解得a,所以实数a的取值范围是().(Ⅲ)设符合条件的实数a存在,则直线l的斜率为,l的方程为,即x+ay+2﹣4a=0由于l垂直平分弦AB,故圆心M(1,0)必在l上,所以1+0+2﹣4a=0,解得.由于,故存在实数使得过点P(﹣2,4)的直线l垂直平分弦AB.…18.(1)作AE⊥CD,垂足为E,则CE=10,DE=10,设BC=x,则,化简得,解之得,或(舍),答:BC的长度为;(2)设BP=t,则,,设,,令f'(t)=0,因为,得,当时,f'(t)<0,f(t)是减函数;当时,f'(t)>0,f(t)是增函数,所以,当时,f(t)取得最小值,即tan(α+β)取得最小值,因为恒成立,所以f(t)<0,所以tan(α+β)<0,,因为y=tan x在上是增函数,所以当时,α+β取得最小值.答:当BP为cm时,α+β取得最小值.19.(1)解:n=1时,由得p=0或2,若p=0时,,当n=2时,,解得a2=0或,而a n>0,所以p=0不符合题意,故p=2;(2)证明:当p=2时,①,则②,②﹣①并化简得3a n+1=4﹣S n+1﹣S n③,则3a n+2=4﹣S n+2﹣S n+1④,④﹣③得(n∈N*),又因为,所以数列{a n}是等比数列,且;(3)证明:充分性:若x=1,y=2,由知a n,2x a n+1,2y a n+2依次为,,,满足,即a n,2x a n+1,2y a n+2成等差数列;必要性:假设a n,2x a n+1,2y a n+2成等差数列,其中x、y均为整数,又,所以,化简得2x﹣2y﹣2=1显然x>y﹣2,设k=x﹣(y﹣2),因为x、y均为整数,所以当k≥2时,2x﹣2y﹣2>1或2x﹣2y﹣2<1,故当k=1,且当x=1,且y﹣2=0时上式成立,即证.20.(1)当x1=0,x2=1,x3=2时,f(x)=x(x﹣1)(x﹣2),令f′(x)=3x2﹣6x+2<0解得,x,故函数f(x)的减区间为(,);(2)证明:∵f(x)=(x﹣x1)(x﹣x2)(x﹣x3),∴f′(x)=(x﹣x2)(x﹣x3)+(x﹣x1)(x﹣x3)+(x﹣x1)(x﹣x2),又∵x1<x2<x3,∴f′(x1)=(x1﹣x2)(x1﹣x3)>0,f′(x2)=(x2﹣x1)(x2﹣x3)<0,f′(x3)=(x3﹣x2)(x3﹣x1)>0,故函数f′(x)在(x1,x2),(x2,x3)上分别有一个零点,故方程f′(x)=0有两个不相等的实数根;(3)∵方程f′(x)=0的两个实数根是α,β(α<β),∴f′(α)=f′(β)=0,而f′()=(x2)(x3)+(x1)(x3)+(x1)(x2)(x1﹣x2)2<0,f′()=(x2)(x3)+(x1)(x3)+(x1)(x2)(x3﹣x2)2<0,再结合二次函数的图象可知,αβ.本题包括A,B共1小题,每小题10分,共20分.把答案写在答题卡相应的位置上.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换]21.∵M,N,∴MN,…4分∴在矩阵MN变换下,→,…6分∴曲线y=sin x在矩阵MN变换下的函数解析式为y=2sin2x.…10分.[选修4-4:极坐标与参数方程]22.(1)由,得,∴y,即.圆的方程为x2+y2=100.(2)圆心(0,0)到直线的距离d,y=10,∴弦长l.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.23.(1)∵BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,又四边形ABCD为矩形,∴以A为原点,AB为x轴,AD为y轴,AF为z轴,建立空间直角坐标系,∵AD=2,AB=AF=2EF=2,P是DF的中点,∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(﹣1,0,2),(﹣2,﹣1,1),设异面直线BE与CP所成角的平面角为θ,则cosθ,∴异面直线BE与CP所成角的余弦值为.(2)A(0,0,0),C(2,2,0),F(0,0,2),D(0,2,0),设P(a,b,c),,0≤λ≤1,即(a,b,c﹣2)=λ(0,2,﹣2),解得a=0,b=2λ,c=2﹣2λ,∴P(0,2λ,2﹣2λ),(0,2λ,2﹣2λ),(2,2,0),设平面APC的法向量(x,y,z),则,取x=1,得(1,﹣1,),平面ADF的法向量(1,0,0),∵二面角D﹣AP﹣C的正弦值为,∴|cos|,解得,∴P(0,,),∴PF的长度|PF|.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.24.(1)P(ξ)是“ξ个人命中,3﹣ξ个人未命中”的概率.其中ξ的可能取值为0,1,2,3.,,,.所以ξ的分布列为ξ0 1 2 3Pξ的数学期望为.(2),,.由和0<a<1,得,即a的取值范围是.。
安徽省阜阳市临泉县第一中学2018届高三数学上学期第二次模拟试题理(含解析)

临泉一中高三年级上学期数学第二次模拟考试(理科)本试卷分为必考部分和选考部分.满分150分,考试时间120分钟必考部分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.将所选答案标记在题后答题框内.1. 设集合2 [「:•,二:一 .,.,• 4 I ,若口厂1「则卜1 ()A. :'-1:B. '■).:C. 二;D.【答案】C【解析】•••集合二| I .'】;•,二:+ Ill HL, - f '丨丨;••• •丨是方程. Ill匚的解,即丨丨I •]]••• I - 7•二:一、+ III 川■;■ ■■■ -4- + ■!.:■;■■]丄.:■•;•,故选C2. 命题"若a > b,则a丰c > b + c”的否命题是()A.若丨•,则.1 | I;i ■B.若「i「I;i ■U 和二「C.若,则「: I.D. 若■: - I,则门-I: li -【答案】A【解析】命题"若a > b,则a十c》b + L的否命题是"若a<b,贝ija + c< b + c",故选A3. 已知点-■ ::H': I..-.III'c在第三象限,则角IJ的终边在()A.第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】试题分析:点MU-在第三象限可知;;:;;:;,所以角"的终边位置在第二象限考点:四个象限三角函数值的正负问题A. 'B. '■.:,C. 「ID.;丨;i4.若:.■-);!"L “门,贝y '的大小关系(【答案】D【解析】T、;一「、|「• J二 c 二^(-cosx) Q二-^(COSTI-COS O)二扌.•7 1._ I 一 -,门-I己,故选D5. 已知I I [ ' 口,;'. II :: I 一'.:■■■';. I, h,:,“11=( )A. B. C. D.4 32【答案】C【解析】IT E - C. ,.J、11=2cosa • ::;I「I门〔贝VCDSH二-3• r ¥;F Hl 二:■■.:■ ■■;:]= ',故选C6. 下列函数中,在丨丨|上与函数一二.:n 的单调性和奇偶性都相同的是( )A. < 「八B. ■■■ - 1 1C. ■ ■■:■:.D. : - -J ―【答案】D【解析】-一;-…r在-■ '■上递增,在d「上递减,且¥为偶函数,而:「- / - ■{也具有相同的奇偶性和单调性•本题选择D选项•7. 已知T\ -:■ =';in - .■:|r i= in ?'-,则下列结论中正确的是( )A. 函数1 1〔m:的周期为"B. 将li「的图像向左平移"个单位后得到NI -':的图像C. 函数I': - - ';':■:的最大值为ID. . I ■[I一:的一个对称中心是:.、【答案】Dn 1【解析】选项A:. “ …I rill :|一・]dr ■ ■. i;in.'-,则周期丨'兀,故A不对;选项B:将|的图像向左平移’「个单位后得到的函数解析式为■w <- ' - : ;in;.-. - :i i --JII ■,得不到‘乂的图像,故B不对;1 a .选项C :由A可得f(x),g(x) = 2sin2x ,因为sin2x的最大值为1 T所以朋)* 泊大值为指故C不对;选项D:+ g(x) = sin(x + ;) + sin(n-x)二sinx + cosx 二\J2sin(x +》根据正弦函数的对称性,令• - b II ■ •「,得• | 11- I- ■..',当•.-丨时,>:=.',故D正确.故选D8. 已知「:,-■:.,函数f 门[二Mi .:.:>■'在-二Y内单调递减,则‘::‘的取值范围是( )A.(斶B.開]。
北京海淀区2018届高三数学一模试卷理科带答案

北京海淀区2018届高三数学一模试卷(理科带答案)海淀区高三年级第二学期期中练习数学(文科)2018.4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将答题纸交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合,,且,则可以是(A)(B)0(C)l(D)2(2)已知向量a=(l,2),b=(,0),则a+2b=(A)(,2)(B)(,4)(C)(1,2)(D)(1,4)(3)执行如图所示的程序框图,输出的S值为(A)2(B)6(C)8(D)10(4)如图,网格纸上小正方形的边长为1,若四边形及其内部的点组成的集合记为,为中任意一点,则的最大值为(A)1(B)2(C)(D)(5)已知,为正实数,则“,”是“”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(6)如图所示,一个棱长为1的正方体在一个水平放置的转盘上转动,用垂直于竖直墙面的水平光线照射,该正方体在竖直墙面上的投影的面积记作,则的值不可能是(A)(B)(C)(D)(7)下列函数中,其图像上任意一点的坐标都满足条件的函数是(A)(B)(C)(D)(8)已知点在圆上,点在圆上,则下列说法错误的是(A)的取值范围为(B)取值范围为(C)的取值范围为(D)若,则实数的取值范围为第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。
