湘教版八年级下册数学期末试卷试题
湘教版八年级下学期期末数学试卷 - 含答案

八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题只有一个正确选项,请将正确选项填涂到答题卡上,每小题4分,共40分)1.下列条件能确定三角形ABC是直角三角形的是()A.∠A=∠B=∠C B.∠A=40°,∠B=50°C.AB=AC D.AB=2,AC=3,BC=42.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品3.一次数学测试后,某班m名学生的成绩被分为5组,第1~4组的频数分别是10,11,7,12,第5组的频率为0.2,则m的值为()A.40B.48C.50D.524.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,下列结论不一定成立的是()A.AD=BC B.∠DAB=∠BCDC.S△AOB=S△COB D.AC=BD5.在数学活动课上,老师和同学们判断一块地板砖上的四边形图案是否为矩形,下面是某学习小组的四位同学拟定的方案,其中正确的是()A.测量对角线是否互相平分B.测量两组对边是否相等C.测量对角线是否相等D.测量对角线是否平分且相等6.一次函数y=(k+3)x+b(k>0,b<0)在平面直角坐标系中的图象大致是()A.B.C.D.7.已知点(﹣4,y1),(2,y2)都在直线y=﹣3x+b上,则y1和y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定8.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,CD=2,BD=3,Q 为AB上一动点,则DQ的最小值为()A.1B.2C.2.5D.9.如图,在矩形ABCD中,AB=3,BC=5,点E为CB上一动点(不与点C重合),将△CDE沿DE所在直线折叠,点C的对应点C'恰好落在AE上,则CE的长是()A.B.1C.2D.10.2021年4月27日至5月5日湖南省(春季)乡村文化旅游节暨湖南阳明山第十三届“和”文化节在双牌县阳明山和花千谷景区举行,期间吸引了大批游客前往观光.5月1日上午,一辆旅游大巴以40km/h的速度从零陵区某地出发,当大巴车到达途中桐子坳时(大巴车停靠前后速度不变),一私家车从同一地点出发前往阳明山.如图是两车离出发地的距离s(km)与大巴车出发的时间t(h)的函数图象.小明同学根据图象得出以下几个结论:①私家车的速度为60km/h;②大巴车在桐子坳停留了36分钟;③私家车比大巴车早到12分钟;④私家车与大巴车相遇时离景区还有30km;⑤当两车相距6km时,t=2.1或2.7h.其中正确结论的个数是()A.2B.3C.4D.5二、填空题(本大题共8个小题,请将答案填在答题卡的答案栏内,每小题4分,共32分)11.函数y=中自变量x的取值范围是.12.若正多边形的一个外角是45°,则该正多边形的边数是.13.德国有个叫鲁道夫的人,用毕生的精力把圆周率π算到小数点后面35位.他的计算结果是 3.14159265358979423846264338327950288,在这串数字中“3”出现的频率是.(结果保留两位小数)14.若点A(1+m,2)与点B(﹣3,1﹣n)关于y轴对称,则m+n的值是.15.函数y=mx+m+2的图象经过第一、二、四象限,则m的整数解是.16.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=9,则EF的长为.17.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为.18.如图,在边长为2的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),连接AE,BF交于点P,过点P作PM∥CD交BC于M点,PN∥BC交CD于N点,连接MN,在运动过程中则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④线段MN的最小值为﹣1.其中正确的结论有.(填写正确的序号)三、解答题(本大题共8个小题,共78分,解答题要求写出证明步骤或解答过程)19.(8分)如图,在Rt△ABC和Rt△CDE中,∠B=∠D=90°,C为BD上一点,AC=CE,BC=DE.求证:∠BAC=∠DCE.20.(8分)某中学积极开展跳绳锻炼,一次体育测试后,体育委员统计了全班同学单位时间的跳绳次数,列出了频数分布表和频数分布直方图,如图:次数频数60≤x<80a80≤x<1004100≤x<12018120≤x<14013140≤x<1608160≤x<1804180≤x<2001(1)补全频数分布直方图并求出频数分布表中a的值.(2)表中组距是次,组数是组.(3)跳绳次数在100≤x<160范围的学生有人,全班共有人.(4)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?21.(8分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(5,2),B(3,5),C(﹣1,﹣1).将点A向下平移4个单位得到A',将点B向左平移2个单位得到B',点C'与点C关于x轴对称.(1)请分别写出A',B',C'的坐标;(2)求△A'B'C'的面积.22.(10分)在等腰△ABC中,AB=AC,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为F.(1)求证:四边形DFCE是平行四边形;(2)若∠ADE=30°,DF=4,求BF的长.23.(10分)暑期将至,某游泳馆面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次游泳费用按六折优惠;方案二:不购买学生暑期专享卡,每次游泳费用按八折优惠.设某学生暑期游泳x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值;(2)八年级学生小华计划暑期前往该游泳馆游泳8次,应选择哪种方案所需费用更少?请说明理由.24.(10分)如图,小明家门前有一块矩形空地ABCD,AB=4m,BC=8m,小明想把这块空地改造成两个停车位,于是小明做了如下操作:①连接BD;②在BC上取一点F,使得∠EDB=∠FDB;③在AD上取一点E,使得AE=CF;④分别取DE,BF的中点M,N.这样小明就成功地改造了两个停车位EBNM和MNFD.(1)求证:四边形BFDE是菱形;(2)请你帮助小明计算出EM的长.25.(12分)已知直线y=x+4与x轴、y轴相交于A、B两点.(1)求A、B两点的坐标;(2)将直线AB进行平移,平移后的函数解析式为y=kx+b,并与x轴、y轴相交于C、D两点,当S△OCD=24时,求直线CD的解析式;(3)在x轴上有一点P,使得△ABP是等腰三角形.请你直接写出所有满足条件的点P 的坐标.26.(12分)如图①,点E是线段AB延长线上一点,且AB>BE,分别以AB和BE为边作正方形ABCD和BEFG,连接AG,CE.(1)请你直接写出AG与CE的数量与位置关系;(2)将正方形BEFG绕点B顺时针旋转α(0°<α<90°),AG与CE相交于点O,AG 与BC相交于点H,BG与CE相交于点M,如图②,请问(1)中AG与CE的数量与位置关系是否成立?若成立,请证明;若不成立,请说明理由;(3)连接CG,AE,如图③,若AB=4,BE=3,请求出CG2+AE2的值.八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题只有一个正确选项,请将正确选项填涂到答题卡上,每小题4分,共40分)1.下列条件能确定三角形ABC是直角三角形的是()A.∠A=∠B=∠C B.∠A=40°,∠B=50°C.AB=AC D.AB=2,AC=3,BC=4【分析】根据勾股定理的逆定理和三角形的内角和定理逐个判断即可.【解答】解:A、∠A=∠B=∠C=60°,不是直角三角形,不符合题意;B、∠A=40°,∠B=50°,∠C=90°,是直角三角形,符合题意;C、AB=AC,是等腰三角形,不一定是直角三角形,不符合题意;D、22+32≠42,不是直角三角形,不符合题意;故选:B.2.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、既是轴对称图形,又是中心对称图形,故本选项符合题意;故选:D.3.一次数学测试后,某班m名学生的成绩被分为5组,第1~4组的频数分别是10,11,7,12,第5组的频率为0.2,则m的值为()A.40B.48C.50D.52【分析】根据频率公式:频率=即可求解.【解答】解:根据题意,得=0.2,解得m=50.故选:C.4.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,下列结论不一定成立的是()A.AD=BC B.∠DAB=∠BCDC.S△AOB=S△COB D.AC=BD【分析】由平行四边形的性质可求解.