【植物生理学】第四章植物的呼吸作用

合集下载

植物生理学题库(含答案)第四章 植物呼吸作用

植物生理学题库(含答案)第四章 植物呼吸作用

植物生理学题库(含答案)第四章植物呼吸作用一、名词解释1.呼吸作用:指生活细胞内的有机物质,在一系列酶的参与下,逐步氧化分解,同时释放能量的过程。

2.有氧呼吸:指生活细胞在氧气的参与下,把某些有机物质彻底氧化分解,放出CO2并形成水,同时释放能量的过程。

3.糖酵解:指在细胞质内所发生的,由葡萄糖分解为丙酮酸的过程。

4.三羧酸循环:丙酮酸在有氧条件下,通过一个包括三羧酸和二羧酸的循环而逐步氧化分解CO2的过程。

5.生物氧化:指有机物质在生物体内进行氧化,包括消耗氧,生成CO2和H2O,放出能量的过程。

6.呼吸链:呼吸代谢中间产物的电子和质子,沿着一系列有顺序的电子传递体组成的电子传递途径,传递到分子氧的总轨道。

7.P/O比:指呼吸链中每消耗1个氧原子与用去Pi或产生ATP的分子数。

8.氧化磷酸化:是指呼吸链上的氧化过程,伴随着ADP被磷酸化为ATP的作用。

9.巴斯德效应:指氧对发酵作用的抑制现象。

10.细胞色素:为一类含有铁卟啉的复合蛋白。

细胞色素辅基所含的铁能够通过原子价的变化逆向传递电子,在生物氧化中,它是一种重要的电子传递体。

11.呼吸速率:又称呼吸强度。

以单位鲜重千重或单位面积在单位时间内所放出的CO2的重量(或体积)或所吸收O2的重量(或体积)来表示。

12.呼吸商:又称呼吸系数。

是指在一定时间内,植物组织释放CO2的摩尔数与吸收氧的摩尔数之比。

13.抗氰呼吸:某些植物组织对氰化物不敏感的那部分呼吸。

即在有氰化物存在的情况下仍能够进行其它的呼吸途径。

14.无氧呼吸:指在无氧条件下,细胞把某些有机物分解为不彻底的氧化产物。

二、是非题(True or false)( ×)1.所有生物的生存都需要O2。

( ×)2.糖酵解途径是在线粒体内发生的。

( √ )3.在种子吸水后种皮未破裂之前,种子主要进行无氧呼吸。

( ×)4.戊糖磷酸途径在幼嫩组织中所占比例较大,在老年组织中所占比例较小。

植物生理学课件第四章 植物的呼吸作用

植物生理学课件第四章 植物的呼吸作用
经过以上步骤,乙酰CoA的2个碳变 成CO2释放,四碳草酰乙酸变为四碳 琥珀酸。 必须经琥珀酸→延胡索酸→苹果酸→ 草酰乙酸以保证下一个循环的进行。
TCA循环反应式:
值得注意的几个问题:
I. TCA循环中一系列的脱羧反应是呼吸作用释放CO2的来源。 TCA循环过程中释放的CO2 ,不是靠大气中的氧直接把碳 氧化,而是靠被氧化底物中的氧和H2O中的氧来实现的。
不含叶绿素
直径3-6 μm, 每平方毫米 水分占75%,
厚2-3 μm
7个数量级 含各种光合
色素
除细菌和蓝藻未肯定,所有植物细胞都含有线粒体。
细胞线粒体数目直接与代谢强弱相关。
气孔保卫细胞线粒体丰富,衰老或休眠细胞的线粒体较少, 缺氧的细胞可能无线粒体。
(二)丙酮酸的氧化脱羧
丙酮酸在丙酮酸脱氢酶复合体催化下形成乙酰CoA和NADH。
本 书 主 要 内 容
绪论
第一篇
• 第一章 水分生理
水分和矿质营养 • 第二章 矿质营养
第二篇 物质代谢和能量
转换
• 第三章 光合作用 • 第四章 呼吸作用 • 第五章 同化物的运输 • 第六章 次级代谢产物
第三篇 生长和发育
• 第七章 细胞信号转导 • 第八章 生长物质 • 第九章 生长生理 • 第十章 生殖生理 • 第十一章 成熟和衰老生理 • 第十二章 抗性生理
2. 无氧呼吸 高等植物无氧呼吸产生酒精:
C6H12O6 → 2C2H5OH+ 2CO2 + 能量 △Gθ’ = -226 kJ/mol
除了酒精之外,高等植物无氧呼吸也可以产生乳酸: C6H12O6 → 2CH3CHOHCOOH + 能量 △Gθ’ = -197 kJ/mol