(9)复数.(10)已知点(2,0)是双曲线:的一个顶点,则的离心率为.(11)直线(为参数)与曲线(为参数)的公共点个数为.(12)在中,若,,,则,.(13)一次数学会议中,有五位教师来自A,B,C三所学校,其中A学校有2位,B学校有2位,C学校有1位.现在五位教师排成一排照相,若要求来自同一所学校的教师不相邻,则共有种不同的站队方法.(14)设函数.①若有两个零点,则实数的取值范围是;②若,则满足的的取值范围是.三、解答题共6小题,共80分。
南京市、盐城市2018年高三年级第一次模拟考试数学试题与答案

南京市、盐城市2018届高三年级第一次模拟考试数 学 试 题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:柱体体积公式:V Sh =,其中S 为底面积,h 为高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.已知集合{}|(4)0A x x x =-<,{}0,1,5B =,则AB = ▲ .2.设复数(,z a i a R i =+∈为虚数单位),若(1)i z +⋅为纯虚数,则a 的值为 ▲ .3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为 ▲ .4.执行如图所示的伪代码,若0x =,则输出的y 的值为 ▲ .5.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为 ▲ .6.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为 ▲ . 7.设函数1x x y e a e=+-的值域为A ,若[0,)A ⊆+∞,则实数a 的取值范围是 ▲ .8.已知锐角,αβ满足()()tan 1tan 12αβ--=,则αβ+的值为 ▲ .9.若函数sin y x ω=在区间[0,2]π上单调递增,则实数ω的取值范围是 ▲ . 10.设n S 为等差数列{}n a 的前n 项和,若{}n a 的前2017项中的奇数项和为2018,则2017S 的值为 ▲ .时间(单位:分钟) 组距 50 60 70 80 90 100 0.035 a0.0200.0100.005第3题图 Read x If 0x > Then ln y x ← Else x y e ← End If Print y 第4题图11.设函数()f x 是偶函数,当x ≥0时,()f x =(3),03,31,>3x x x x x-≤≤⎧⎪⎨-+⎪⎩,若函数()y f x m =- 有四个不同的零点,则实数m 的取值范围是 ▲ .12.在平面直角坐标系xOy 中,若直线(33)y k x =-上存在一点P ,圆22(1)1x y +-=上存在一点Q ,满足3OP OQ =,则实数k 的最小值为 ▲ .13.如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若,,,A B C D 四点均位于图中的“晶格点”处,且,A B 的位置所图所示,则CD AB ⋅的最大值为 ▲ .14.若不等式2sin sin sin 19sin sin k B A C B C +>对任意ABC ∆都成立,则实数k 的最小值为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)如图所示,在直三棱柱111ABC A B C -中,CA CB =,点,M N 分别是11,AB A B 的中点.(1)求证:BN ∥平面1A MC ; (2)若11A M AB ⊥,求证:11AB A C ⊥.16.(本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,,a b c 已知52c =. (1)若2C B =,求cos B 的值; (2)若AB AC CA CB ⋅=⋅,求cos()4B π+的值.A第13题图ABCA 1B 1C 1MN第15题图有一矩形硬纸板材料(厚度忽略不计),一边AB 长为6分米,另一边足够长.现从中截取矩形ABCD (如图甲所示),再剪去图中阴影部分,用剩下的部分恰好..能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF 是以O 为圆心、120EOF ∠=︒的扇形,且弧EF ,GH 分别与边BC ,AD 相切于点M ,N . (1)当BE 长为1分米时,求折卷成的包装盒的容积;(2)当BE 的长是多少分米时,折卷成的包装盒的容积最大?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的下顶点为B ,点,M N 是椭圆上异于点B 的动点,直线,BM BN 分别与x 轴交于点,P Q ,且点Q 是线段OP 的中点.当点N 运动到点2处时,点Q的坐标为(,0)3. (1)求椭圆C 的标准方程;(2)设直线MN 交y 轴于点D ,当点,M N 均在y 轴右侧,且2DN NM =时,求直线BM 的方程.第17题-图甲 FH 第17题-图乙设数列{}n a 满足221121()n n n a a a a a λ+-=+-,其中2n ,且n N ∈,λ为常数.(1)若{}n a 是等差数列,且公差0d ≠,求λ的值;(2)若1231,2,4a a a ===,且存在[3,7]r ∈,使得n m a n r ⋅-对任意的*n N ∈都成立,求m 的最小值;(3)若0λ≠,且数列{}n a 不是常数列,如果存在正整数T ,使得n T n a a +=对任意的*n N ∈均成立.求所有满足条件的数列{}n a 中T 的最小值.20.(本小题满分16分)设函数()ln f x x =,()bg x ax c x=+-(,,a b c R ∈). (1)当0c =时,若函数()f x 与()g x 的图象在1x =处有相同的切线,求,a b 的值;(2)当3b a =-时,若对任意0(1,)x ∈+∞和任意(0,3)a ∈,总存在不相等的正实数12,x x ,使得120()()()g x g x f x ==,求c 的最小值;(3)当1a =时,设函数()y f x =与()y g x =的图象交于11(,),A x y 2212(,)()B x y x x <两点.求证:122121x x x b x x x -<<-.南京市、盐城市2018届高三年级第一次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A 、B 、C 、D 四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)A .(选修4-1:几何证明选讲)如图,已知AB 为⊙O 的直径,直线DE 与⊙O 相切于点E ,AD 垂直DE 于点D . 若4DE =,求切点E 到直径AB 的距离EF .B .(选修4-2:矩阵与变换)已知矩阵 2 00 1⎡⎤=⎢⎥⎣⎦M ,求圆221x y +=在矩阵M 的变换下所得的曲线方程.C .(选修4-4:坐标系与参数方程)在极坐标系中,直线cos()13πρθ+=与曲线r ρ=(0r >)相切,求r 的值.D .(选修4-5:不等式选讲)已知实数,x y 满足2231x y +=,求当x y +取最大值时x 的值.A B E D F O · 第21(A)图[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内) 22.(本小题满分10分)如图,四棱锥P ABCD -的底面ABCD 是菱形,AC 与BD 交于点O ,OP ⊥底面ABCD ,点M 为PC 中点,4,2,4AC BD OP ===.(1)求直线AP 与BM 所成角的余弦值;(2)求平面ABM 与平面PAC 所成锐二面角的余弦值.23.(本小题满分10分)已知n N *∈,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.(1)求()1,f ()2,f ()3f 的值;(2)试猜想()f n 的表达式(用一个组合数表示),并证明你的猜想.M A BC D O P 第22题图南京市、盐城市2018届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分. 1.{}1 2.1 3.1200 4.1 5.236.6 7.(,2]-∞ 8.34π 9.1(0,]4 10.4034 11.9[1,)412.3- 13.24 14.100 二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.