【解答】解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,AB=CD,∠BAD=∠BCD,AD=BC,AD∥BC,∴S△AOB=S△COB,∴不能得到AC=BD,故选:D.5.在数学活动课上,老师和同学们判断一块地板砖上的四边形图案是否为矩形,下面是某学习小组的四位同学拟定的方案,其中正确的是()A.测量对角线是否互相平分B.测量两组对边是否相等C.测量对角线是否相等D.测量对角线是否平分且相等【分析】由矩形的判定定理和平行四边形的判定与性质分别对各个选项进行判断即可.【解答】解:A、测量对角线是否互相平分,能判定平行四边形,不能判定矩形,故选项A不符合题意;B、测量两组对边是否相等,能判定平行四边形,不能判定矩形,故选项B不符合题意;C、测量对角线是否相等,不能判定平行四边形,更不能判定矩形,故选项C不符合题意;D、测量对角线是否平分且相等,能判定矩形;故选:D.6.一次函数y=(k+3)x+b(k>0,b<0)在平面直角坐标系中的图象大致是()A.B.C.D.【分析】根据题目中的函数解析式和一次函数的性质,可以得到该函数的图象经过哪几个象限,本题得以解决.【解答】解:∵一次函数y=(k+3)x+b(k>0,b<0),∴k+3>0,∴该函数图象经过第一、三、四象限,故选:C.7.已知点(﹣4,y1),(2,y2)都在直线y=﹣3x+b上,则y1和y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定【分析】先根据直线y=﹣3x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【解答】解:∵直线y=﹣3x+b,k=﹣3<0,∴y随x的增大而减小,又∵﹣4<2,∴y1>y2.故选:A.8.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,CD=2,BD=3,Q 为AB上一动点,则DQ的最小值为()A.1B.2C.2.5D.【分析】作DH⊥AB于H,根据角平分线的性质得到DH=DC=2,然后根据垂线段最短求解.【解答】解:作DH⊥AB于H,如图,∵AD平分∠BAC,DH⊥AB,DC⊥AC,∴DH=DC=2,∵Q为AB上一动点,∴DQ的最小值为DH的长,即DQ的最小值为2.故选:B.9.如图,在矩形ABCD中,AB=3,BC=5,点E为CB上一动点(不与点C重合),将△CDE沿DE所在直线折叠,点C的对应点C'恰好落在AE上,则CE的长是()A.B.1C.2D.【分析】由矩形的性质得出∠B=∠C=90°,AD=BC=5,CD=AB=3,由折叠的性质得C'D=CD=3,C'E=CE,由勾股定理得出AC',在Rt△ABE中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴∠B=∠C=90°,AD=BC=5,CD=AB=3,由折叠的性质得:C'D=CD=3,C'E=CE,∠DC'E=∠C=90°,∴∠AC'D=90°,∴AC'===4,设CE=C'E=x,在Rt△ABE中,BE=5﹣x,AE=x+4,由勾股定理得:(5﹣x)2+32=(x+4)2,解得:x=1,故选:B.10.2021年4月27日至5月5日湖南省(春季)乡村文化旅游节暨湖南阳明山第十三届“和”文化节在双牌县阳明山和花千谷景区举行,期间吸引了大批游客前往观光.5月1日上午,一辆旅游大巴以40km/h的速度从零陵区某地出发,当大巴车到达途中桐子坳时(大巴车停靠前后速度不变),一私家车从同一地点出发前往阳明山.如图是两车离出发地的距离s(km)与大巴车出发的时间t(h)的函数图象.小明同学根据图象得出以下几个结论:①私家车的速度为60km/h;②大巴车在桐子坳停留了36分钟;③私家车比大巴车早到12分钟;④私家车与大巴车相遇时离景区还有30km;⑤当两车相距6km时,t=2.1或2.7h.其中正确结论的个数是()A.2B.3C.4D.5【分析】由图象得:大巴车出发48÷40=1.2(h)停留,则停留了1.8﹣1.2=0.6(h),继续行驶(96﹣48)÷40=1.2(h)到达阳明山.则大巴车共用时1.8+1.2=3(h),可得私家车的速度为96÷(2.8﹣1.2)=60(km/h),求出大巴车在桐子坳停留后继续行驶和私家车的解析式,可得两车相遇的时间和当两车相距6km时的时间.【解答】解:由图象得:大巴车出发48÷40=1.2(h)停留,则停留了1.8﹣1.2=0.6(h)=36分钟,②正确;私家车的速度为96÷(2.8﹣1.2)=60(km/h),①正确;大巴车继续行驶(96﹣48)÷40=1.2(h)到达阳明山.则大巴车共用时1.8+1.2=3(h),3﹣2.8=0.2(h)=12分钟,③正确;设大巴车在桐子坳停留后继续行驶时离出发地的距离s(km)与大巴车出发的时间t(h)的函数的解析式为s=kt+b,,解得:,∴s=40t﹣24,设离出发地的距离s(km)与大巴车出发的时间t(h)的函数的解析式为s=k′t+b′,,解得:,∴s=60t﹣72,60t﹣72=40t﹣24,解得:t=2.4,∴家车与大巴车相遇时离景区还有(2.8﹣2.4)×60=24(km),④错误;当两车相距6km时:有一下几种情况a:40t=6,解得:t=0.15,b:60t﹣72﹣(40t﹣24)=6,解得:t=2.7,c:40t﹣24﹣(60t﹣72)=6,解得:t=2.1,∴当两车相距6km时,t=0.15或2.1或2.7h.⑤错误.其中正确的结论有①②③,故选:B.二、填空题(本大题共8个小题,请将答案填在答题卡的答案栏内,每小题4分,共32分)11.函数y=中自变量x的取值范围是x≤5.【分析】根据二次根式的性质列出不等式,求出不等式的取值范围即可.【解答】解:若使函数y=有意义,∴5﹣x≥0,即x≤5.故答案为x≤5.12.若正多边形的一个外角是45°,则该正多边形的边数是8.【分析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用360°÷45°可求得边数.【解答】解:∵多边形外角和是360度,正多边形的一个外角是45°,∴360°÷45°=8即该正多边形的边数是8.13.德国有个叫鲁道夫的人,用毕生的精力把圆周率π算到小数点后面35位.他的计算结果是 3.14159265358979423846264338327950288,在这串数字中“3”出现的频率是0.17.(结果保留两位小数)【分析】频数即一组数据中出现符合条件的数据的个数,频率=频数÷总数.依据频数的计算公式即可求解.【解答】解:在3.14159265358979423846264338327950288中,“3”出现的次数是6次,所以在这串数字中“3”出现的频率是6÷36≈0.17.故答案为:0.17.14.若点A(1+m,2)与点B(﹣3,1﹣n)关于y轴对称,则m+n的值是1.【分析】关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标相同.据此可得m,n的值.【解答】解:∵点A(1+m,2)与点B(﹣3,1﹣n)关于y轴对称,∴,解得,∴m+n=2﹣1=1,故答案为:1.15.函数y=mx+m+2的图象经过第一、二、四象限,则m的整数解是﹣1.【分析】根据函数y=mx+m+2的图象经过第一、二、四象限,可知k=m<0,b=m+2>0,从而可以求得m的取值范围,然后即可写出m的整数解.【解答】解:∵函数y=mx+m+2的图象经过第一、二、四象限,∴,解得﹣2<m<0,∴m的整数解是﹣1,故答案为:﹣1.16.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=9,则EF的长为9.【分析】根据直角三角形的性质求出AB,根据三角形中位线定理解答即可.【解答】解:在Rt△ABC中,∠ACB=90°,点D为AB的中点,CD=9,∴AB=2CD=2×9=18,∵E,F分别为AC,BC的中点,∴EF是△ABC的中位线,∴EF=AB=9,故答案为:9.17.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为(2,).【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故答案为(2,).18.如图,在边长为2的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),连接AE,BF交于点P,过点P作PM∥CD交BC于M点,PN∥BC交CD于N点,连接MN,在运动过程中则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④线段MN的最小值为﹣1.其中正确的结论有①②③④.(填写正确的序号)【分析】由正方形的性质及F,E以相同的速度运动,利用SAS证明△ABE≌△BCF,得到AE=BF,∠BAE=∠CBF,再根据∠CBF+∠ABP=90°,可得∠BAE+∠ABP=90°,进而得到AE⊥BF,根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB 为直径的弧,设AB的中点为H,连接CH交弧于点P,此时CP的长度最小,根据勾股定理,求出CH的长度,再求出PH的长度,即可求出线段CP的最小值,根据矩形对角线相等即可得到MN.