植物生理学第4-1章章呼吸作用

植物生理学第4-1章章呼吸作用

戊糖磷酸途径 (PPP) pentose phosphate pathway 在高等植物中,还发现可以不经过EMP生成丙酮酸而进行有氧呼吸的途径,就是PPP途径。即葡萄糖被胞质溶胶和质粒中的可溶性酶直接氧化,产生NADPH和一些磷酸糖的酶促过程。 6G6P+12NADP++7H2O 6CO2 +12NADPH + 12H+ +5G6P+Pi 发生在细胞质中 在成熟和老年组织中及逆境时发生较多
葡萄糖 ATP ATP 磷酸葡萄糖 → 磷酸果糖 二磷酸果糖 磷酸甘油醛 乙醇 2 NADH 二磷酸甘油酸 乙醛 2ATP 2ATP 丙酮酸 磷酸烯醇 磷酸甘油酸 式丙酮酸
淀粉、葡萄糖或果糖在细胞质内,在一系列酶的参与下分解成丙酮酸的过程。
C6H12O6+2ADP+2NAD++2Pi
2丙酮酸+2ATP+2NADH+2H+ +2H2O
对高等植物来说,不管是有氧呼吸还是无氧呼吸,糖的分解都先经过糖酵解阶段,形成丙酮酸, 然后才分道扬镳。
葡萄糖→→丙酮酸 无氧 →无氧呼吸→酒精或乳酸 有氧 → TCA循环→CO2
呼吸代谢途径※
糖酵解途径(EMP)---在细胞质进行
乙醇发酵和乳酸发酵---在细胞质进行
三羧酸循环 (TCA)---在线粒体进行
磷酸戊糖途径(PPP)---在细胞质进行
乙醛酸循环---在乙醛酸体、线粒体进行
乙醇酸氧化途径---在细胞质进行
第二节 植物的呼吸代谢途径
糖酵解(EMP) Embden,Meyerhof,Parnas
无氧呼吸(发酵) 指细胞在无氧条件下,把淀粉、葡萄糖等有机物质分解为不彻底的氧化产物,同时释放能量的过程。 高等植物无氧呼吸可产生酒精或乳酸: C6H12O6 2C2H5OH+2CO2 +Δ G(-226kj) C6H12O6 2CH3CHOHCOOH+Δ G(-197kj) 苹果、香蕉等贮藏过久有酒味,稻谷酿酒。 胡萝卜和甜菜的块根等贮藏过久有乳酸味。 无氧呼吸是植物适应生态多样性的表现。

《植物生理学》第四章

《植物生理学》第四章

酒精发酵酶:
C6H12O6
2C2H5OH+2CO2
+能量 (△G°′= -226 kJ·mol-1)
精品课件
乳酸发酵: 酶
C6H12O6
2CH3CHOHCOOH +能
量 △G°′= -197 kJ·mol-1
在高等植物中称为无氧呼吸,在微生物 中称为发酵。高等植物通常是以有氧呼吸为主, 但在特定的条件下,如暂时缺氧也可进行无氧呼 吸。
质子传递体包括一些脱氢酶的辅助因子,主要有NAD+、FMN、 FAD、泛醌(UQ或Q)等,它们既传递质子又传递电子。
除了UQ和细胞色素c(Cytc)外,组成呼吸链的有4种酶复合体, 另外还有一种ATP合酶复合体,它们嵌在线粒体内膜上。
精品课件
复合体Ⅰ:含有NADH脱氢酶,FMN,4个Fe-S蛋白 复合体Ⅱ:琥珀酸脱氢酶(FAD, Fe-S蛋白) 复合体Ⅲ:含有2个Cytb(b560和b565),Cytc 和Fe-S。 复合体Ⅳ:含有细胞色素氧化酶复合物, Cyta,Cyta3。把Cytc的 电子传给O2,形成水。 复合体ⅴ:又称 ATP合成酶或称H+- ATP酶复合体
精品课件
(三)抗氰呼吸
1. 抗氰呼吸的概念
在氰化物存在下,某些植物呼吸不受抑制,这 种呼吸途径称为抗氰呼吸。抗氰呼吸可以在某些条件下与
电子传递主路交替运行,因此,抗氰呼吸又称交替途径。
精品课件
2. 植物抗氰呼吸的生理意义
➢放热增温,促进植物开花、种子萌发 。 ➢增加乙烯生成,促进果实成熟,促进衰老。 ➢代谢的协同调控。 ➢增强抗逆性。
交替氧化酶又称抗氰氧化酶,它将UQH2的电子交给O2 生成H2O。它与氧的亲和力高,不受CN-、CO、N3-的抑制。