证明:(1)因为111ABC A B C -是直三棱柱,所以11//AB A B ,且11AB A B =,又点,M N 分别是11,AB A B 的中点,所以1MB A N =,且1//MB A N .所以四边形1A NBM 是平行四边形,从而1//A M BN . ……………4分 又BN ⊄平面1A MC ,1A M ⊂平面1A MC ,所以BN ∥面1A MC . ……………6分 (2)因为111ABC A B C -是直三棱柱,所以1AA ⊥底面ABC ,而1AA ⊂侧面11ABB A ,所以侧面11ABB A ⊥底面ABC .又CA CB =,且M 是AB 的中点,所以CM AB ⊥.则由侧面11ABB A ⊥底面ABC ,侧面11ABB A 底面ABC AB =,CM AB ⊥,且CM ⊂底面ABC ,得CM ⊥侧面11ABB A . ……………8分 又1AB ⊂侧面11ABB A ,所以1AB CM ⊥. ……………10分又11AB A M ⊥,1,A M MC ⊂平面1A MC ,且1A MMC M =,所以1AB ⊥平面1A MC . ……………12分又1AC ⊂平面1A MC ,所以11AB A C ⊥. ……………14分 16.解:(1)因为5c =,则由正弦定理,得5sin C B =. ……………2分 又2C B =,所以5sin 22B B =,即4sin cos 5B B B =. ……………4分 又B 是ABC ∆的内角,所以sin 0B >,故5cos 4B =. ……………6分(2)因为AB AC CA CB ⋅=⋅, 所以cos cos cb A ba C =,则由余弦定理,得222222b c a b a c +-=+-,得a c =. ……………10分从而2222()35cos 25c c c a c b B ac +-+-===, ……………12分又0B π<<,所以24sin 1cos 5B B =-=.从而32422cos()cos cos sin sin 444525210B B B πππ+=-=⨯-⨯=-. ……………14分17.解:(1)在图甲中,连接MO 交EF 于点T .设OE OF OM R ===,在Rt OET ∆中,因为1602EOT EOF ∠=∠=︒,所以2ROT =,则2R MT OM OT =-=.从而2RBE MT ==,即22R BE ==. ……………2分 故所得柱体的底面积OEF OEF S S S ∆=-扇形22114sin120323R R ππ=-︒=- ……………4分又所得柱体的高4EG =,所以V S EG =⨯=163π-答:当BE 长为1分米时,折卷成的包装盒的容积为163π-. …………………6分(2)设BE x =,则2R x =,所以所得柱体的底面积OEF OEF S S S ∆=-扇形222114sin120(323R R x ππ=-︒=.又所得柱体的高62EG x =-,所以V S EG =⨯=328(3)3x x π--+,其中03x <<. …………………10分令32()3,(0,3)f x x x x =-+∈,则由2()363(2)0f x x x x x '=-+=--=,解得2x =. …………………12分列表如下:所以当x =答:当BE 的长为2分米时,折卷成的包装盒的容积最大. …………………14分18.解:(1)由2NQ ,得直线NQ的方程为32y x = (2)分 令0x =,得点B 的坐标为(0,. 所以椭圆的方程为22213x y a +=. …………………4分 将点N 的坐标2213=,解得24a =. 所以椭圆C 的标准方程为22143x y +=.…………………8分 (2)方法一:设直线BM 的斜率为(0)k k >,则直线BM 的方程为y kx =-在y kx =0y =,得P x =,而点Q 是线段OP的中点,所以Q x = 所以直线BN 的斜率2BN BQk k k ===. ………………10分联立22143y kx x y ⎧=⎪⎨+=⎪⎩,消去y,得22(34)0k x +-=,解得M x =. 用2k 代k,得2316N x k =+. ………………12分又2DN NM =,所以2()N M N x x x =-,得23M N x x =. ………………14分故222334316k k ⨯=⨯++,又0k >,解得2k =. 所以直线BM的方程为2y x =. ………………16分 方法二:设点,M N 的坐标分别为1122(,),(,)x y x y .由(0,B ,得直线BN的方程为1y x =0y =,得P x =同理,得Q x =.而点Q 是线段OP 的中点,所以2P Q x x ==…………………10分 又2DN NM =,所以2122()x x x =-,得21203x x =>4=,解得2143y y =. …………………12分将21212343x x y y ⎧=⎪⎪⎨⎪=⎪⎩代入到椭圆C的方程中,得2211(41927x y +=. 又22114(1)3y x =-,所以214(1)319y -+=21120y +=,解得1y =1y =.又10x >,所以点M的坐标为(3M .……………14分 故直线BM的方程为y x =-. …………………16分 19.解:(1)由题意,可得22()()n n n a a d a d d λ=+-+,化简得2(1)0d λ-=,又0d ≠,所以1λ=. ………………4分 (2)将1231,2,4a a a ===代入条件,可得414λ=⨯+,解得0λ=,所以211n n n a a a +-=,所以数列{}n a 是首项为1,公比2q =的等比数列,所以12n n a -=. ……6分欲存在[3,7]r ∈,使得12n m n r -⋅-,即12n r n m --⋅对任意*n N ∈都成立,则172n n m --⋅,所以172n n m--对任意*n N ∈都成立. ………………8分 令172n n n b --=,则11678222n n n n n n n n b b +-----=-=,所以当8n >时,1n n b b +<;当8n =时,98b b =;当8n <时,1n n b b +>.所以n b 的最大值为981128b b ==,所以m 的最小值为1128. ………………10分(3)因为数列{}n a 不是常数列,所以2T .①若2T =,则2n n a a +=恒成立,从而31a a =,42a a =,所以22221212221221()()a a a a a a a a λλ⎧=+-⎪⎨=+-⎪⎩, 所以221()0a a λ-=,又0λ≠,所以21a a =,可得{}n a 是常数列.矛盾.所以2T =不合题意. ………………12分②若3T =,取*1,322,31()3,3n n k a n k k N n k =-⎧⎪==-∈⎨⎪-=⎩(*),满足3n n a a +=恒成立. ………………14分由2221321()a a a a a λ=+-,得7λ=. 则条件式变为2117n n n a a a +-=+.由221(3)7=⨯-+,知223132321()k k k a a a a a λ--=+-;由2(3)217-=⨯+,知223313121()k k k a a a a a λ-+=+-; 由21(3)27=-⨯+,知223133221()k k k a a a a a λ++=+-.所以,数列(*)适合题意.所以T 的最小值为3. ………………16分20.解:(1)由()ln f x x =,得(1)0f =,又1()f x x'=,所以(1)1f '=,. 当0c =时,()b g x ax x =+,所以2()bg x a x'=-,所以(1)g a b '=-. ………………2分 因为函数()f x 与()g x 的图象在1x =处有相同的切线,所以(1)(1)(1)(1)f g f g ''=⎧⎨=⎩,即10a b a b -=⎧⎨+=⎩,解得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩. ………………4分(2)当01x >时,则0()0f x >,又3b a =-,设0()t f x =,则题意可转化为方程3(0)aax c t t x-+-=>在(0,)+∞上有相异两实根12,x x . ………………6分 即关于x 的方程2()(3)0(0)ax c t x a t -++-=>在(0,)+∞上有相异两实根12,x x .所以2121203()4(3)030a c t a a c t x x a ax x a <<⎧⎪∆=+-->⎪⎪+⎨+=>⎪⎪-=>⎪⎩,得203()4(3)0a c t a a c t <<⎧⎪+>-⎨⎪+>⎩,所以c t >对(0,),(0,3)t a ∈+∞∈恒成立. ………………8分因为03a <<,所以)2(3a +⨯=(当且仅当32a =时取等号), 又0t -<,所以t 的取值范围是(,3)-∞,所以3c .故c 的最小值为3. ………………10分 (3)当1a =时,因为函数()f x 与()g x 的图象交于,A B 两点,所以111222ln ln b x x cx b x x cx ⎧=+-⎪⎪⎨⎪=+-⎪⎩,两式相减,得211221ln ln (1)x x b x x x x -=--. ………………12分 要证明122121x x x b x x x -<<-,即证211221212121ln ln (1)x x x x x x x x x x x x --<-<--, 即证212211ln ln 11x x x x x x -<<-,即证1222111ln 1x x x x x x -<<-. ………………14分 令21x t x =,则1t >,此时即证11ln 1t t t-<<-. 