8.2 小波分解与重构

合集下载

小波分解与重构

小波分解与重构

小波分解与重构我理解的小波分解是将一个多频率组成的波通过小波分解将所有频率分解出来,重构就是将这些分频率加起来得到最后的重构结果,于是写了个这样的程序clcclose all;clear all;clc;fs=612;[reg,sta,data]=readmydata('beijing08.dat');data{1:end};A=ans(2:end);for i=1:609;if A(i)>50.0;A(i)=(A(i-12)+A(i+12))/2;endendfor i=609:612;if A(i)>50.0;A(i)=(A(i-12)+A(i-24))/2;endend%信号时域波形figure(1);plot(1:612,A);%使用db5小波进行尺度为7时的分解[c,l]=wavedec(A,9,'db5');%从小波分解结构[c,l]重构信号xdataa0=waverec(c,l,'db5');%检查重构效果figure(2);subplot(3,1,1);plot(A);title('原始信号')subplot(3,1,2);plot(a0);title('重构信号')subplot(3,1,3);plot(A-a0);title('误差信号')err=max(abs(A-a0))%重构第1~5层高频细节信号d9=wrcoef('d',c,l,'db5',9); d8=wrcoef('d',c,l,'db5',8); d7=wrcoef('d',c,l,'db5',7); d6=wrcoef('d',c,l,'db5',6); d5=wrcoef('d',c,l,'db5',5); d4=wrcoef('d',c,l,'db5',4); d3=wrcoef('d',c,l,'db5',3); d2=wrcoef('d',c,l,'db5',2); d1=wrcoef('d',c,l,'db5',1); %显示高频细节信号figure(3);subplot(9,1,1);plot(d9,'LineWidth',2); ylabel('d9');subplot(9,1,2);plot(d8,'LineWidth',2); ylabel('d8');subplot(9,1,3);plot(d7,'LineWidth',2);ylabel('d7');subplot(9,1,4);plot(d6,'LineWidth',2);ylabel('d6');subplot(9,1,5);plot(d5,'LineWidth',2);ylabel('d5');subplot(9,1,6);plot(d4,'LineWidth',2);ylabel('d4');subplot(9,1,7);plot(d3,'LineWidth',2);ylabel('d3');subplot(9,1,8);plot(d2,'LineWidth',2);ylabel('d2');xlabel('时间 t/s');subplot(9,1,9);plot(d1,'LineWidth',2);ylabel('d1');%第1层高频细节信号的包络谱y=hilbert(d1);ydata=abs(y);y=y-mean(y);nfft=1024;p=abs(fft(ydata,nfft));figure(4);plot((0:nfft/2-1)/nfft*fs,p(1:nfft/2));xlabel('频率 f/Hz');ylabel('功率谱 P/W');小波分解与重构程序>> clearI=imread('C:\Documents and Settings\Administrator\桌面\暑期/cidian.bmp');I=rgb2gray(I);[X,map]=gray2ind(I);subplot(2,2,1);imshow(X,map);title('原始图像');X=double(X);sX=size(X);[cA,cH,cV,cD]=dwt2(X,'db4');A0=idwt2(cA,cH,cV,cD,' db4', sX);subplot(2,2,2);imshow(A0,map);title('db4小波重构');error1=max(max(abs(X-A0)))程序很简单,也很基础。

小波分解与重构

小波分解与重构
%提取多尺度小波变换的高频系数
figure(2);
lev_1=lev+1;
for i=1:lev
cD=detcoef(C,L,i);
subplot(lev_1,1,i)
plot(cD);
ylabel(['cD',num2str(i)]);
Fs=1000; % 采样频率
Ts=1/Fs; % 采样间隔
N=1024; % 采样点数
t=[0:1/Fs:(N-1)/Fs]; %采样时刻
lev=5;
x=sin(2*pi*f1*t);
figure(1);
plot(t,x);
%%小波分解
[C,L]=wavedec(x,lev,'db10'); %C由[cAj,cDj,cDj-1,...,cD1]
subplot(2,2,4);
image(hd2+dd2+vd2+a1);colormap(map);
% 验证这些图像的长度都是sX
sX = size(X)
sa1 = size(a1)
shd2 = size(hd2)
norm(hd2+dd2+vd2+a1-X)
结果:
sX =
256 256
plot(A);
title('原始信号')
subplot(3,1,2);
plot(a0);
title('重构信号')
subplot(3,1,3);
plot(A-a0);
title('误差信号')
err=max(abs(A-a0))