【解答】解:∵动点F,E分别以相同的速度从D,C两点同时出发向C和B运动,∴DF=CE,∵四边形ABCD是正方形,∴AB=BC=CD=2,∠ABC=∠BCD=90°,∴CF=BE,∴△ABE≌△BCF(SAS),故①正确;∴AE=BF,∠BAE=∠CBF,故②正确;∵∠CBF+∠ABP=90°,∴∠BAE+∠ABP=90°,∴∠APB=90°,即AE⊥BF,故③正确;∵点P在运动中始终保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,如图,设AB的中点为H,连接CH交弧于点P,此时CP的长度最小,在Rt△BCH中,CH==,∵PH=AB=1,∴CP=CH﹣PH=﹣1,∵PM∥CD,PN∥BC,∴四边形PMCN是平行四边形,∵∠BCD=90°,∴四边形PMCN是矩形,∴MN=CP=﹣1,即线段MN的最小值为﹣1,故④正确.故答案为:①②③④.三、解答题(本大题共8个小题,共78分,解答题要求写出证明步骤或解答过程)19.(8分)如图,在Rt△ABC和Rt△CDE中,∠B=∠D=90°,C为BD上一点,AC=CE,BC=DE.求证:∠BAC=∠DCE.【分析】根据HL证明Rt△ABC≌△Rt△CDE,可得结论.【解答】证明:在Rt△ABC和Rt△CDE中,,∴Rt△ABC≌△Rt△CDE(HL),∴∠BAC=∠DCE.20.(8分)某中学积极开展跳绳锻炼,一次体育测试后,体育委员统计了全班同学单位时间的跳绳次数,列出了频数分布表和频数分布直方图,如图:次数频数60≤x<80a80≤x<1004100≤x<12018120≤x<14013140≤x<1608160≤x<1804180≤x<2001(1)补全频数分布直方图并求出频数分布表中a的值.(2)表中组距是20次,组数是7组.(3)跳绳次数在100≤x<160范围的学生有39人,全班共有50人.(4)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?【分析】(1)根据频数分布直方图中的数据,可以得到a的值,然后根据频数分布表中的数据,可知140≤x<160这一组的频数,然后即可将频数分布直方图补充完整;(2)根据频数分布表中的数据,可以得到组距和组数;(3)把第3组和第4组,第5组的频数相加可得到跳绳次数在100≤x<160范围的学生数,把全部7组的频数相加可得到全班人数;(4)用后三组的频数和除以全班人数可得到全班同学跳绳的优秀率.【解答】解:(1)由直方图中的数据可知,a=2,由频数分布表可知,140≤x<160这一组的频数为8,补全的频数分布直方图如图所示,;(2)根据频数分布表得:表中组距是20次,组数是7组.故答案为:20,7;(3)跳绳次数在100≤x<160范围的学生有18+13+8=39(人),全班人数为2+4+18+13+8+4+1=50(人);故答案为:39,50;(4)跳绳次数不低于140次的人数为8+4+1=13,所以全班同学跳绳的优秀率=×100%=26%.21.(8分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(5,2),B(3,5),C(﹣1,﹣1).将点A向下平移4个单位得到A',将点B向左平移2个单位得到B',点C'与点C关于x轴对称.(1)请分别写出A',B',C'的坐标;(2)求△A'B'C'的面积.【分析】(1)依据点A向下平移4个单位得到A',将点B向左平移2个单位得到B',点C'与点C关于x轴对称,即可得到A',B',C'的坐标;(2)依据割补法进行计算,即可得出△A'B'C'的面积.【解答】解:(1)如图所示,A'(5,﹣2),B'(1,5),C'(﹣1,1);(2)如图所示,△A'B'C'的面积=6×7﹣﹣﹣=42﹣4﹣9﹣14=15.22.(10分)在等腰△ABC中,AB=AC,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为F.(1)求证:四边形DFCE是平行四边形;(2)若∠ADE=30°,DF=4,求BF的长.【分析】(1)根据三角形的性质得到BF=CF,根据三角形中位线定理得到DE∥BC,DF∥AC,由平行四边形的判定定理即可得到四边形DFCE是平行四边形;(2)由三角形的中位线定理得到DE∥BC,DE=BC,求得DE=BF,根据直角三角形的性质得到OF=DF=2,由勾股定理得到OD,于是得到结论.【解答】(1)证明:∵AB=AC,AF⊥BC,∴BF=CF,∵D,E分别是边AB,AC的中点,∴DE和DF分别是△ABC的中位线,∴DE∥BC,DF∥AC,即DE∥CF,DF∥CE,∴四边形DFCE是平行四边形;(2)解:如图,设AF与DE交于O,∵D,E分别是边AB,AC的中点,∴DE∥BC,DE=BC,∵BF=CF=BC,∴DE=BF,∵AF⊥BC,∴DE⊥AF,∴∠DOF=90°,∵∠ADE=30°,DF=4,∴OF=DF=2,∴OD===2,∵DE∥BC,∴∠ADE=∠B,∠C=∠AED,∴∠ADE=∠AED,∴AD=AE,∴DE=2OD=4.23.(10分)暑期将至,某游泳馆面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次游泳费用按六折优惠;方案二:不购买学生暑期专享卡,每次游泳费用按八折优惠.设某学生暑期游泳x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值;(2)八年级学生小华计划暑期前往该游泳馆游泳8次,应选择哪种方案所需费用更少?请说明理由.【分析】(1)利用待定系数法求解即可;(2)求出y2与x之间的函数关系式,将x=8分别代入y1、y2关于x的函数解析式,比较即可.【解答】解:(1)根据题意,得:,解得,∴方案一所需费用y1与x之间的函数关系式为y1=18x+30,∴k1=18,b=30;(2)∵打折前的每次游泳费用为18÷0.6=30(元),∴k2=30×0.8=24;∴y2=24x,当游泳8次时,选择方案一所需费用:y1=18×8+30=174(元),选择方案二所需费用:y2=24×8=192(元),∵174<192,∴选择方案一所需费用更少.24.(10分)如图,小明家门前有一块矩形空地ABCD,AB=4m,BC=8m,小明想把这块空地改造成两个停车位,于是小明做了如下操作:①连接BD;②在BC上取一点F,使得∠EDB=∠FDB;③在AD上取一点E,使得AE=CF;④分别取DE,BF的中点M,N.这样小明就成功地改造了两个停车位EBNM和MNFD.(1)求证:四边形BFDE是菱形;(2)请你帮助小明计算出EM的长.【分析】(1)先判定四边形BEDF是平行四边形,再根据FD=FB,即可得出四边形BEDF 是菱形;(2)设DE=BE=xm,则AE=(8﹣x)m,在Rt△ABE中利用勾股定理列方程,即可得到DE的长,进而得出EM的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴∠EDB=∠FBD,又∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,又∵∠EDB=∠FDB,∴∠DBF=∠BDF,∴FD=FB,∴四边形BEDF是菱形;(2)解:由题可得AD=BC=8m,∠A=90°,设DE=BE=xm,则AE=(8﹣x)m,在Rt△ABE中,AE2+AB2=BE2,即(8﹣x)2+42=x2,解得x=5,∴DE=5m,又∵M是DE的中点,∴EM=DE=m.25.(12分)已知直线y=x+4与x轴、y轴相交于A、B两点.(1)求A、B两点的坐标;(2)将直线AB进行平移,平移后的函数解析式为y=kx+b,并与x轴、y轴相交于C、D两点,当S△OCD=24时,求直线CD的解析式;(3)在x轴上有一点P,使得△ABP是等腰三角形.请你直接写出所有满足条件的点P 的坐标.【分析】(1)根据直线解析式可得出A、B的坐标;(2)设平移后的解析式,求出点C、点D的坐标,根据S△OCD=24求出b值,即可得直线CD的解析式;(3)根据等腰三角形的判定,分三类讨论,可求点P的坐标.【解答】解:(1)当x=0时,y=4,则B点的坐标为:(0,4);当y=0时,x=﹣3,则点A的坐标为:(﹣3,0);(2)由题意得直线CD的解析式为:y=x+b,∴当x=0时,y=b,则C点的坐标为:(0,b);当y=0时,x=﹣b,则点D的坐标为:(﹣b,0);∵S△OCD=24,∴S△OCD=OC•OD=×|b|×|﹣b|=24,∴b2=64,解得:b=8或﹣8,∴直线CD的解析式为y=x+8或y=x﹣8;(3)①当P A=PB时,点P在线段AB的垂直平分线上,如图:∴AM=BM,PM⊥AB,∵A(﹣3,0),B(0,4),∴AB===5,∵∠AOB=∠AMP=90°,∠OAB=∠MAP,∴△AOB∽△AMP,∴,即,∴AP=,∴OP=AP﹣OA=﹣3=,∴P(,0);②当P A=AB时,如图:∵A(﹣3,0),B(0,4),∴AB===5,∴P A=AB=5,∴OP1=3+5=8,OP2=5﹣3=2,∴P(﹣8,0)或(2;0);②当PB=AB时,点B在线段AP的垂直平分线上,如图:∵A(﹣3,0),B(0,4),∴AB===5,∴PB=AB=5,在Rt△AOB和Rt△POB中,,∴Rt△AOB≌Rt△POB(HL),∴OP=OA=3,∴P(3,0);综上可得点P的坐标为(,0)或(﹣8,0)(2;0)或(3,0).26.