令1()ln 1t t t ϕ=+-,所以22111()0t t t t tϕ-'=-=>,所以当1t >时,函数()t ϕ单调递增.又(1)0ϕ=,所以1()ln 10t t t ϕ=+->,即11ln t t-<成立;再令()ln 1m t t t =-+,所以11()10tm t t t-'=-=<,所以当1t >时,函数()m t 单调递减,又(1)0m =,所以()ln 10m t t t =-+<,即ln 1t t <-也成立.综上所述, 实数12,x x 满足122121x x x b x x x -<<-. ………………16分附加题答案21.(A )解:如图,连接AE ,OE ,因为直线DE 与⊙O 相切于点E ,所以DE OE ⊥,又因为AD 垂直DE 于D ,所以//AD OE ,所以DAE OEA ∠=∠,① 在⊙O 中OE OA =,所以OEA OAE ∠=∠,② ………………5分 由①②得DAE ∠OAE =∠,即DAE ∠FAE =∠, 又ADE AFE ∠=∠,AE AE =,所以ADE AFE ∆≅∆,所以DE FE =,又4DE =,所以4FE =, 即E 到直径AB 的距离为4. ………………10分(B )解:设()00,P x y 是圆221x y +=上任意一点,则22001x y +=,ABE DF O · 第21(A)图设点()00,P x y 在矩阵M 对应的变换下所得的点为(),Q x y ,则002 00 1x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即002x x y y =⎧⎨=⎩,解得0012x x y y⎧=⎪⎨⎪=⎩, ………………5分代入2201x y +=,得2214x y +=,即为所求的曲线方程. ………………10分 (C )解:以极点O 为原点,极轴Ox 为x 轴建立平面直角坐标系,由cos()13πρθ+=,得(cos cossin sin )133ππρθθ-=,得直线的直角坐标方程为20x --=. ………………5分曲线r ρ=,即圆222x y r +=,所以圆心到直线的距离为1d ==.因为直线cos()13πρθ+=与曲线r ρ=(0r >)相切,所以r d =,即1r =. ……………10分(D)解:由柯西不等式,得22222[)][1(](133x x ++≥⨯+⨯, 即2224(3)()3x y x y +≥+. 而2231x y +=,所以24()3x y +≤,所以x y ≤+≤ ………………5分由1x x y ⎧=⎪⎪⎨⎪⎪+=⎩,得2x y ⎧=⎪⎪⎨⎪=⎪⎩26x y ==时,max ()x y += 所以当x y +取最大值时x的值为2x =. ………………10分 22.解:(1)因为ABCD 是菱形,所以AC BD ⊥.又OP ⊥底面ABCD ,以O 为原点,直线,,OA OB OP 分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系. 则(2,0,0)A ,(0,1,0)B ,(0,0,4)P ,(2,0,0)C -,(1,0,2)M -.所以(2,0,4)AP =-,(1,1,2)BM =--,10AP BM ⋅=,||25AP =,||6BM =.则cos ,6||||2AP BM AP BM AP BM ⋅<>===. 故直线AP 与BM 所成角的余弦值为6. ………5分 (2)(2,1,0)AB =-,(1,1,2)BM =--.设平面ABM 的一个法向量为(,,)n x y z =,C第22题图则00n AB n BM ⎧⋅=⎪⎨⋅=⎪⎩,得2020x y x y z -+=⎧⎨--+=⎩,令2x =,得4y =,3z =.得平面ABM 的一个法向量为(2,4,3)n =.又平面PAC 的一个法向量为(0,1,0)OB =,所以n 4OB ⋅=,||29n =,||1OB =.则4cos ,||||29n OBn OB n OB ⋅<>===故平面ABM 与平面PAC ………………10分 23.解:(1)由条件,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+ ①,在①中令1n =,得()011111f C C ==. ………………1分 在①中令2n =,得()011222222226f C C C C =+=,得()23f =. ………………2分 在①中令3n =,得()011223333333332330f C C C C C C =++=,得()310f =. ………………3分(2)猜想()f n =21nn C -(或()f n =121n n C --). ………………5分 欲证猜想成立,只要证等式011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+成立.方法一:当1n =时,等式显然成立,当2n 时,因为11!!(1)!==!()!(1)!()!(1)!()!rr n n r n n n rC n nC r n r r n r r n r --⨯-=⨯=-----(),故11111()r r r r r r n n n n n n rC C rC C nC C -----==.故只需证明00111111211111n r r n n n n n n n n n n n nC nC C nC C nC C nC C ---------=++⋅⋅⋅++⋅⋅⋅+. 即证00111111211111n r r n n n n n n n n n n nC C C C C C C C C ---------=++⋅⋅⋅++⋅⋅⋅+. 而11r n r n n C C --+=,故即证0111111211111n n n r n r n n n n n n n n n n C C C C C C C C C ---+------=++⋅⋅⋅++⋅⋅⋅+ ②. 由等式211(1)(1)(1)n n n x x x --+=++可得,左边nx 的系数为21n n C -.而右边1(1)(1)n n x x -++()()01221101221111n n n nnn n n n n n n C C x C x C x C C x C x C x ------=++++++++,所以nx 的系数为01111111111n n r n r n n n n n n n n n C C C C C C C C ---+-----++⋅⋅⋅++⋅⋅⋅+.由211(1)(1)(1)n n n x x x --+=++恒成立可得②成立.综上,()21n n f n C -=成立. ………………10分 方法二:构造一个组合模型,一个袋中装有21n -个小球,其中n 个是编号为1,2,…,n 的白球,其余n -1个是编号为1,2,…,n -1的黑球,现从袋中任意摸出n 个小球,一方面,由分步计数原理其中含有r 个黑球(n r -个白球)的n 个小球的组合的个数为1r n rn nC C --,01r n ≤≤-,由分类计数原理有从袋中任意摸出n 个小球的组合的总数为01111111n n n n n n nn n C C C C C C -----+++.另一方面,从袋中21n -个小球中任意摸出n 个小球的组合的个数为21nn C -.故0111121111n n n n n n n n n n n C C C C C C C ------=++,即②成立. 余下同方法一. ………………10分方法三:由二项式定理,得0122(1)n n n n n n n x C C x C x C x +=++++ ③. 两边求导,得112111(1)2n r r n n n n n n n x C C x rC x nC x ---+=+++++ ④.③×④, 得21012212111(1)()(2)n n n r r n n n n n n n n n n n x C C x C x C x C C x rC x nC x ---+=+++++++++ ⑤.左边n x 的系数为21nn nC -.右边nx 的系数为121112n n r n r n n n n n n n n n C C C C rC C nC C --+++⋅⋅⋅++⋅⋅⋅+1021112r r n n n n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+0112112r r n n n n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.由⑤恒成立,可得011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+.故()21n n f n C -=成立. ………………10分。
北京市朝阳区2018-2019高三数学期末考试(理科)试题(解析版)