小波分解与重构原理

小波分解与重构原理

小波分解与重构原理小波分解与重构是一种信号处理技术,它可以将信号分解成不同尺度和频率的成分,从而更好地理解和分析信号的特性。

在本文中,我们将介绍小波分解与重构的原理,以及它在信号处理领域的应用。

首先,让我们来看一下小波分解的原理。

小波分解是通过一组小波基函数对信号进行分解的过程。

这组小波基函数具有不同的尺度和频率特性,可以将信号分解成不同频率成分的系数。

在小波分解中,我们通常使用离散小波变换(DWT)来实现信号的分解。

DWT 是通过一系列的滤波器和下采样操作来实现信号的分解,具体过程是将信号通过低通滤波器和高通滤波器进行滤波,并对滤波后的信号进行下采样,最终得到近似系数和细节系数。

接下来,我们来谈谈小波重构的原理。

小波重构是将分解得到的近似系数和细节系数通过逆小波变换(IDWT)合成为原始信号的过程。

在小波重构中,我们需要使用逆小波变换来将近似系数和细节系数合成为原始信号。

逆小波变换的过程是通过一系列的滤波器和上采样操作来实现信号的合成,具体过程是将近似系数和细节系数通过上采样和滤波器进行滤波,并将滤波后的信号相加得到重构的信号。

小波分解与重构的原理虽然看起来比较复杂,但是它在信号处理领域有着广泛的应用。

首先,小波分解与重构可以用于信号的压缩和去噪。

通过保留重要的近似系数和细节系数,可以实现对信号的高效压缩;同时,通过去除不重要的近似系数和细节系数,可以实现对信号的去噪。

其次,小波分解与重构还可以用于信号的特征提取和模式识别。

通过分析不同尺度和频率的小波系数,可以提取信号的特征并进行模式识别。

此外,小波分解与重构还可以用于信号的分析和合成,例如音频信号的压缩和图像信号的处理等。

综上所述,小波分解与重构是一种重要的信号处理技术,它通过一组小波基函数对信号进行分解和重构,可以实现对信号的压缩、去噪、特征提取、模式识别、分析和合成等功能。

在实际应用中,我们可以根据具体的需求选择合适的小波基函数和分解层数,从而实现对不同类型信号的有效处理和分析。

小波分解与重构原理

小波分解与重构原理

小波分解与重构原理小波分解与重构是一种将信号分解为不同频率成分的方法,它是一种新兴的数学理论,近年来在信号处理、图像处理、压缩编码等领域得到广泛应用。

小波可以看作是一种基函数,可以用来表示任意一个非周期函数。

小波分解与重构原理便是利用小波基函数将信号进行分解和重构的过程。

首先,需要选择一个合适的小波基函数。

在小波函数中,常用的有Haar小波、Daubechies小波、Coiflet小波等,不同的小波函数适用于不同的信号特性。

接下来,通过小波基函数对原始信号进行分解。

分解的过程是逐级进行的,每一级都将信号分解为近似系数和细节系数两部分。

近似系数表示信号的低频成分,细节系数表示信号的高频成分。

通过迭代的方式,可以得到多个不同尺度的近似系数和细节系数。

分解后得到的近似系数和细节系数可以用于信号分析和处理。

近似系数表示信号的低频内容,可以用来恢复信号的平滑部分;细节系数表示信号的高频成分,可以用来提取信号的细节特征。

在重构过程中,通过逆变换操作将分解得到的近似系数和细节系数重构为原始信号。

重构的过程是逐级进行的,每一级都将近似系数和细节系数进行逆变换操作得到原始信号的一部分,并将其与上一级的逆变换结果相加得到更精确的重构结果。

小波分解与重构具有多尺度分析的特点,可以适应不同频率成分的信号处理需求。

它具有信号特征提取的能力,可以提取信号中的边缘、纹理等细节信息。

同时,小波变换还具有良好的时频局部性,可以很好地适应信号的时变特性。

小波分解与重构的应用十分广泛。

在图像处理中,可以利用小波分解与重构技术进行图像压缩、边缘提取、图像恢复等操作。

在语音信号处理中,可以提取语音的共振频率、噪声成分等信息。

此外,小波分解与重构还可以用于信号分析、数据压缩、图像处理、模式识别等领域。

总之,小波分解与重构是一种将信号分解为不同频率成分的方法,通过小波基函数的选择和分解重构过程,可以提取信号的不同尺度特征,具有良好的时频局部性和多尺度分析能力,广泛应用于各个领域。