植物生理学第4章 呼吸作用

植物生理学第4章   呼吸作用
醇式丙酮酸的脱磷酸作用
+2
2分子3—磷酸甘油醛氧化时生成的2NADH+H+ +6
(由于往返过程的消耗每分子NADH只能生成2ATP)
丙酮酸转化为乙酰CoA(线粒体内)
形成2NADH+H+
+6
三羧酸循环(线粒体内
2分子琥珀酰CoA形成2分子GTP
+2
2分子异柠檬酸,α—酮戊二酸和苹果酸氧化 +18 作用中生成6NADH+H+
h
18
二、三羧酸循环(TCAC)
糖酵解的产物丙酮酸在有氧条件下 进入线粒体逐步氧化分解,形成水和二 氧化碳的过程。总反应方程式如下:
CH3COCOOH +4 NAD++FAD +ADP+Pi+2H2O 3CO2 +ATP +4NADH+4H++FADH2
h
19
克雷布斯 Hans Adolf
Krebs (1900-1981)
李普曼 Fritz Albert
Lipmann (1899-1986)
英 国 生 物 化 学 家 Krebs 发 现 了 三 羧 酸 循 环 , 获 1953年诺贝尔医学奖。与他共获1953年诺贝尔奖的 美国生物化学家Lipmann发现了辅酶A和它在调节新 陈代谢中的重要作用。
h
20
1、TCAC的生化途径
h
23
1、PPP的生化途径
与光合C3途径的再生阶段类似。
h
24
2、PPP的生物学意义
(1)PPP是对葡萄糖进行直接氧化的过程。 (2)产生的NADPH+H+为生物体合成代谢提供还原力。 (3)中间产物5-磷酸核糖是合成核酸等物质的原料。 (4)与光合C3途径的中间产物相同,为生物体内很多有机物的合成提供原料。

植物生理学第四章植物的呼吸作用

植物生理学第四章植物的呼吸作用

一、生化途径多样性 2 三羧酸循环(TCA循环、柠檬酸循环)
2)总反应
丙酮酸+4NAD++FAD+ADP+ Pi +2H2O→ 3CO2+4NADH+4H++ FADH2+ATP
2ATP 3ATP
TCA循环中生成的NADH和 FADH2,经呼吸链将H+和电子传给 O2生成H2O,同时偶联氧化磷酸化生 成ATP。 底物水平磷酸化生成ATP。
一、生化途径多样性
3 戊糖磷酸途径(PPP、HMP途径)
葡萄糖在细胞质内直接氧化脱羧,并以戊糖磷酸为重要中间产物 的有氧呼吸途径。
1)反应场所:细胞质 2)总反应: G6P+2NADP++H2O→Ru5P+CO2+ 2NADPH+2H+
核酮糖-5-磷酸
3)生理意义: A.产生大量NADPH为体内反应提供还原力。 B.为其它物质代谢提供原料。Ru5P可合成核酸。 C.重组阶段的酶和产物与光合C3途径相同,可相互交流。 D.产生绿原酸、咖啡酸等抗病物质,可增强抗病性。
一、生化途径多样性 2 三羧酸循环(TCA循环、柠檬酸循环)
3)生理意义:
A.提供生命活动所需能量的主要来源。 • 通过电子传递与氧化磷酸化偶联产生大量ATP。 B.是物质代谢的枢纽。起始物乙酰CoA是糖、脂 肪、蛋白质三大类物质代谢的枢纽。 C.释放CO2 D.需O2,接受电子,有氧条件下NAD+和FAD 才能再生,否则TCA循环受阻。
(△G°′是指pH为7时标准自由能的变化)
生活细胞在无氧条件下,把某些有机物分解成为不彻底的氧化产 物,同时释放能量的过程。
酒精发酵: C6H12O6 C6H12O6