北京市朝阳区2018-2019学年度第一学期期末质量检测高三年级数学试卷(理工类)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合,,则A. B. C. D.【答案】D【解析】【分析】利用并集定义直接求解.【详解】集合A={x∈N|1≤x≤3}={1,2,3},B={2,3,4,5},∴A∪B={1,2,3,4,5}.故选:D.【点睛】本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.设复数满足,则=A. B. C. 2 D.【答案】B【解析】【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】由(1﹣i)z=2i,得z,∴|z|.故选:B.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.3.执行如图所示的程序框图,若输入的,则输出的=A. B. C. D.【答案】A【解析】【分析】根据框图的流程依次计算程序运行的结果,直到满足条件跳出循环,确定输出S的值【详解】模拟程序的运行,可得S=12,n=1执行循环体,S=10,n=2不满足条件S+n≤0,执行循环体,S=6,n=3不满足条件S+n≤0,执行循环体,S=0,n=4不满足条件S+n≤0,执行循环体,S=﹣8,n=5满足条件S+n≤0,退出循环,输出S的值为﹣8.故选:A.【点睛】解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.4.在平面直角坐标系中,过三点的圆被轴截得的弦长为A. B. C. D.【答案】A【解析】【分析】利用待定系数法求出圆的一般方程,令y=0可得:x2﹣4x=0,由此即可得到圆被轴截得的弦长.【详解】根据题意,设过A、B、C的圆为圆M,其方程为x2+y2+Dx+Ey+F=0,又由A(4,4),B(4,0),C(0,4),则有,解可得:D=﹣4,E=﹣4,F=0,即圆M的方程为x2+y2﹣4x﹣4y=0,令y=0可得:x2﹣4x=0,解可得:x1=0,x2=4,即圆与x轴的交点的坐标为(0,0),(4,0),则圆被x轴截得的弦长为4;故选:A.【点睛】本题考查直线与圆的方程的应用,涉及待定系数法求圆的方程,关键是求出圆的方程.5.将函数的图象向右平移个单位后,图象经过点,则的最小值为A. B. C. D.【答案】B【解析】【分析】根据三角函数平移变换的规律得到向右平移φ(φ>0)个单位长度的解析式,将点带入求解即可.【详解】将函数y=sin2x的图象向右平移φ(φ>0)个单位长度,可得y=sin2(x﹣φ)=sin(2x﹣2φ),图象过点,∴sin(2φ),即2φ2kπ,或2kπ,k∈Z,即φ 或,k ∈Z ,∵φ>0,∴φ的最小值为. 故选:B .【点睛】本题主要考查了函数y =A sin (ωx +φ)的图象变换规律,考查计算能力,属于基础题. 6.设为实数,则是 “”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】C 【解析】 【分析】 由“x <0”易得“”,反过来,由“”可得出“x <0”,从而得出“x <0”是“”的充分必要条件.【详解】若x <0,﹣x >0,则:;∴“x <0“是““的充分条件;若,则;解得x <0; ∴“x <0“是““的必要条件;综上得,“x <0”是“”的充分必要条件.故选:C .【点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件. 7.对任意实数,都有(且),则实数的取值范围是A. B. C. D.【答案】B【解析】【分析】由题意可得a>1且a≤e x+3对任意实数x都成立,根据指数函数的性质即可求出.【详解】∵log a(e x+3)≥1=log a a,∴a>1且a≤e x+3对任意实数x都成立,又e x+3>3,∴1<a≤3,故选:B【点睛】本题考查了对数的运算性质和函数恒成立的问题,属于中档题.8.以棱长为1的正方体各面的中心为顶点,构成一个正八面体,再以这个正八面体各面的中心为顶点构成一个小正方体,那么该小正方体的棱长为A. B. C. D.【答案】C【解析】【分析】利用正八面体与大小正方体的关系,即可得到结果.【详解】正方体C1各面中心为顶点的凸多面体C2为正八面体,它的中截面(垂直平分相对顶点连线的界面)是正方形,该正方形对角线长等于正方体的棱长,所以它的棱长a2;以C2各个面的中心为顶点的正方体为图形C3是正方体,正方体C3面对角线长等于C2棱长的,(正三角形中心到对边的距离等于高的),因此对角线为,所以a,3故选:【点睛】本题考查组合体的特征,抓住两个组合体主元素的关系是解题的关键,考查空间想象能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.已知数列为等差数列,为其前项的和.若,,则_______.【答案】【解析】【分析】运用等差数列的前n项和公式可解决此问题.【详解】根据题意得,2=6,∴=3 又=7,∴2d=7﹣3=4,∴d=2,=1,∴S=55+20=25,5故答案为:25.【点睛】本题考查等差数列的前n项和公式的应用.10.已知四边形的顶点A,B,C,D在边长为1的正方形网格中的位置如图所示,则____________.【答案】【解析】【分析】以A为坐标原点,以AC所在直线为x轴建立平面直角坐标系,分别求出的坐标,由数量积的坐标运算得答案.【详解】如图,以A为坐标原点,以AC所在直线为x轴建立平面直角坐标系,则A(0,0),B(4,2),C(7,0),D(3,﹣2),∴,,∴7×1+0×4=7.故答案为:7.【点睛】本题考查平面向量数量积的性质及其运算,合理构建坐标系是解题的关键,是基础的计算题.11.如图,在边长为1的正方形网格中,粗实线表示一个三棱锥的三视图,则该三棱锥的体积为_______________.【答案】【解析】【分析】由三视图还原几何体,该几何体为三棱锥,底面三角形ACB与侧面三角形APB为全等的等腰直角三角形,侧面PAB⊥侧面ACB,AB=4,PO=OC=2,由此即可得到结果.【详解】由三视图还原原几何体如图,该几何体为三棱锥,底面三角形ACB与侧面三角形APB为全等的等腰直角三角形,侧面PAB⊥侧面ACB,AB=4,PO=OC=2.侧面PAC与PBC为全等的等边三角形.则该三棱锥的体积为V=.故答案为:.【点睛】本题考查由三视图求体积,关键是由三视图还原原几何体,考查空间想象能力及运算能力,是中档题.12.过抛物线焦点的直线交抛物线于两点,分别过作准线的垂线,垂足分别为.若,则__________________.【答案】【解析】【分析】设直线AB的倾斜家为锐角θ,由|AF|=4|BF|,可解出cosθ的值,进而得出sinθ的值,然后利用抛物线的焦点弦长公式计算出线段AB的长,再利用|CD|=|AB|sinθ可计算出答案.【详解】设直线AB的倾斜角为θ,并设θ为锐角,由于|AF|=4|BF|,则有,解得,则,由抛物线的焦点弦长公式可得,因此,.故答案为:5.【点睛】本题考查抛物线的性质,解决本题的关键在于灵活利用抛物线的焦点弦长公式,属于中等题.13.2018年国际象棋奥林匹克团体赛中国男队、女队同时夺冠.国际象棋中骑士的移动规则是沿着3×2格或2×3格的对角移动.在历史上,欧拉、泰勒、哈密尔顿等数学家研究了“骑士巡游”问题:在格的黑白相间的国际象棋棋盘上移动骑士,是否可以让骑士从某方格内出发不重复地走遍棋盘上的每一格?图(一)给出了骑士的一种走法,它从图上标1的方格内出发,依次经过标2,3,4,5,6,,到达标64的方格内,不重复地走遍棋盘上的每一格,又可从标64的方格内直接走回到标1的方格内.如果骑士的出发点在左下角标50的方格内,按照上述走法,_____(填“能”或“不能”)走回到标50的方格内.若骑士限制在图(二)中的3×4=12格内按规则移动,存在唯一一种给方格标数字的方式,使得骑士从左上角标1的方格内出发,依次不重复经过2,3,4,5,6,,到达右下角标12的方格内,分析图(二)中A处所标的数应为____.【答案】(1). 能(2).【解析】【分析】根据题意,画出路线图,解判断是否能,再根据题意,结合题目中的数字,即可求出A处的数字.【详解】如图所示:如果骑士的出发点在左下角标50的方格内,按照上述走法,能走回到标50的方格内,如图所示:使得骑士从左上角标1的方格内出发,依次不重复经过2,3,4,5,6,…,到达右下角标12的方格,且路线是唯一的,故A处应该为8,故答案为:能,8【点睛】本题考查了合情推理的问题,考查了转化与化归思想,整体和部分的思想,属于中档题14.如图,以正方形的各边为底可向外作四个腰长为1的等腰三角形,则阴影部分面积的最大值是___________.【答案】【解析】【分析】设等腰三角形底角为,阴影面积为,根据正弦函数的图象与性质即可得到结果.【详解】设等腰三角形底角为,则等腰三角形底边长为高为,阴影面积为:,当时,阴影面积的最大值为故答案为:【点睛】本题考查平面图形的面积问题,考查三角函数的图象与性质,解题关键用等腰三角形底角为表示等腰三角形的底边与高.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.在中,已知,(1)求的长;(2)求边上的中线的长.【答案】(1)(2)【解析】【分析】(1)利用同角关系得到,结合正弦定理即可得到的长;(2)在中求出,结合余弦定理即可得到边上的中线的长. 【详解】解:(1)由,,所以.由正弦定理得,,即.(2)在中,.由余弦定理得,,所以.所以.【点睛】本题考查正余弦定理的应用,考查推理及运算能力,属于中档题.16.某日A,B,C三个城市18个销售点的小麦价格如下表:(1)甲以B市5个销售点小麦价格的中位数作为购买价格,乙从C市4个销售点中随机挑选2个了解小麦价格.记乙挑选的2个销售点中小麦价格比甲的购买价格高的个数为,求的分布列及数学期望;(2)如果一个城市的销售点小麦价格方差越大,则称其价格差异性越大.请你对A,B,C三个城市按照小麦价格差异性从大到小进行排序(只写出结果).