小波变换与信号的分解重构课件

小波变换与信号的分解重构课件

信号的重构方法
基于小波变换的重构算法
01
利用小波系数进行逆变换,重构出原始信号。
基于内积定理的重构算法
02
利用小波基的内积定理,通过已知的小波系数重构出原始信号

重构算法的应用
03
信号恢复、去噪、压缩感知等领域。
BIG DATA EMPOWERS TO CREATE A NEW ERA
04
小波变换在信号处理中的应用
小波变换与信号的分解重
BIG DATA EMPOWERS TO CREATE A NEW
ERA
构课件
• 小波变换概述 • 小波变换原理及方法 • 信号的分解与重构 • 小波变换在信号处理中的应用 • 小波变换的优缺点及改进方向 • 小波变换的实验与实现
目录
CONTENTS
01
小波变换概述
BIG DATA EMPOWERS TO CREATE A NEW
号。
局部适应性
小波基函数具有局部适 应性,能够更好地捕捉
信号的局部特征。
去噪能力强
小波变换能够将信号中 的噪声和干扰分离出来 ,提高信号的纯净度。
应用广泛
小波变换在图像处理、 音频分析、信号处理等 领域都有广泛的应用。
小波变换的历史与发展
小波变换的思想起源于20世纪80年 代,随着计算机技术的发展,小波变 换逐渐成为信号处理领域的重要工具 。
计算效率高
小波变换的计算效率比较高,特别 是在对一维信号进行处理时,其计 算复杂度较低。
小波变换的缺点
信号重构精度问题
小波变换在进行信号分解时,可能会出现信号重构精度不高的情 况,尤其是在处理含有较多细节的信号时。
缺乏明确的物理意义

小波的分解和重构算法

小波的分解和重构算法

小波的分解和重构算法小波分解是将一个多频率组成的波通过小波分解将所有频率分解出来,重构就是将这些分频率加起来得到最后的重构结果。

小波变换的一级分解过程是,原始信号分别进行低通、高通滤波,再分别进行二元下采样,就得到低频、高频两部分系数;而多级分解则是对上一级分解得到的低频系数再进行小波分解,是一个递归过程。

分解过程:function [cA,cD] = mydwt(x,lpd,hpd,dim)%函数[cA,cD]=MYDWT(X,LPD,HPD,DIM) 对输入序列x进行一维离散小波分解,输出分解序列[cA,cD] ;%输入参数:x——输入序列;% lpd——低通滤波器;% hpd——高通滤波器;% dim——小波分解级数;% 输出参数:cA——平均部分的小波分解系数;% cD——细节部分的小波分解系数;cA=x; % 初始化cA,cDcD=[ ];for i=1:dimcvl=conv(cA,lpd); % 低通滤波,为了提高运行速度,调用MATLAB 提供的卷积函数conv()dnl=downspl(cvl); % 通过下采样求出平均部分的分解系数cvh=conv(cA,hpd); % 高通滤波dnh=downspl(cvh); %通过下采样求出本层分解后的细节部分系数cA=dnl; % 下采样后的平均部分系数进入下一层分解cD=[cD,dnh]; % 将本层分解所得的细节部分系数存入序列cDendfunction y=downspl(x);% 函数Y=DOWMSPL(X) 对输入序列进行下采样,输出序列Y。

% 下采样是对输入序列取其偶数位,舍弃奇数位。

N=length(x); % 读取输入序列长度M=floor(N/2); % 输出序列的长度是输入序列长度的一半i=1:M;y(i)=x(2*i);而重构则是分解的逆过程,对低频系数、高频系数分别进行上采样和低通、高通滤波处理。

重构过程:function y = myidwt(cA,cD,lpr,hpr);% 函数MYIDWT() 对输入的小波分解系数进行逆离散小波变换,重构出信号序列y% 输入参数:cA ——平均部分的小波分解系数;% cD ——细节部分的小波分解系数;% lpr、hpr ——重构所用的低通、高通滤波器。