2C2H5OH+2CO2 2CH3CHOHCOOH

植物生理学04呼吸作用

植物生理学04呼吸作用

植物生理学04呼吸作用呼吸作用是植物维持生命活动的关键过程之一、它是指植物通过氧气和糖在细胞内进行氧化还原反应,从而产生能量和二氧化碳的过程。

呼吸作用不仅能提供生命活动所需的能量,还能使植物控制体内的氧气和二氧化碳浓度。

呼吸作用在植物中分为两个过程:有氧呼吸和乳酸发酵。

有氧呼吸是指在充分供氧的条件下,植物以糖为底物,通过线粒体中的氧化还原反应产生能量、二氧化碳和水。

这是植物维持正常生命周期和生长发育的主要途径,也是光合作用的产物被利用的途径。

乳酸发酵是指在供氧不足的情况下,植物将糖转化为乳酸来产生能量。

有氧呼吸是通过三个主要步骤实现的:糖酵解、三羧酸循环和氧化磷酸化。

在糖酵解阶段,糖分子被分解成两分子的丙酮酸,然后再转化为乙酸,并进一步氧化生成还原辅酶NADH。

在三羧酸循环中,乙酸被氧化为二氧化碳,进一步产生ATP。

氧化磷酸化是最终产生ATP的过程,通过线粒体内部的电子传递链和ATP合成酶,将NADH和FADH2的能量转化为ATP和水。

其次,呼吸作用能够调节植物体内的氧气和二氧化碳浓度。

在光合作用中,植物通过吸收二氧化碳、释放氧气来合成有机物质。

然而,当光照强度降低或夜间无光时,植物停止光合作用,而进行呼吸作用。

这时,植物通过呼吸作用释放二氧化碳,保持了氧气和二氧化碳之间的平衡。

另外,呼吸作用还受到许多生态因素的调节。

温度是一个重要的调节因子,温度升高可以促进呼吸作用的进行,但也增加了氧化酶的活性,进而加速能量的消耗。

光照和氧气浓度也会影响呼吸作用。

高光照强度和氧气浓度会抑制呼吸作用,因为它们促进了光合作用,提供了足够的能量。

而低光照和氧气浓度则有助于呼吸作用的进行。

总之,呼吸作用是植物维持生命活动的重要过程之一,通过氧气和糖的氧化还原反应产生能量和二氧化碳。

它不仅提供了生长和发育所需的能量,还能调节植物体内的氧气和二氧化碳浓度,以适应不同的环境条件。

了解植物的呼吸作用有助于我们更好地理解植物的生命活动和生态适应性。

植物生理学第4章 呼吸作用

植物生理学第4章   呼吸作用

14.丙酮酸脱羧酶,15.乙醇脱氢酶,16.乳酸脱氢酶
无氧呼吸过程中,葡萄糖分子的大部分能量 仍保存在乳酸或酒精分子中。无氧呼吸导致细胞 有机物消耗大,能量利用效率低,乳酸和酒精积 累对原生质有毒害作用。
毕希纳(Eduard Buchner):德国化学 家,他于 1897 年发表《无细胞的发酵》 论文,证明离体酵母提取物可以象活体 酵母细胞一样将葡萄糖转变为酒精和二 氧化碳。这一研究成果结束了长达半个 世纪有关发酵的本质生命力论和机械论 的争论。 Eduard Buchner 由于毕希纳在微生物学和现代酶化 学方面做出重大项献,他被授予 1907 年 度诺贝尔化学奖。
糖酵解:葡萄糖到丙酮酸(在细胞质中)
葡萄糖的磷酸化作用 6—磷酸果糖的磷酸化作用 2分子1,3—DPGA的脱磷酸作用 2分子磷酸烯醇式丙酮酸的脱磷酸作用 2分子3—磷酸甘油醛氧化时生成的2NADH+H+ 丙酮酸转化为乙酰CoA(线粒体内)
(由于往返过程的消耗每分子NADH只能生成2ATP)
形成2NADH+H+
三羧酸循环(线粒体内 2分子琥珀酰CoA形成2分子GTP 2分子异柠檬酸,α —酮戊二酸和苹果酸氧化 作用中生成6NADH+H+ 2分子琥珀酰的氧化作用中生成2FADH2 每mol葡萄糖净生成
+6
+2 +18 +4 38molATP
1分子的葡萄糖通过糖酵解、三羧酸循环和电 子传递链彻底氧化成 CO2 和 H2O 时,总共产生 38 个ATP。
复合体I 鱼藤酮 复合体III 抗霉素A 复合体IV