【答案】(1)分布列见解析,期望为1(2)C,A,B【解析】【分析】(1)由题意可得的可能取值为0,1,2.求出相应的概率值,即可得到的分布列及数学期望;(2)三个城市按照价格差异性从大到小排列为:C,A,B.【详解】解:(1)B市共有5个销售点,其小麦价格从低到高排列为:2450,2460,2500,2500,2500.所以中位数为2500,所以甲的购买价格为2500.C市共有4个销售点,其小麦价格从低到高排列为:2400,2470,2540,2580,故的可能取值为0,1,2.,,.所以分布列为所以数学期望.(2)三个城市按小麦价格差异性从大到小排序为:C,A,B【点睛】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是:“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.17.如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.【答案】(1)见解析(2)(ⅰ)(ⅱ)点在点处时,有【解析】【分析】(1)取中点,证明四边形是平行四边形,可得从而得证;(2)(ⅰ)先证明平面以为原点建立空间直角坐标系,求出平面与平面的法向量,即可得到二面角的大小;(ⅱ)假设在线段上存在点,使得. 设,则.利用垂直关系,建立的方程,解之即可.【详解】证明:(1)取中点,连,连.在△中,因为分别是中点,所以,且.在平行四边形中,因为是的中点,所以,且.所以,且.所以四边形是平行四边形.所以.又因为平面,平面,所以平面.(2)因为侧面是正方形,所以.又因为平面平面,且平面平面,所以平面.所以.又因为,以为原点建立空间直角坐标系,如图所示. 设,则,.(ⅰ)设平面的一个法向量为.由得即令,所以.又因为平面,所以是平面的一个法向量.所以.由图可知,二面角为钝角,所以二面角的大小为.(ⅱ)假设在线段上存在点,使得.设,则.因为,又,所以.所以.故点在点处时,有【点睛】本题考查向量法求二面角大小、线面平行的证明,考查满足线面垂直的点的位置的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查化归与转化思想、数形结合思想,考查推理论论能力、空间想象能力,是中档题.18.已知函数.(Ⅰ)当时,求函数的极小值;(Ⅱ)当时,讨论的单调性;(Ⅲ)若函数在区间上有且只有一个零点,求的取值范围.【答案】(Ⅰ)(Ⅱ)详见解析(Ⅲ)【解析】【分析】(Ⅰ)由题意,当时,求得,得出函数的单调性,进而求解函数的极值;(Ⅱ)由,由,得或,分类讨论,即可得到函数的单调区间;(Ⅲ)由(1)和(2),分当和,分类讨论,分别求得函数的单调性和极值,即可得出相应的结论,进而得到结论.【详解】解:(Ⅰ)当时:,令解得,又因为当,,函数为减函数;当,,函数为增函数.所以,的极小值为.(Ⅱ).当时,由,得或.(ⅰ)若,则.故在上单调递增;(ⅱ)若,则.故当时,;当时,.所以在,单调递增,在单调递减.(ⅲ)若,则.故当时,;当时,.所以在,单调递增,在单调递减.(Ⅲ)(1)当时,,令,得.因为当时,,当时,,所以此时在区间上有且只有一个零点.(2)当时:(ⅰ)当时,由(Ⅱ)可知在上单调递增,且,,此时在区间上有且只有一个零点.(ⅱ)当时,由(Ⅱ)的单调性结合,又,只需讨论的符号:当时,,在区间上有且只有一个零点;当时,,函数在区间上无零点.(ⅲ)当时,由(Ⅱ)的单调性结合,,,此时在区间上有且只有一个零点.综上所述,.【点睛】本题主要考查了导数在函数中的综合应用问题,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.19.过椭圆W:的左焦点作直线交椭圆于两点,其中,另一条过的直线交椭圆于两点(不与重合),且点不与点重合.过作轴的垂线分别交直线,于,.(Ⅰ)求点坐标和直线的方程;(Ⅱ)求证:.【答案】(Ⅰ),的方程为(Ⅱ)详见解析【解析】【分析】(Ⅰ)由题意可得直线的方程为.与椭圆方程联立方程组,即可求解B点坐标;(Ⅱ)设,,的方程为,联立方程组,根据根与系数的关系,求得,,进而得出点的纵坐标,化简即可证得,得到证明.【详解】(Ⅰ)由题意可得直线的方程为.与椭圆方程联立,由可求.(Ⅱ)当与轴垂直时,两点与,两点重合,由椭圆的对称性,.当不与轴垂直时,设,,的方程为().由消去,整理得.则,.由已知,,则直线的方程为,令,得点的纵坐标.把代入得.由已知,,则直线的方程为,令,得点的纵坐标.把代入得.把,代入到中,=.即,即..【点睛】本题主要考查了直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,确定函数的性质进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.20.已知是由正整数组成的无穷数列,对任意,满足如下两个条件:①是的倍数;②.(1)若,,写出满足条件的所有的值;(2)求证:当时,;(3)求所有可能取值中的最大值.【答案】(1)(2)见解析(3)85【解析】【分析】(1)根据满足的两个条件即可得到满足条件的所有的值;(2)由,对于任意的,有. 当时,成立,即成立;若存在使,由反证法可得矛盾;(3)由(2)知,因为且是的倍数,可得所有可能取值中的最大值.【详解】(1)的值可取.(2)由,对于任意的,有.当时,,即,即.则成立.因为是的倍数,所以当时,有成立.若存在使,依以上所证,这样的的个数是有限的,设其中最大的为.则,成立,因为是的倍数,故.由,得.因此当时,.(3)由上问知,因为且是的倍数,所以满足下面的不等式:,. 则,, ,,,,,,,,当时,这个数列符合条件.故所求的最大值为85.【点睛】本题考查了数列的有关知识,考查了逻辑推理能力,综合性较强.。
(完整版)高三数学模拟试题及答案

高三数学模拟试卷(满分150 分)一、选择题(每题 5 分,共 40 分)1.已知全集 U={1,2,3,4,5} ,会集 M ={1,2,3} , N = {3,4,5} ,则 M ∩ ( e U N)=()A. {1,2}B.{ 4,5}C.{ 3}D.{ 1,2,3,4,5} 2. 复数 z=i 2(1+i) 的虚部为()A. 1B. iC.- 1D. -i3.正项数列 { a } 成等比, a +a =3, a +a =12,则 a +a 的值是()n1 23445A. - 24B. 21C.24D. 484.一组合体三视图如右,正视图中正方形 边长为 2,俯视图为正三角形及内切圆, 则该组合体体积为()A.2 34B.3C.2 3 4 54 3 4 3+D.2735.双曲线以一正方形两极点为焦点,另两极点在双曲线上,则其离心率为( )A. 2 2B.2 +1C.2D. 1uuur uuur6. 在四边形 ABCD 中,“ AB =2 DC ”是“四边形ABCD 为梯形”的()A. 充足不用要条件B. 必要不充足条件C.充要条件D. 既不充足也不用要条件7.设 P 在 [0,5] 上随机地取值,求方程x 2+px+1=0 有实根的概率为( )A. 0.2B. 0.4C.0.5D.0.6y8. 已知函数 f(x)=Asin( ωx +φ)(x ∈ R, A>0, ω>0, |φ|<)5f(x)的解析式是(2的图象(部分)以下列图,则)A .f(x)=5sin( x+)B. f(x)=5sin(6 x-)O256 66xC. f(x)=5sin(x+)D. f(x)=5sin(3x- )366- 5二、填空题:(每题 5 分,共30 分)9. 直线 y=kx+1 与 A ( 1,0), B ( 1,1)对应线段有公共点,则 k 的取值范围是 _______. 10.记 (2x1)n 的张开式中第 m 项的系数为 b m ,若 b 32b 4 ,则 n =__________.x311 . 设 函 数 f ( x) xx 1x 1、 x 2、 x 3、 x 41 2的 四 个 零 点 分 别 为 , 则f ( x 1 +x 2 +x 3 +x 4 );12、设向量 a(1,2), b (2,3) ,若向量a b 与向量 c (4, 7)共线,则x 111. lim______ .x 1x 23x 414. 对任意实数 x 、 y ,定义运算 x* y=ax+by+cxy ,其中a、 b、c 常数,等号右的运算是平时意的加、乘运算 .已知 2*1=3 , 2*3=4 ,且有一个非零数m,使得任意数x,都有 x* m=2x, m=.三、解答:r r15.(本 10分)已知向量 a =(sin(+x), 3 cosx),b =(sin x,cosx),f(x)=⑴求 f( x)的最小正周期和增区;2⑵若是三角形 ABC 中,足 f(A)=3,求角 A 的.216.(本 10 分)如:直三棱柱(棱⊥底面)ABC — A 1B1C1中,∠ ACB =90°, AA 1=AC=1 , BC= 2,CD ⊥ AB, 垂足 D.C1⑴求: BC∥平面 AB 1C1;A1⑵求点 B 1到面 A 1CD 的距离 .PCA D r r a ·b .B 1B17.(本 10 分)旅游公司 4 个旅游供应 5 条旅游路,每个旅游任其中一条.( 1)求 4 个旅游互不一样样的路共有多少种方法;(2)求恰有 2 条路被中的概率 ;(3)求甲路旅游数的数学希望.18.(本 10 分)数列 { a n} 足 a1+2a2 +22a3+⋯+2n-1a n=4 n.⑴求通a n;⑵求数列 { a n} 的前 n 和S n.19.