(12分)如图①,点E是线段AB延长线上一点,且AB>BE,分别以AB和BE为边作正方形ABCD和BEFG,连接AG,CE.(1)请你直接写出AG与CE的数量与位置关系;(2)将正方形BEFG绕点B顺时针旋转α(0°<α<90°),AG与CE相交于点O,AG 与BC相交于点H,BG与CE相交于点M,如图②,请问(1)中AG与CE的数量与位置关系是否成立?若成立,请证明;若不成立,请说明理由;(3)连接CG,AE,如图③,若AB=4,BE=3,请求出CG2+AE2的值.【分析】(1)延长AG交CE于P,根据SAS证△ABG≌△CBE,可证AG=CE,∠GAB+∠CEB=90°,可证AG⊥CE;(2)连接AC,与(1)同理证AG=CE,根据∠GAB+∠CAG+45°=90°,∠GAB=∠BCE,得∠AOC=90°,即AG与CE的数量与位置关系仍成立;(3)连接AC,EG,根据勾股定理可得CG2+AE2=AO2+OE2+OC2+OG2=AC2+EG2=(AB)2+(BE)2,代入数值即可得出.【解答】解:(1)如图①,延长AG交CE于P,在△ABG和△CBE中,,∴△ABG≌△CBE(SAS),∴AG=CE,∠AGB=∠CEB,∵∠AGB+∠GAB=90°,∴∠GAB+∠CEB=90°,∴∠APE=90°,即AG⊥CE;(2)AG与CE的数量与位置关系仍成立,理由如下:连接AC,在△ABG和△CBE中,α,∴△ABG≌△CBE(SAS),∴AG=CE,∠OAB=∠ECB,∵∠OAB+∠CAO+∠DAC=90°,∠DAC=∠ACB,∴∠ECB+∠ACB+∠CAO=90°,∴∠AOC=90°,即AG⊥CE;(3))连接AC,EG,∵四边形ABCD和BEFG都是正方形,AB=4,BE=3,∴AC=AB=4,EG=BE=3,∴由勾股定理得CG2+AE2=AO2+OE2+OC2+OG2=AC2+EG2=(4)2+(3)2=50,即CG2+AE2的值为50.。
湘教版八年级数学下册期末试卷及完整答案

湘教版八年级数学下册期末试卷及完整答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .142.关于x 的分式方程2322x m m x x++=--的解为正实数,则实数m 的取值范围是( ) A .6m <-且2m ≠ B .6m >且2m ≠ C .6m <且2m ≠- D .6m <且2m ≠3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.下面四个图形中,∠1=∠2一定成立的是( )A .B .C .D .6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .8.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC ⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是( )A .AD +BC =ABB .与∠CBO 互余的角有两个C .∠AOB =90°D .点O 是CD 的中点9.如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .5B .2C .52D .2510.如图,在平行四边形ABCD 中,∠ABC 的平分线交AD 于E ,∠BED=150°,则∠A 的大小为( )A .150°B .130°C .120°D .100°二、填空题(本大题共6小题,每小题3分,共18分)1273________.2.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为__________. 3.计算:()()201820195-252的结果是________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF 与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .6.如图,在平行四边形ABCD 中,添加一个条件_____使平行四边形ABCD 是菱形.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2410x x -+= (2)()()2411x x x -=-2.先化简,再求值[(x 2+y 2)-(x-y )2+2y (x-y )]÷2y ,其中x=-2,y=-12.3.已知5a+2的立方根是3,3a +b -1的算术平方根是4,c 13分,求3a-b+c 的平方根.4.如图,点A 、D 、C 、F 在同一条直线上,AD=CF ,AB=DE ,BC=EF.(1)求证:ΔABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.5.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.6.重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、C5、B6、C7、D8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2、-15324、10.5、406、AB=BC(或AC ⊥BD)答案不唯一三、解答题(本大题共6小题,共72分)1、(1)1222x x ==2)1241,3x x ==.2、2x-y ;-312. 3、3a-b+c 的平方根是±4.4、(1)略;(2)37°5、(1)略;(2)略.6、(1)200元和100元(2)至少6件。
湘教版八年级下册数学期末测试卷(参考答案)

湘教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值()A.2B.4C.D.2、下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.3、已知一次函数y=kx+b的图象经过点(2,3),(-1,-3),那么这个一次函数的解析式为()A.y=-2x+7B.y=2x-1C.y=-2x-3D.y=2x+14、下列数字中既是轴对称图形又是中心对称图形的有几个()A.1个B.2个C.3个D.4个5、关于正比例函数,则下列结论正确的是()A.图象必经过点B.图象经过第一、三象限C. 随的增大而减小D.不论取何值,总有6、如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB的长为()A.5B.25C.6D.7、一个多边形的内角和等于外角和的两倍,那么这个多边形是()A.三边形B.四边形C.五边形D.六边形8、如图,小张与小王分别从相距300公里的甲、乙两地同时出发,相向而行.表示小张小张骑摩托车到达乙地后立即返回甲地,小王从乙地直接到达甲地.y1离甲地的距离,y表示小王离乙地的距离.则两人从出发到第一次相遇用时2()A. B. C. D.9、如图,矩形中,O为的中点,过点O作分别交于点若则的长为()A.2B.C.D.10、下面给出了四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是()A.1:2:3:4B.2:2:3:3C.2:3:2:3D.2:3:3:2.11、点M(-5,y)向下平移5个单位的点关于x轴对称,则y的值是()A.-5B.5C.D.12、点经过某种图形变化后得到点,这种图形变化可以是()A.关于轴对称B.关于轴对称C.绕原点逆时针旋转D.绕原点顺时针旋转13、若一个多边形共有十四条对角线,则它是( )A.六边形B.七边形C.八边形D.九边形14、如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH= BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④15、如图,将△ABC绕点C(0,﹣1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为()A.(﹣a,﹣b)B.(﹣a,﹣b﹣1)C.(﹣a,﹣b+1)D.(﹣a,﹣b﹣2)二、填空题(共10题,共计30分)16、如图∆DEF是由∆ABC绕着某点旋转得到的,则这点的坐标是________.17、如图,矩形ABCD的周长是20,且,E是AD边上的中点,点P是AB边上的一个动点,将沿PE折叠得到,连接CE,CF,当是直角三角形时,BP的长是________.18、如图,菱形ABCD中,∠A=60°,BD=6,则菱形ABCD的周长为________.19、若函数,则当函数值y=12时,自变量x的值是________ 。
湘教版八年级下学期期末数学试卷 - 含答案

0 50
t>8
5
b
请根据图表信息回答下列问题:
(1)频数分布表中的a=,b=;
(2)将频数分布直方图补充完整;
(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?