小波图像分解和重构程序每句都带解释

小波图像分解和重构程序每句都带解释

小波图像分解程序:function coef=mywavedec2(x,N,wname) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 函数MYWA VEDEC2() 对输入矩阵x 进行dim 层分解,得到相应的分解系数矩阵y% 输入参数:x ——输入矩阵% N ——分解级数% wname ——分解所用的小波函数% 输出参数:coef ——分解系数矩阵,其结构如下:% coef = {cA_N;cV_N;cH_N;cD_N;cV_N-1;cH_N-1;cD_N-1;……;cV_1;cH_1;cD_1}% Copyright by Zou Yuhua ( chenyusiyuan ), original : 2007-11-10, modified: 2008-06-04 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 求出小波函数的滤波器组系数向量[Lo_D,Hi_D] = wfilters(wname,'d');% 画出原始图像imshow(x);title('Original Image');% 标明图像大小[r,c]=size(x);xlabel(['Size : ',num2str(r),'*',num2str(c)]);% 将矩阵x的数据格式转换为适合数值处理的double格式xd=double(x);coef=[];for i=1:N[cA,cV,cH,cD]=mydwt2(xd,Lo_D,Hi_D);% 第i 级小波分解xd=cA;% 将第i 级分解得到的低频系数矩阵作为第i+1 级分解的源矩阵outmp={cV;cH;cD};% 将第i 级分解得到的高频系数矩阵cV,cH,cD存入细胞矩阵outmp % 注意细胞矩阵的赋值是用大括号“{}”的,而普通矩阵赋值是用方括号“[]”% 细胞矩阵不要求其中的子矩阵的行列数都相同coef=[outmp;coef];% 将细胞矩阵outmp 存入输出矩阵coef,coef将由空矩阵变为细胞矩阵% 注意这里的方括号不能用大括号取代% 否则,使用大括号会将初始的coef空矩阵也作为细胞矩阵的子矩阵% 而且,在迭代中coef 将是一个不断嵌套的细胞矩阵,不便于后续处理和读取% 上面这个语句是一种有效的在迭代过程中保存数据的方法% 设待存数据为data,可以是单个数、向量或矩阵% 保存数据的矩阵为mat,初始为空矩阵:mat=[]% 则可按以下格式保存迭代过程产生的数据% mat=[mat;data];% 方括号内的分号“;”表示数据data 是按“列”排序的方式存入矩阵mat% mat=[mat,data];% 方括号内的逗号“,”表示数据data 是按“行”排序的方式存入矩阵mat% data 也可以在mat 前嵌入,即mat=[data;mat] 或mat=[data,mat]end% 迭代结束后,矩阵coef 中保存的是各级分解中的高频系数矩阵% 故需将迭代后得到的矩阵cA,即第dim 级低频矩阵存入矩阵coefcoef=[cA;coef];% 最后,小波系数矩阵coef 的结构如下% coef = {cA_N;cV_N;cH_N;cD_N;cV_N-1;cH_N-1;cD_N-1;……;cV_1;cH_1;cD_1}% 画出各级低频、高频系数矩阵% 首先建立一个名为“Wavelet Decomposition -- Wavelet Type: , Levels: ”的图像窗口figure('Name',['Wavelet Decomposition -- Wavelet Type: ',wname,' , Levels: ',num2str(N)]);% 图像的第1行显示低频系数,置中,左右两个subplot为空subplot(N+1,3,2);yt=uint8(coef{1});[yrow,ycol]=size(yt);imshow(yt);title( ['Approximation A',num2str(N)]);xlabel(['Size : ',num2str(yrow),'*',num2str(ycol)]);% 第2-(N+1)行显示各级高频系数titllist={['Vertical Detail V'];['Horizontal Detail H'];['Diagonal Detail D']};pn=2;% pn 是子图的显示序号for pr=1:Nfor pc=1:3subplot(N+1,3,pn+2);yt=[];% 为了使高频细节内容(轮廓、边缘)更清晰,将高频系数增加100灰度值yt=uint8(coef{pn})+100;[yrow,ycol]=size(yt);imshow(yt);title([ titllist{pc},num2str(N-pr+1)]);xlabel(['Size : ',num2str(yrow),'*',num2str(ycol)]);% 每行的第一个图像的Y轴,显示该行高频系数对应的分解级别if mod(pn+2,3)==1ylabel(['Level ',num2str(N-pr+1)]);endpn=pn+1;endendfunction [cA,cV,cH,cD]=mydwt2(x,Lo_D,Hi_D) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 函数MYDWT2() 对输入的r*c维矩阵x 进行二维小波分解,输出四个分解系数子矩阵[LL,HL,LH,HH]% 输入参数:x ——输入矩阵,为r*c维矩阵。