氰化物,CO
2、电子传递支路1
H2O2 又在过氧化氢酶催化下分解释放氧
气,可氧化水稻根系周围的各种还原性物质 (如 H2S 、 Fe2+ 等),从而消除还原性物质对 水稻根的毒害,使水稻能在还原条件下的水田 中正常生长发育。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B)当呼吸底物是富氢物质,氧化分解需较多 的O2,则呼吸商小于1。 C)当呼吸底物是富氧物质,氧化分解需氧较 少,呼吸商大于1。 D)在缺氧状态下,R·Q会异常地升高。相反 ,若呼吸过程中形成了不完全氧化的中间产物 ,释放CO2少,氧较多地保留在中间产物中, R·Q就会小于1。
返回总目录 8
1.2 植物呼吸代谢的主要 途1径呼吸途径
还原剂
氧化剂
2 呼吸作用的生理意义
(1)呼吸作用为生命活动提供直接能源ATP;
(2)呼吸作用为生物合成提供还原力;
(3)呼吸作用为其它生物合成提供原料;
(4)在植物抗病免疫方面有重要作用。
5
光合作用 呼吸作用
碳水化合物
光 CO2 + H2O
矿质 水分 物质合成
中间产物
ATP NAD(P)H
放热
原生质
11
NADPH2 NADP+
呼吸作用与光合作用之间的关系 返回总目录 12
1.3 影响呼吸作用的 因素内部因素:代谢类型、结构差异
外部因素:水分、O2与CO2浓度、温 度、底物供应等
1 内部因素对呼吸作用的影响
生长快的植物呼吸也快。
13
2 外部因素对呼吸作用的影响
(1)温度
呼吸的最低、最适和最高温度称温度三基点。 最高与最低温度都是呼吸的极限温度。 能够持续地维持较快的呼吸速率的温度称呼吸最 适温度。 呼吸作用的温度系数Q10: 是指温度每升高10℃时呼吸速率相当于原温度 的倍数。
细胞结构 细胞壁
细胞成分
细胞器
淀粉 核酸 蛋白质 脂肪 激素等
生理活动
细胞分裂 原生质运动
离子吸收 硝酸还原等
提高体温
呼吸作用的主要功能示意图
6
3 呼吸作用的指标
(1)呼吸速率 (又呼吸强度)
指单位植物材料(鲜重、干重、原生质),在单 位时间内,呼吸释放的CO2或吸收O2的量。
常用 单位
O2微升(μL)·克鲜重(干重)-1·小 C时O-2微1升(μL)·克鲜重(干重)-1·小
呼吸效率%=(合成生物大分子的克数/1克葡 萄糖氧化)×100% 生长旺盛和生理活性高的部位,呼吸效率高; 生长活动已经停止的成熟组织或者器官,呼吸 效率低。
19
根据呼吸效率高低,将呼吸分成两种类型: 维持呼吸和生长呼吸
维持呼吸(maintenance respiratoin)是指为了维 持细胞活性所进行的呼 吸作用。呼吸效率低。
生长后期维持呼吸占的 比例增大。
生长呼吸(growth respiration)是指用于 生物大分子的合成、离 子的吸收、细胞的分裂 生长等进行的呼吸。呼 吸效率高。
有: 时O2-微1升(μL)·mg N-1·小
时-1
(2)呼吸商(R·Q)
又称呼吸系数.是呼吸作用释放的CO2摩尔数或
体积与吸收O2的摩尔数或体积之比。
R·Q=
QCO2/QO2
7
影响呼吸商大小的因素
(1)呼吸底物的性质 (2)氧气的供应情况。
A)当呼吸底物是碳水化合物,又被完全氧化 时,R·Q=1。
第四章 植物的呼吸作用
1
主要讲述以下内容:
1.1 呼吸作用概述 1.2 植物呼吸代谢的主要 途1.3径影响呼吸作用的 因1.4素呼吸作用与农业生 产
2
1.1 呼吸作用概 述1 呼吸作用的概念及特点
(1)呼吸作用的概念
呼吸作用是指生活细胞氧化分解有机物,并 释放能量的过程。
根 据
有 氧 呼
是吸
指生活细胞吸收O2,把有机物 进行彻底的氧化分解,放出CO2 ,同时释放能量的过程。