【答案】(1)25;0.10;(2)补图见解析;(3)200人.
22.如图, 中,点 是边 的中点,连接 并延长交 的延长线于点 ,连接 , .
八年级(下)期末数学试卷
一、选择题(本大题8道小题,每小题3分,共8道小题,共24分)
1.下列生态环Biblioteka 标志中,是中心对称图形的是A. B.
C. D.
【答案】B
2.下列各组线段中,能构成直角三角形的是( )
A.2,3,4B.4,5,6C.5,12,13D.5,6,8
【答案】C
3.将含 角的一块直角三角板和一把直尺如图放置,若 ,则 等于( )
A. B. C. D.
【答案】A
4.若 ,则一次函数 的图象大致是( )
A. B.
C. D.
【答案】C
5.如图,菱形 的周长是 ,对角线 为 ,则另一条对角线 的长为( )
A. B. C. D.
【答案】C
6.下列命题是真命题是( )
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.菱形的对角线相等
(1)求线段 的长;
(2)求点 的坐标及折痕所在直线 的解析式;
(3)若点 是平面内任意一点,在 轴上是否存在点 ,使以 、 、 、 为顶点且以 为边的四边形是菱形?若存在,请求出满足条件的点 的坐标;若不存在,请说.明理由.
【答案】(1)10;(2)D(0,5),y= x+5;(3)存在,(4,0)或(-4,0)或( ,0)
湘教版八年级下学期期末数学试卷 - 含答案

八年级(下)期末数学试卷一、选择题(本大题共10小题,调分30分,每小题给出的四个选项中,只有一项题目要求的,)1.(3分)点M(﹣3,2)关于y轴对称的点的坐标为()A.(﹣3,﹣2)B.(3,﹣2)C.(﹣3,2)D.(3,2)2.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)下列关于判定平行四边形的说法错误的是()A.一组对角相等且一组对边平行的四边形B.一组对边相等且另一组对边平行的四边形C.两组对角分别相等的四边形D.四条边相等的四边形4.(3分)如图,足球图片中的一块黑色皮块的内角和是()A.720°B.540°C.360°D.180°5.(3分)如图四条直线,可能是一次函数y=kx﹣k(k≠0)的图象的是()A.B.C.D.6.(3分)为了了解某校九年级学生的体能情况,随机抽查了该校九年级若干名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的直方图,请根据图示计算,仰卧起坐次数在25~30次的学生人数占被调查学生人数的百分比为()A.40%B.30%C.20%D.10%7.(3分)如图,在△ABC中,∠C=90°,BC=1,AC=2,BD是∠ABC的平分线,设△ABD,△BCD的面积分别是S1,S2,则S1:S2等于()A.2:1B.:1C.3:2D.2:8.(3分)在Rt△ABC中,∠C=90°,∠A=30°,BC=4,D、E分别为AC、AB边上的中点,连接DE并延长DE到F,使得EF=2ED,连接BF,则BF长为()A.2B.2C.4D.49.(3分)如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A 坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)10.(3分)A、B两地相距80km,甲、乙两人沿同一条路从A地到B地.l1,l2分别表示甲、乙两人离开A地的距离s(km)与时间t(h)之间的关系.对于以下说法:①乙车出发1.5小时后甲才出发;②两人相遇时,他们离开A地20km;③甲的速度是40km/h,乙的速度是km/h;④当乙车出发2小时时,两车相距13km.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)如果一个n边形的外角和是内角和的一半,那么n=.12.(3分)在▱ABCD中,如果∠A+∠C=140°,那么∠C等于.13.(3分)写出同时具备下列两个条件的一次函数关系式.(写出一个即可)(1)y随x的增大而减小;(2)图象经过点(1,﹣2).14.(3分)如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为.15.(3分)如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b.若ab=4,大正方形的面积为16,则小正方形的边长为.16.(3分)在Rt△ABC中,∠C=90°,AC=15cm,BC=8cm,AX⊥AC于A,P、Q两点分别在边AC和射线AX上移动.当PQ=AB,AP=时,△ABC和△APQ 全等.17.(3分)如图,在△ABC中,∠B=∠C=30°,底边,线段AB的垂直平分线交BC于点E,则△ACE的周长为.18.(3分)如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE⊥AB于E,OF⊥AD于F.则OE+OF=.三.解答题(第19、20、21、22题每小题5分,共20分)19.(5分)如图,一块四边形的土地,其中∠BAD=90°,AB=4m,BC=13m,CD=12m,AD=3m.(1)试说明BD⊥BC;(2)求这块土地的面积.20.(5分)已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.21.(5分)已知:如图.矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别相交于点E、F.(1)求证:△BOE≌DOF;(2)当EF与AC满足什么关系时,以A、E、C、F为顶点的四边形是菱形?并给出证明.22.(5分)已知如图,一次函数y=ax+b图象经过点(1,2)、点(﹣1,6).求:(1)这个一次函数的解析式;(2)一次函数图象与两坐标轴围成的面积.四.应用题(每小题8分,共16分)23.(8分)2015年3月30日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表分数段频数频率50.5~60.5160.0860.5~70.5400.270.5~80.5500.2580.5~90.5m0.3590.5~100.524n(1)这次抽取了名学生的竞赛成绩进行统计,其中:m=,n=;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?24.(8分)为全面落实乡村振兴总要求,充分发扬“为民服务孺子牛”“创新发展拓荒牛”“艰苦奋斗老黄牛”精神,某镇政府计划在该镇试种植苹果树和桔子树共100棵.已知平均每棵果树的投入成本和产量如表所示,且苹果的售价为10元/kg,桔子的售价为6元/kg.成本(元/棵)产量(kg/棵)苹果树12030桔子树8025设种植苹果树x棵.(1)若种植苹果树和桔子树共获利y元,求y与x之间的函数关系式;(2)若种植苹果树45棵,求种植苹果树和桔子树共获利多少元?五、综合探究题(10分)25.(10分)如图所示,O为ABC的边AC上一动点,过点O的直线MN∥BC,设MN分别交∠ACB的平分线及其外角平分线于点E、F.(1)求证:OE=OF;(2)当点O在何处时,四边形AECF是矩形?(3)在(2)的条件下,请在△ABC中添加条件,使四边形AECF变为正方形,并说明你的理由.八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,调分30分,每小题给出的四个选项中,只有一项题目要求的,)1.(3分)点M(﹣3,2)关于y轴对称的点的坐标为()A.(﹣3,﹣2)B.(3,﹣2)C.(﹣3,2)D.(3,2)【解答】解:点M(﹣3,2)关于y轴对称的点的坐标为(3,2).故选:D.2.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.3.(3分)下列关于判定平行四边形的说法错误的是()A.一组对角相等且一组对边平行的四边形B.一组对边相等且另一组对边平行的四边形C.两组对角分别相等的四边形D.四条边相等的四边形【解答】解:A、一组对角相等且一组对边平行的四边形是平行四边形,故不符合题意;B、一组对边相等且另一组对边平行的四边形不一定是平行四边形,故符合题意;C、两组对角分别相等的四边形是平行四边形,故不符合题意;D、四条边相等的四边形是平行四边形,故不符合题意;故选:B.4.