小波变换分解与重构

小波变换分解与重构

小波变换是一种时频分析方法,将信号分解为不同频率的子信号。

它可以用于信号处理、数据压缩、模式识别等领域。

小波变换的分解和重构过程如下:
1. 分解(Decomposition):
a. 选择合适的小波基函数(例如哈尔小波、Daubechies小波等)。

小波基函数是具有局部性质的函数,能够反映不同频率成分的特征。

b. 将原始信号通过小波基函数与尺度函数进行卷积运算得到一组低频信号(approximation,A)和高频信号(detail,D)。

c. 将低频信号进一步分解,得到更低频的近似信号和更高频的细节信号。

这个过程可以迭代多次,形成小波分解的多个层次。

2. 重构(Reconstruction):
a. 从最低频的近似信号(A)开始,通过逆小波变换(inverse wavelet transform)将近似信号和各层的细节信号进行重构。

b. 每次重构时,使用相应的小波基函数逆向卷积
运算,将低频信号和高频信号进行合并,得到上一层的近似信号。

c. 重复上述步骤,直到最终得到重构的原始信号。

小波分解和重构的过程在频域上实现了信号的分离,将时域与频域信息结合起来,能够更好地描述信号的局部特征和瞬态特性。

小波变换的应用广泛,例如图像压缩领域中的JPEG2000标准就使用了小波变换方法。

此外,小波分析还可以用于信号降噪、信号特征提取、边缘检测、图像增强等多个领域,具有很高的实用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.2信号分解与合成的Mallat算法
一、一维信号的分解与合成
1. 正交镜像滤波器
2. 一维信号的小波分解与重构算法
(Mallat’s herringbone算法)
二、二维信号的分解与重构
三、用Matlab实现图像的分解与合成
1.dwt2与idwt2
dwt2为一层二维离散小波分解函数,调用格式:
[cA,cH,cV,cD]=dwt2(X,’wname’)
% 用指定小波基对图像X进行一层二维离散小波
变换分解。

’wname’为小波基的名称,cA为近似
(低频)图像矩阵,cH, cV, cD分别为小波分解的水
平方向细节系数,垂直方向细节系数,对角线方向
细节系数。

[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) % 用指定的低通分解滤波器Lo_D和高通分解滤波器Hi_D对图像X进行二维离散小波分解。

Lo_D与
Hi_D的长度必须一致。

idwt2为一层二维离散小波重构函数,调用格式为:X=idwt2(cA,cH,cV,cD,’wname’)
% 用指定小波重构图像X,wname为小波基的名称。

X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R)
% 用指定低通重构滤波器Lo_R和高通重构滤波器
Hi_R重构图像X,Lo_R与Hi_R的长度必须一致。

2.wavedec2与vaverec2
wavedec2为多层二维离散小波分解函数,其调用
格式为:
[C,S]=wavedec2(X,N,’wname’)
% 用指定小波基对图像X进行N层二维离散小波分解。

N为正整数,C为小波分解矢量,S为相应
的标记矩阵。

C = [ A(N) | H(N) | V(N) | D(N) | ...
H(N-1) | V(N-1) | D(N-1) | ... | H(1) | V(1) | D(1) ].
A = approximation coefficients
H = horizontal detail coefficients
V = vertical detail coefficients
D = diagonal detail coefficients
矩阵S形如
S(1,:) = size of approximation coefficients(N)
S(i,:) = size of detail coefficients(N-i+2) for i = 2, ...N+1 S(N+2,:) = size(X).
wavwrec2为多层二维离散小波重构函数,其调用格
式为:
X=waverec2(C,S,’wname’) %利用指定小波基由矢
量C和标记矩阵S重构图像X。

X=waverec2(C,S,Lo_R,Hi_R) % 利用低通重构滤
波器Lo_R和高通重构滤波器Hi_R重构图像X。

3.利用GUI (Graphical User Interface)进行小波分析
利用Matlab提供的图形用户界面GUI可使小波分析变得简单、直观。

在Command Window中键入
wavemenu后回车,可进入如下图所示的小波工具
箱主菜单窗口
单击Wavelet 2-D、File、load image, 在Toolbox\wavelet\ wavedemo目录下调出woman图像文件就可以进行分析
了。

例如在窗口右上角选择小波种类、分解层数后,单
击Analyze, 显示区域就会显示分析结果
上述工具可以对图像进行Statistics(统计)、Compress
(压缩)、Histograms(直方图)和De-noise(去噪)等四种
分析。

(参阅《基于MATLAB的系统分析与设计—小波分析》2.9节, 西安电子科技大学出版社, 2000)。

相关文档
最新文档