(本 12 分)已知函数f(x)=alnx+bx,且 f(1)= - 1, f′(1)=0 ,⑴求 f(x);⑵求 f(x)的最大;⑶若 x>0,y>0, 明: ln x+lny≤xy x y 3.220.(本 14 分) F 1, F 2 分 C :x2y 21(a b 0) 的左、右两个焦点,若 Ca 2b 2上的点 A(1,3124.)到 F , F 两点的距离之和等于2⑴写出 C 的方程和焦点坐 ;⑵ 点 P ( 1,1)的直 与 交于两点 D 、 E ,若 DP=PE ,求直 DE 的方程 ;4⑶ 点 Q ( 1,0)的直 与 交于两点 M 、N ,若△ OMN 面 获取最大,求直 MN 的方程 .21. (本 14 分) 任意正 数 a 1、 a 2、 ⋯ 、an ;求1/a 1+2/(a 1 +a 2)+⋯ +n/(a 1+a 2+⋯ +a n )<2 (1/a 1+1/a 2+⋯ +1/a n )9 高三数学模 答案一、 :. ACCD BAD A二、填空 :本 主要考 基 知 和基本运算.每小 4 分,共 16 分 .9.[-1,0] 10.5 11.19 12. 2 13.1 14. 35三、解答 :15.本 考 向量、二倍角和合成的三角函数的公式及三角函数性 ,要修业生能运用所学知 解决 .解:⑴ f(x)= sin xcosx+3 + 3 cos2x = sin(2x+ )+ 3⋯⋯⋯2 23 2 T=π, 2 k π - ≤ 2x+≤ 2 k π +, k ∈ Z,232最小正周期 π, 增区[ k π -5, k π + ], k ∈ Z.⋯⋯⋯⋯⋯⋯⋯⋯1212⑵由 sin(2A+ )=0 , <2A+ <7 ,⋯⋯⋯⋯⋯33 或533∴ 2A+ =π或 2π,∴ A=⋯⋯⋯⋯⋯⋯⋯⋯33616.、本 主要考 空 、 面的地址关系,考 空 距离角的 算,考 空 想象能力和推理、 能力, 同 也可考 学生灵便利用 形, 建立空 直角坐 系, 借助向量工具解决 的能力. ⑴ 明:直三棱柱ABC — A 1B 1C 1 中, BC ∥ B 1C 1,又 BC 平面 A B 1C 1,B 1C 1 平面 A B 1C 1,∴ B 1C 1∥平面 A B 1C 1;⋯⋯⋯⋯⋯⋯⑵(解法一)∵ CD ⊥ AB 且平面 ABB 1A 1⊥平面 AB C,C 11 1 1∴ CD ⊥平面 ABBA ,∴ CD ⊥AD 且 CD ⊥A D ,∴∠ A DA 是二面角 A 1— CD —A 的平面角,1A 1B 1在 Rt △ ABC,AC=1,BC= 2 ,PC∴ AB= 3 , 又 CD ⊥ AB ,∴ AC 2=AD × ABADB∴ AD=3, AA1131=1,∴∠ DA 1B 1=∠ A DA=60 °,∠ A 1 B 1A=30°,∴ A B 1 ⊥A D又 CD ⊥ A 1D ,∴ AB 1⊥平面 A 1CD , A 1D ∩ AB 1=P, ∴ B 1P 所求点 B 1 到面 A 1CD 的距离 . B P=A 1 B 1cos ∠ A 1 B 1A= 33cos30 =° .12即点 B 1 到面 A 1 CD 的距离 3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21 × 3 1 z ( 2)(解法二) 由 V B 1- A 1CD =V C - A 1B 1D =C 132×6 = 2,而 cos ∠ A 1 CD= 2 × 6 = 3 ,AB13 6 2 3 31△A 1CD1 ×2 ×6 ×6 =2,B 1 到平面CS=3 332A ByA 1CD 距离 h, 1×22, 得 h= 3所求 .Dx h=33 6 2⑶(解法三)分 以CA 、CB 、CC 1 所在直 x 、y 、z 建立空 直角坐 系(如 )A ( 1,0, 0), A 1( 1, 0, 1),C (0, 0, 0), C 1( 0, 0, 1),B (0,2 , 0), B 1( 0, 2 , 1),uuurr∴ D ( 2 , 2, 0) CB =( 0, 2 , 1), 平面 A 1CD 的法向量 n =( x , y , z ),3 31r uuur3n CD2x2y 0rruuur,取 n=( 1, -2 , - 1)n CA 1 x z 0r uuur点 B 1 到面 A 1CD 的距离d= n CB 13r⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯n217.本 主要考 排列,典型的失散型随机 量的概率 算和失散型随机 量分布列及希望等基 知 和基本运算能力.解:( 1) 4 个旅游 互不一样样的 路共有:A 54=120 种方法; ⋯(2)恰有两条 路被 中的概率 :P 2 C 52 (2 42) 28=54⋯125(3) 甲 路旅游 数ξ, ξ~ B(4, 1)14⋯⋯⋯⋯⋯⋯ 5∴希望 E ξ=np=4×=5 5答 : ( 1) 路共有120 种,(2)恰有两条 路被 中的概率 0.224, ( 3)所求希望 0.8 个数 .⋯⋯⋯⋯⋯⋯⋯⋯⋯18.本 主要考 数列的基 知 ,考 分 的数学思想,考 考生 合 用所学知 造性解决 的能力.解:( 1) a 1+2 a 2+22a 3+⋯ +2n - 1a n =4n ,∴ a 1+2 a 2+22a 3+⋯ +2n a n+1=4n+1,相减得 2n a n+1=3× 4n , ∴ a n+1=3× 2n ,4(n1) 又 n=1 a 1=4,∴ 上 a n =2n 1所求;⋯⋯⋯⋯⋯⋯⋯⋯⋯3(n 2)⑵ n ≥2 , S n=4+3(2 n- 2), 又 n=1 S 1=4 也建立, ∴ S n =3× 2 n - 2⋯⋯⋯⋯⋯⋯ 12 分19.本 主要考 函数、 数的基本知 、函数性 的 理以及不等式的 合 ,同 考 考生用函数放 的方法 明不等式的能力.解:⑴由 b= f(1)= - 1, f ′(1)= a+b=0, ∴ a=1, ∴f(x)=ln x- x 所求; ⋯⋯⋯⋯⋯⑵∵ x>0,f ′(x)=1- 1=1x ,xxx 0<x<1x=1 x>1 f (′x) +0 - f(x)↗极大↘∴ f (x)在 x=1 获取极大 - 1,即所求最大 - 1; ⋯⋯⋯⋯⋯⑶由⑵得 lnx ≤x- 1 恒建立, ∴ln x+ln y=ln xy+ ln x ln y ≤ xy 1 + x 1 y 1 = xy x y 3建立⋯⋯⋯22 22220.本 考 解析几何的基本思想和方法,求曲 方程及曲 性 理的方法要求考生能正确分析 , 找 好的解 方向, 同 兼 考 算理和 推理的能力, 要求 代数式合理演 ,正确解析最 .解:⑴ C 的焦点在 x 上,由 上的点A 到 F 1、F 2 两点的距离之和是 4,得 2a= 4,即 a=2 .;3134 1.得 b 2=1,于是 c 2=3 ;又点 A(1,) 在 上,因此222b 2因此 C 的方程x 2y 2 1,焦点 F 1 ( 3,0), F 2 ( 3,0). ,⋯⋯⋯4⑵∵ P 在 内,∴直DE 与 订交,∴ D( x 1,y 1),E(x 2,y 2),代入 C 的方程得x 12+4y 12- 4=0, x 22+4y 22- 4=0,相减得 2(x 1- x 2 )+4× 2× 1 (y 1- y 2)=0 , ∴斜率 k=-11 4∴ DE 方程 y- 1= - 1(x-), 即 4x+4y=5; ⋯⋯⋯4(Ⅲ )直 MN 不与 y 垂直,∴MN 方程 my=x- 1,代入 C 的方程得( m 2+4) y 2+2my- 3=0,M( x 1,y 1 ),N( x 2 ,y 2), y 1+y 2=-2m 3 ,且△ >0 建立 .m 2 4, y 1y 2=-m 2 4又 S △ OMN = 1|y 1- y 2|= 1 ×4m212(m 24) = 2 m23, t=m 2 3 ≥ 3 ,2 2m 2 4m 24S△OMN =2,(t+1t1tt ) ′=1 - t-2>0t≥ 3 恒建立,∴t=3t+1获取最小, S△OMN最大,t此 m=0, ∴ MN 方程 x=1⋯⋯⋯⋯⋯。
玉田县高中2018-2019学年上学期高三数学期末模拟试卷含答案

(Ⅰ)在棱 PB 上确定一点 E ,使得 CE / / 平面 PAD ; (Ⅱ)若 PA PB PD 6 ,求三棱锥 P BDF 的体积.
P
F A
D
C
B
20.在数列{an}中,a1=1,an+1=1﹣ ,bn=
,其中 n∈N*.
第 4 页,共 18 页
(1)求证:数列{bn}为等差数列; (2)设 cn=bn+1•( ) ,数列{cn}的前 n 项和为 Tn,求 Tn;
体积是
.
第 3 页,共 18 页
18.设 x R ,记不超过 x 的最大整数为[x] ,令x x [x] .现有下列四个命题:
①对任意的 x ,都有 x 1 [x] x 恒成立;
②若 x (1,3) ,则方程 sin2 x cos2[x] 1的实数解为 6 ;
(3)证明:1+ + +…+ ≤2 ﹣1(n∈N*)
21.在平面直角坐标系 xOy 中,经过点
且斜率为 k 的直线 l 与椭圆
有两个不同的交点 P
和 Q. (Ⅰ)求 k 的取值范围; (Ⅱ)设椭圆与 x 轴正半轴、y 轴正半轴的交点分别为 A,B,是否存在常数 k,使得向量 如果存在,求 k 值;如果不存在,请说明理由.
与 共线?
22.已知函数 f(x)=x|x﹣m|,x∈R.且 f(4)=0 (1)求实数 m 的值. (2)作出函数 f(x)的图象,并根据图象写出 f(x)的单调区间 (3)若方程 f(x)=k 有三个实数解,求实数 k 的取值范围.