(3分)如图,足球图片中的一块黑色皮块的内角和是()A.720°B.540°C.360°D.180°【解答】解:∵黑色皮块是正五边形,∴黑色皮块的内角和是(5﹣2)×180°=540°.故选:B.5.(3分)如图四条直线,可能是一次函数y=kx﹣k(k≠0)的图象的是()A.B.C.D.【解答】解:当k>0时,一次函数y=kx﹣k(k≠0)的图象经过第一、三、四象限,故选项A不符合题意,选项D符合题意;当k<0时,一次函数y=kx﹣k(k≠0)的图象经过第一、二、四象限,故选项B、C不符合题意;故选:D.6.(3分)为了了解某校九年级学生的体能情况,随机抽查了该校九年级若干名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的直方图,请根据图示计算,仰卧起坐次数在25~30次的学生人数占被调查学生人数的百分比为()A.40%B.30%C.20%D.10%【解答】解:由频率分布直方图可以得出,被调查的总人数=3+10+12+5=30.又仰卧起坐次数在25~30次的学生人数为12,故百分比为40%.故选:A.7.(3分)如图,在△ABC中,∠C=90°,BC=1,AC=2,BD是∠ABC的平分线,设△ABD,△BCD的面积分别是S1,S2,则S1:S2等于()A.2:1B.:1C.3:2D.2:【解答】解:过D作DE⊥AB于E,则DE=DC又∠C=90°,BC=1,AC=2,∴AB==,∴S1:S2=AB:BC=:1.故选:B.8.(3分)在Rt△ABC中,∠C=90°,∠A=30°,BC=4,D、E分别为AC、AB边上的中点,连接DE并延长DE到F,使得EF=2ED,连接BF,则BF长为()A.2B.2C.4D.4【解答】解:在Rt△ABC中,∠C=90°,∠A=30°,BC=4,∴AB=2BC=8,∠ABC=60°,∵E为AB边上的中点,∴AE=EB=4,∵D、E分别为AC、AB边上的中点,∴DE∥BC,∴∠AED=∠AED=60°,∴∠BEF=∠ABC=60°,在Rt△AED中,∠A=30°,∴AE=2DE,∵EF=2DE,∴AE=EF,∴△BEF为等边三角形,∴BF=BE=4,故选:C.9.(3分)如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A 坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【解答】解:点A第一次关于y轴对称后在第二象限,点A第二次关于x轴对称后在第三象限,点A第三次关于y轴对称后在第四象限,点A第四次关于x轴对称后在第一象限,即点A回到原始位置,所以,每四次对称为一个循环组依次循环,∵2021÷4=505余1,∴经过第2021次变换后所得的A点与第一次变换的位置相同,在第二象限,坐标为(﹣1,2).故选:C.10.(3分)A、B两地相距80km,甲、乙两人沿同一条路从A地到B地.l1,l2分别表示甲、乙两人离开A地的距离s(km)与时间t(h)之间的关系.对于以下说法:①乙车出发1.5小时后甲才出发;②两人相遇时,他们离开A地20km;③甲的速度是40km/h,乙的速度是km/h;④当乙车出发2小时时,两车相距13km.其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:由图象可得,乙车出发1.5小时后甲乙相遇,故①错误;两人相遇时,他们离开A地20km,故②正确;甲的速度是(80﹣20)÷(3﹣1.5)=40(km/h),乙的速度是km/h,故③正确;当乙车出发2小时时,两车相距:20+(2﹣1.5)×40﹣×2=km,故④错误;故选:B.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)如果一个n边形的外角和是内角和的一半,那么n=6.【解答】解:由题意得(n﹣2)•180°×=360°,解得n=6.故答案为:6.12.(3分)在▱ABCD中,如果∠A+∠C=140°,那么∠C等于70°.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A+∠C=140°,∴∠C=70°.故答案为:70°.13.(3分)写出同时具备下列两个条件的一次函数关系式y=﹣x﹣1(答案不唯一).(写出一个即可)(1)y随x的增大而减小;(2)图象经过点(1,﹣2).【解答】解:该一次函数为y=kx+b(k≠0),∵y随x的增大而减小;图象经过点(1,﹣2),∴k<0,k+b=﹣2,∴答案可以为y=﹣x﹣1.故答案为:y=﹣x﹣1(答案不唯一).14.(3分)如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为17.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=3,OB=OD=6,BC=AD=8,∴△OBC的周长=OB+OC+BC=3+6+8=17.故答案为:17.15.(3分)如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b.若ab=4,大正方形的面积为16,则小正方形的边长为2.【解答】解:由题意可知:中间小正方形的边长为a﹣b,∵每一个直角三角形的面积为:ab=×4=2,∴4×ab+(a﹣b)2=16,∴(a﹣b)2=16﹣8=8,∴a﹣b=2.故答案为:2.16.(3分)在Rt△ABC中,∠C=90°,AC=15cm,BC=8cm,AX⊥AC于A,P、Q两点分别在边AC和射线AX上移动.当PQ=AB,AP=8cm或15cm时,△ABC和△APQ 全等.【解答】解:①当P运动到AP=BC时,如图1所示:在Rt△ABC和Rt△QP A中,,∴Rt△ABC≌Rt△QP A(HL),即AP=B=8cm;②当P运动到与C点重合时,如图2所示:在Rt△ABC和Rt△PQA中,,∴Rt△ABC≌Rt△PQA(HL),即AP=AC=15cm.综上所述,AP的长度是8cm或15cm.故答案为:8cm或15cm.17.(3分)如图,在△ABC中,∠B=∠C=30°,底边,线段AB的垂直平分线交BC于点E,则△ACE的周长为.【解答】解:过A点作AF⊥BC,垂足为F,∵∠B=∠C=30°,∴AB=AC=2AF,∵BC=,∴BF=CF=,∵AC2=AF2+CF2,∴AC2=(AC)2+()2,解得AC=2,∴AF=1,∵DE垂直平分AB,∴AE=BE,∴△ACE的周长为AE+EC+AC=BE+EC+AC=BC+AC=.故答案为.18.(3分)如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE⊥AB于E,OF⊥AD于F.则OE+OF=9.6.【解答】解:如图,连接AC交BD于点G,连接AO,∵四边形ABCD是菱形,∴AC⊥BD,AB=AD=10,BG=BD=8,根据勾股定理得:AG===6,∵S△ABD=S△AOB+S△AOD,即BD•AG=AB•OE+AD•OF,∴16×6=10OE+10OF,∴OE+OF=9.6.故答案为:9.6.三.解答题(第19、20、21、22题每小题5分,共20分)19.(5分)如图,一块四边形的土地,其中∠BAD=90°,AB=4m,BC=13m,CD=12m,AD=3m.(1)试说明BD⊥BC;(2)求这块土地的面积.【解答】解:(1)在Rt△ABD中,∠BAD=90°,AB=4m,AD=3m,由勾股定理得:BD=5m,∵BC=12m,CD=13m,BD=5m∴BD2+BC2=DC2,∴∠DBC=90°,即BD⊥BC;(2)四边形ABCD的面积是S△ABD+S△BDC==36(m2).20.(5分)已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)点B2的坐标为(﹣4,﹣3).21.(5分)已知:如图.矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别相交于点E、F.(1)求证:△BOE≌DOF;(2)当EF与AC满足什么关系时,以A、E、C、F为顶点的四边形是菱形?并给出证明.【解答】证明:(1)∵四边形ABCD是矩形,∴OB=OD,∵AE∥CF,∴∠E=∠F,∠OBE=∠ODF,在△BOE与△DOF中,,∴△BOE≌△DOF(AAS);(2)当EF⊥AC时,四边形AECF是菱形.