要 氧
无 氧 呼
指生活细胞在无氧条件下,把 有机物进行不彻底的氧化分解, 同时释放出部分能量的过程。
无氧呼吸又称发酵。有酒精发
气吸
酵和乳酸发酵。
3
与有氧呼吸相比,无氧呼吸的特点:
A)不吸收O2; B)底物分解不彻底; C)释放能量少。
4
(2)呼吸作用的特点
一个氧化还原过程。
C6H12O6+6H2O+6O2→6CO2+12H2O+能 量
主要途 径有三 条:
糖酵解(EMP)-酒精或乳酸发酵; 糖酵解-三羧酸循环(TCA); 磷酸戊糖途径(PPP)。
各途径之间的关系见下图
9
淀粉
蔗糖 己糖磷酸
戊糖磷酸


丙糖磷酸

乙醇
酒精发酵
丙酮酸 缺氧 乳酸 乳酸发酵
磷酸戊糖途径
甘油 脂肪 脂肪酸
乙酰辅酶A
丙二酰辅酶A
草酰乙酸 柠檬酸 三羧酸循环 琥珀酸
氧饱和点:
在O2浓度较低的情况下,呼吸速率随着O2浓度 的增大而提高,但当O2浓度增至一定值时,对呼 吸作用就没有促进作用了,这一O2浓度称为氧饱 和点(oxygen saturation point)。
过高的O2浓度对植物反而有毒。与形成氧自 由基有关。
16
氧饱和点
无氧呼吸的熄灭点
O2浓度对小麦、水稻幼苗呼吸作用的影响
14
(2)氧气和二氧化碳
O2供应不足, 长时间无氧呼吸致使植物死亡。 其原因有三: A)无氧呼吸产生酒精,引起原生质蛋白质变性; B)无氧呼吸产生能量少,物质消耗多; C)没有丙酮酸氧化过程,许多中间产物不能 合成。
15
无氧呼吸的熄灭点:
在缺氧条件下,提高氧浓度,无氧呼吸随之减弱, 直至消失。一般把无氧呼吸停止进行的最低氧浓度( 10%左右)称为无氧呼吸的熄灭点(anaerobic respiration extinction point)。
17
(3)机械损伤
机械损伤会加快呼吸速率:
A)正常情况下,末端氧化酶与底物是隔 开的,机械损伤破坏了这种分隔,底物 迅速被氧化; B)机械损伤使某些细胞转变为分生组织 状态,形成愈伤组织去修补伤,这些生长 旺盛的细胞呼吸提高。
返回总目录
18
1.4 呼吸作用与农业生 产1 呼吸效率的概念与意义
所谓呼吸效率(respiratory ratio)是指每消耗 1克葡萄糖所合成生物大分子物质的克数。
乙酸 乙醇酸 草酸 甲酸 乙醇酸氧化途径 琥珀酸
草酸乙酸 柠檬酸 乙醛酸途径
乙醛
异柠檬酸
植物体内主要呼吸代谢途径相互关系示意图
10
2 光合作用与呼吸作用的关系
相互依存关系,主要有以下几个方面:
A)互为原料和产物。光合释放的O2可供呼吸作用 利用;呼吸释放的CO2为光合作用的原料。
B)能量代谢。光合与呼吸过程中都有ATP和 NADPH产生,所需ADP和NADP+在光合与呼吸 中共用。 C)光合卡尔文循环与呼吸的PPP途径基本上是逆过 程,许多中间产物,如三碳糖(磷酸甘油醛)、四 碳糖(磷酸赤藓糖)、五碳糖(磷酸核糖、核酮糖 、木酮糖)、六碳糖(磷酸葡萄糖和果糖)、七碳 糖(磷酸景天庚糖)等可以交替使用。
相关文档
最新文档