第 5 页,共 18 页
23.(本小题满分 13 分)
x2 椭圆 C : a2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑池中学2018级高三数学期末模拟试题理科(四)一、选择题:本大题共12小题,每小题5分,共60分.1.已知集合{}2,101,,-=A ,{}2≥=x x B ,则A B =IA .{}2,1,1- B.{}2,1 C.{}2,1- D. {}2 2.复数1z i =-,则z 对应的点所在的象限为A .第一象限 B.第二象限 C.第三象限 D.第四象限3 .下列函数中,是偶函数且在区间(0,+∞)上单调递减的函数是A .2xy =B .y x =C .y x =D .21y x =-+4.函数y=cos 2(x + π4)-sin 2(x + π4)的最小正周期为A. 2πB. πC. π2D. π45. 以下说法错误的是( )A .命题“若x 2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2-3x+2≠0” B .“x=2”是“x 2-3x+2=0”的充分不必要条件C .若命题p:存在x 0∈R,使得20x -x 0+1<0,则﹁p:对任意x∈R,都有x 2-x+1≥0D .若p 且q 为假命题,则p,q 均为假命题 6.在等差数列{}n a 中, 1516a a +=,则5S =A .80B .40C .31D .-317.如图为某几何体的三视图,则该几何体的体积为 A .π16+ B .π416+C .π8+D .π48+8.二项式621()x x+的展开式中,常数项为 A .64 B .30 C . 15 D .19.函数3()ln f x x x=-的零点所在的区间是 A .(1,2)B .(2,)e开始 10n S ==,S p <是输入p结束输出n 12n S S =+否1n n =+121221主视图左视图俯视图C . (,3)eD .(3,)+∞10.执行右边的程序框图,若0.9p =,则输出的n 为 A. 6 B. 5 C. 4 D. 311.若抛物线y 2= 2px (p >0)上一点到焦点和抛物线的对称轴的距离分别是10和6, 则p 的值为A .2B .18C .2或18D .4或16 12.已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点 为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )A. 0 B . m C. 2m D. 4m第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n 的样本,其中甲种产品有18件,则样本容量n =________.14. 已知向量21a =r (,),(,1)b x =-r ,且a b -r r 与b r 共线,则x 的值为 . 15.已知随机变量X 服从正态分布2(4,)N σ,且(26)0.98P X <≤=, 则(2)P X <= .16. 设不等式组⎪⎩⎪⎨⎧-≥≤≥+-2,4,022y x y x 表示的平面区域为错误!未指定书签。
错误!未指定书签。
错误!未找到引用源。
D ,在区域D 内随机取一个点,则此点到直线x -5=0的距离大于7的概率是 .三、解答题:本大题共6小题,满分70分,解答应写出文字说明,证明过程或演算步骤.17.(本题满分12分)在△ABC 中,已知A=π4 ,cosB=235.(I )求sinC 的值;(II )若BC=2 5 ,D 为AB 的中点,求CD 的长.18.(本题满分12分)在如图所示的几何体中,四边形ABCD 为正方形,PA ⊥平面ABCD ,PA BE 6, 3.AB PA BE ===CE PAD19.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为22,其中左焦点F (-2,0).(1)求椭圆C 的方程;(2)若直线y x m =+与椭圆C 交于不同的两点,A B ,且线段AB 的中点M 在 曲线222x y +=上,求m 的值.20. (本小题满分12分)如图所示的茎叶图记录了华润万家在渭南城区甲、乙连锁店四天内销售情况的某项指标统计:(I )求甲、乙连锁店这项指标的方差,并比较甲、乙该项指标的稳定性;(Ⅱ)每次都从甲、乙两店统计数据中随机各选一个进行比对分析,共选了3次(有放回选取).设选取的两个数据中甲的数据大于乙的数据的次数为X ,求X 的分布列及数学期望.21.(本题满分12分) 已知函数e =1axf x x -()(I ) 当1a =时,求曲线()f x 在(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 的单调区间.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题目计分,作答时请写清题号.22.(本小题满分10分)选修4—4:坐标系与参数方程已知直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为.ρθ= (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |.23.(本小题满分10分)选修4—5:不等式选讲已知函数f (x )=m -|x -2|,m ∈R ,且f (x +2)≥0的解集为[-1,1].(1)求m 的值;GPEDCBA(2)若a ,b ,c ∈R +,且1a +12b +13c=m ,求a +2b +3c 的最小值.数学试题(理四)参考答案一.选择题:本大题共12小题,每小题5分,共60分.二.填空题:本大题共4小题,每小题5分,共20分.13. 90 14. 2 15. 16. 254 三.解答题:本大题共6小题,共70分. 17.18、(本题满分12分)解:(Ⅰ)设PA 中点为G ,连结EG ,DG .因为PA BE 6PA =3BE =BE AG BE AG =BEGA EG AB EG AB =ABCD CD ABCD AB =EG CD EG CD =CDGE CE DG DG ⊂PAD CE ⊄PAD CE PAD(6,6,0)C (6,0,3)E (0,0,6)P (0,6,0)D (6,6,6)PC =-u u u r (6,0,3)PE =-u u u r (0,6,6)PD =-u u u rPCE (,,)m x y z =u r00200m PC x y z x z m PE ⎧⋅=+-=⎧⎪⇒⎨⎨-=⋅=⎩⎪⎩u r u u u r ur u u u r 1x =112x y z =⎧⎪=⎨⎪=⎩(1,1,2)m =u r PD PCEαsin cos ,m PD α=<u r u u u r PDPCE (本小题满分12分)解:(Ⅰ)由题意得,c a =22,c =2,解得:2a b ⎧=⎪⎨=⎪⎩.......................3分所以椭圆C 的方程为:x 28+y 24=1. .....................5分(Ⅱ)设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0),由22184x y y x m ⎧+=⎪⎨⎪=+⎩消去y 得3x 2+4mx +2m 2-8=0, 由Δ=96-8m 2>0,解得-23<m <23,..............................9分 所以x 0=x 1+x 22=-2m 3,y 0=x 0+m =m 3因为点M (x 0,y 0)在曲线x 2+2y =2上,所以222233m m ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,解得332m m ==-或..............................................11分经检验,332m m ==-或 .....................................................12分20. (本小题满分12分)解:(Ⅰ)由茎叶图可知,甲连锁店的数据是6,7,9,10,乙连锁店的数据是5,7,10,10………2分甲、乙数据的平均值为8.设甲的方差为21S ,乙的方差为22S 则 215,2S = 229,2S = ………4分 因为2212,S S <所以甲连锁店该项指标稳定 . ............................6分 (Ⅱ)从甲、乙两组数据中各随机选一个, 甲的数据大于乙的数据概率为63=,168....................................7分由已知,3(3,),8X B X 服从的分布列.........8分X 的分布列为:........................................................10分数学期望393.88EX =⨯= ………12分21.(本小题满分12分)解:(Ⅰ)'2e (-2)e 1,=,=1(1)x x x a f x f x x x =--当时()() 又(0)1f =-,'(0)2f =-,所以()f x 在(0,(0))f 处的切线方程为21y x =-- ………4分(II )2e [(1)]'()(1)ax ax a f x x -+=-当0a =时,21'()0(1)f x x -=<- 又函数的定义域为{|1}x x ≠所以 ()f x 的单调递减区间为(,1),(1,)-∞+∞ ………6分 当 0a ≠时,令'()0f x =,即(1)0ax a -+=,解得1a x a+=………7分 当0a >时,11a x a+=>, 所以()f x ',()f x 随x 的变化情况如下表所以()f x 的单调递减区间为(,1)-∞,1(1,)a a+ , 单调递增区间为1(,)a a++∞ ........................................................10分 当0a <时,11a x a+=< 所以()f x ',()f x 随x 的变化情况如下表:所以()f x 的单调递增区间为1(,)a a+-∞ 单调递减区间为1(,1)a a+,(1,)+∞ ..................................12分22.本小题满分10分)选修4—4:坐标系与参数方程解 (Ⅰ)由ρ=25sin θ,得x 2+y 2-25y =0,即x 2+(y -5)2=5. .......................................4分 法一(Ⅱ)将l 的参数方程代入圆C 的直角坐标方程, 得⎝ ⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0. 由于Δ=(32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实根,所以⎩⎨⎧t 1+t2=32,t 1·t 2=4.又直线l 过点P (3,5), 故由上式及t 的几何意义得|PA |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2..................10分 法二 (Ⅱ)因为圆C 的圆心为(0,5),半径r =5, 直线l 的普通方程为:y =-x +3+ 5.222(2)5,3+2=0.3x y x x y x ⎧+-=⎪-⎨=-++⎪⎩由得得x 2-3x +2=0. 1221x x y y ==⎧⎧⎪⎪⎨⎨==+⎪⎪⎩⎩解得不妨设A (1,2+5),B (2,1+5),又点P 的坐标为(3, 5)故|PA |+|PB |=8+2=3 2..............................10分23.(本小题满分10分)选修4—5:不等式选讲 解 (Ⅰ)因为f (x +2)=m -|x |, 所以f (x +2)≥0等价于|x |≤m ,由|x |≤m 有解,得m ≥0,且其解集为{x |-m ≤x ≤m }. 又f (x +2)≥0的解集为[-1,1],故m =1. .......................................5分(Ⅱ)由(1)知1a+12b +13c=1,又a ,b ,c ∈R +,由柯西不等式得 a +2b +3c =(a +2b +3c )⎝ ⎛⎭⎪⎫1a +12b +13c≥⎝ ⎛⎭⎪⎫a ·1a +2b ·12b +3c ·13c 2=9. 所以a +2b +3c 的最小值为9. ............................................10分。