证明:∵△BOE≌△DOF,∴OE=OF,∵四边形ABCD是矩形,∴OA=OC,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形.22.(5分)已知如图,一次函数y=ax+b图象经过点(1,2)、点(﹣1,6).求:(1)这个一次函数的解析式;(2)一次函数图象与两坐标轴围成的面积.【解答】解:(1)依题意,当x=1时,y=2;当x=﹣1时,y=6.则解之得∴一次函数解析式为:y=﹣2x+4.(2)一次函数图象与y轴、x轴分别相交于A、B两点,由y=﹣2x+4,得A点坐标(0,4),B点坐标(2,0),即OA=4,OB=2.∴S△AOB===4.即一次函数图象与两坐标轴围成的面积为4.四.应用题(每小题8分,共16分)23.(8分)2015年3月30日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表分数段频数频率50.5~60.5160.0860.5~70.5400.270.5~80.5500.2580.5~90.5m0.3590.5~100.524n(1)这次抽取了200名学生的竞赛成绩进行统计,其中:m=70,n=0.12;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?【解答】解:(1)16÷0.08=200,m=200×0.35=70,n=24÷200=0.12;故答案为200,70;0.12;(2)如图,(3)1500×(0.08+0.2)=420,所以该校安全意识不强的学生约有420人.24.(8分)为全面落实乡村振兴总要求,充分发扬“为民服务孺子牛”“创新发展拓荒牛”“艰苦奋斗老黄牛”精神,某镇政府计划在该镇试种植苹果树和桔子树共100棵.已知平均每棵果树的投入成本和产量如表所示,且苹果的售价为10元/kg,桔子的售价为6元/kg.成本(元/棵)产量(kg/棵)苹果树12030桔子树8025设种植苹果树x棵.(1)若种植苹果树和桔子树共获利y元,求y与x之间的函数关系式;(2)若种植苹果树45棵,求种植苹果树和桔子树共获利多少元?【解答】解:(1)由题意,得种植桔子树(100﹣x)棵,∴y=(30×10﹣120)x+(25×6﹣80)(100﹣x)=180x﹣70(100﹣x)=110x+7000(0≤x≤100);即y与x之间的函数关系式为:y=110x+7000(0≤x≤100);(2)当x=45时,y=110×45+7000=11950,答:若种植苹果树45棵,求种植苹果树和桔子树共获利11950元.五、综合探究题(10分)25.(10分)如图所示,O为ABC的边AC上一动点,过点O的直线MN∥BC,设MN分别交∠ACB的平分线及其外角平分线于点E、F.(1)求证:OE=OF;(2)当点O在何处时,四边形AECF是矩形?(3)在(2)的条件下,请在△ABC中添加条件,使四边形AECF变为正方形,并说明你的理由.【解答】(1)证明:∵MN∥BC,∴∠OEC=∠BCE,∵CE平分∠ACB,∴∠BCE=∠OCE,∴∠OEC=∠OCE,∴EO=CO,同理:FO=CO,∴EO=FO;(2)解:当点O运动到AC的中点时,四边形CEAF是矩形.理由如下:由(1)得:EO=FO,又∵O是AC的中点,∴AO=CO,∴四边形CEAF是平行四边形,∵EO=FO=CO,∴EO=FO=AO=CO,∴EF=AC,∴四边形CEAF是矩形;(3)解:当点O运动到AC的中点时,且△ABC中满足∠ACB为直角时,四边形AECF 是正方形.理由如下:∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,∵MN∥BC,∠ACB=90°,∴∠AOE=∠ACB=90°,∴AC⊥EF,∴四边形AECF是正方形.。
湘教版八年级数学下册期末试卷及答案【完整版】

湘教版八年级数学下册期末试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+7C.12或7+7D.以上都不对2.不等式组111324(1)2()xxx x a-⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a的取值范围是()A.65a-≤<-B.65a-<≤-C.65a-<<-D.65a-≤≤-3.已知三角形的三边长分别为2,a-1,4,则化简|a-3|+|a-7|的结果为()A.2a-10 B.10-2aC.4 D.-44.若x,y均为正整数,且2x+1·4y=128,则x+y的值为()A.3 B.5 C.4或5 D.3或4或5 5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4 B.6 C.7 D.107.汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=10,则S2的值为()A.113B.103C.3 D.838.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°9.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF 10.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于__________. 3.若关于x 的分式方程2222x m m x x+=--有增根,则m 的值为_______. 4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,则△ABD 的面积是________.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解下列方程组(1)203216x y x y -=⎧⎨+=⎩(2)410211x y x y -=⎧⎨+=⎩2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x xx x x x⎛⎫---÷⎪-+--⎝⎭.3.已知11881,2y x x=-+-+求代数式22x y x yy x y x++-+-的值.4.如图,在四边形ABCD中,AB DC,AB AD=,对角线AC,BD交于点O,AC平分BAD∠,过点C作CE AB⊥交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若5AB=,2BD=,求OE的长.5.如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.6.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、C5、D6、B7、B8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、3.3、14、(-4,2)或(-4,3)5、156、20三、解答题(本大题共6小题,共72分)1、(1)42x y =⎧⎨=⎩;(2)61x y =⎧⎨=-⎩.2、x+2;当1x =-时,原式=1.3、14、(1)略;(2)2.5、(1)略;(2)4.6、(1)年平均增长率为20%;(2)每碗售价定为20元时,每天利润为6300元.。
湘教版八年级下册数学期末测试卷【完整版】

湘教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,在Rt△ABC中,∠C=90º,∠A=30º,∠ABC的平分线BD交AC于点D,若BC=3 ,则点D到AB的距离为()A.2B.3C.4D.52、下列命题中,真命题的个数有()①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A.3个B.2个C.1个D.0个3、小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16分钟回到家中. 设小明出发第分钟的速度为米/分,离家的距离为米. 与之间的部分图象、与之间的部分图象分别如图1与图2(图象没画完整,其中图中的空心圈表示不包含这一点),则当小明离家600米时,所用的时间是()分钟.A.4.5B.8.25C.4.5 或8.25D.4.5 或 8.54、在下列四个函数中,y随x的增大而减小的函数是()A. B. C. D.5、下列命题中,假命题是()A.经过两点有且只有一条直线B.平行四边形的对角线相等C.两腰相等的梯形叫做等腰梯形 D.圆的切线垂直于经过切点的半径6、如图,在4×4的正方形网格中,是相似三角形的是()A.①③B.①②C.②③D.②④7、下列关于一次函数的结论中,正确的是()A.图象经过点B.当时,C.y随x增大而增大 D.图象经过第二、三、四象限8、数学课上,老师提出一个问题:如图①,在平面直角坐标系中,点A的坐标为(0,2),点B是x轴正半轴上一动点,以AB为边作等腰直角三角形ABC,使∠BAC=90°,点C在第一象限,设点B的横坐标为x,设……为y,y与x之间的函数图象如图②所示.题中用“…”表示的缺失的条件应补为()A.边AB的长B.△ABC的周长C.点C的横坐标D.点C的纵坐标9、直角三角形的两直角边分别为5、12,则斜边上的高为 ( )A.6B.8C.D.10、如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A. B. C. D.11、在平面直角坐标系中,若轴,,点A的坐标为,则点B的坐标为()A. B. C. 或 D. 或12、如图是某地的长方形大理石广场示意图,如果小琴A角走到C角,至少走()A.90米B.100米C.120米D.140米13、在平面直角坐标系xOy中,若点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点的坐标为()A.(3,-1)B.(-3,1)C.(1,-3)D.(-1,3)14、如图,在△ABC,∠C=90°,按以下步骤作图:①以点A为圆心,小于AC 的长为半径画弧,分别交AB,AC于点E、F;②分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D,若CD=6,AB=15则△ABD的面积为()A.45B.30C.15D.6015、一只小虫从点A(﹣2,1)出发,先向右跳4个单位,再向下跳3个单位,到达点B处,则点B的坐标是()A.(﹣5,5)B.(2,﹣2)C.(1,5)D.(2,2)二、填空题(共10题,共计30分)16、如图1,作∠ BPC平分线的反向延长线PA,以∠ APB,∠APC,∠BPC为内角可以分别作三个边长相等的正多边形.例如:若∠BPC=90°,则∠APB=∠APC=135°,图2就是一个符合要求的图形. 在所有符合要求的图形中,∠BPC的度数是________.(∠BPC=90°除外)17、如图,E为正方形ABCD内一点,∠AEB=135°,△AEB按顺时针方向旋转一个角度后成为△CFB,图中________是旋转中心,若BE=1,则EF=________.18、如图,点A在反比例函数y=的图象上,点B在反比例函数y=的图象上,点C在x轴上,且满足AO=AC,则△ABC的面积为________.19、在直角坐标系中,O为坐标原点,已知点A(1,2),在y轴的正半轴上确定点P,使△AOP为等腰三角形,则点P的坐标为________.20、在电影院中,若将电影票上”8排6号”记作(8,6),那么”5排4号”应记作________21、茂名市祥和中学办学特色好,“校园文化”建设,主题鲜明新颖:“国学引领,教老敬亲,家校一体,爱满乡村”.如图所示,若用“C4”表示“孝”,则“A5-B4-C3-C5”表示________ .22、如图所示,把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4 cm,则球的半径为________cm.23、如图,等腰直角三角形中,,D是上一点,连接,过点作于交于在是上一点,过点作于,延长到连接,使,若,则线段的长度为________.24、如图,在5×5的边长为1的小正方形组成的网格中,格点上有A、B、C、D四个点,若要求连接两个点所成线段的长度大于3且小于4,则可以连接________。
湘教版八年级下册数学期末测试卷(附解析)

湘教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、函数y=自变量x的取值范围是()A.x≥1且x≠3B.x≥1C.x≠3D.x>1且x≠32、如图,已知△ABC中,BC=13cm,AB=10cm,AB边上的中线CD=12cm,则AC的长是()A.13cmB.12cmC.10cmD. cm3、正方形具有而矩形不一定具有的性质是()A.四个角都是直角B.对角线互相垂直C.对角线相等D.两对角线将其分割的四个三角形面积相等4、菱形的周长为52cm,它的一条对角线长为10cm,则此菱形的面积为()A.120cm 2B.130cm 2C.210cm 2D.260cm 25、某商店销售一种商品,售出部分商品后进行了降价促销,销售金额y(元)与销售量x(件)的函数关系如图所示,则降价后每件商品的销售价格为()A.12元B.12.5元C.16.25元D.20元6、下列字母既是轴对称又是中心对称的个数是( )A.1个B.2个C.3个D.4个7、如图,中,,D为BC上一点,,,则AC的长是()A. B. C.3 D.8、如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在点A1处,已的坐标为()知OA=8,OC=4,则点A1A.(4.8,6.4)B.(4,6)C.(5.4,5.8)D.(5,6)9、已知关于x,y的二元一次方程组无解,则一次函数的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10、如图,在平行四边形ABCD中,对角线AC⊥BD,且AC=8,BD=6,DH⊥AB于H,则AH等于()A. B. C. D.11、在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(-a,b),如f(1,2)=(-1,2);②g(a,b)=(b,a),如g(1,2)=(2,1);③h(a,b)=(-a,-b),如h(1,2)=(-1,-2).按照以上变换有:g(h(f(1,2)))=g(h(-1,2))=g(1,-2)=(-2,1),那么h(f(g(3,-4)))等于()A.(4,-3)B.(-4,3)C.(-4,-3)D.(4,3)12、下列图形中,是中心对称图形,但不是轴对称图形的是( )A. B. C. D.13、当a≠0时,函数y=ax+1与函数y= 在同一坐标系中的图象可能是()A. B. C.D.14、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧,分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,下列结论:①AD是∠BAC的平分线;②∠ADB=120°;③AD=BD;④DB=2CD.其中正确的结论共有()A.4个B.3个C.2个D.1个15、将某样本数据分析整理后分成8组,且组距为5,画频数分布折线图时,求得某组的组中值恰好为18.则该组是()A.10.5~15.5B.15.5~20.5C.20.5~25.5D.25.5~30.5二、填空题(共10题,共计30分)16、如图,菱形的对角线、交于点O,点E、F、G分别在、、上,且四边形为矩形.若,,则的长为________.17、如图,△ABC中,AB=AC=6,,点M在BC上,ME∥AC,交AB于点E,MF∥AB,交AC于点F,则四边形MEAF的周长是________18、如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.若∠B=30°,CD=1,则BD的长为________.19、如图,在菱形ABCD中,,对角线,则菱形ABCD的面积为________.20、若点(a,1)与(﹣2,b)关于原点对称,则a b= ________.21、如图,点P是的角平分线OC上一点,PN OB于点N,点M是线段ON上一点,已知OM=3,ON=4,点D为OA上一点,若满足PD=PM,则OD的长度为________22、一个五边形有三个内角是直角,另两个内角都等于n°,则n=________23、如图(1),用形状相同、大小不等的三块直角三角形木板,恰好能拼成如图(2)所示的四边形ABCD、若AE=4,CE=3BE,那么这个四边形的面积是________ .24、坐标平面内的点P(m,﹣2)与点Q(3,n)关于原点对称,则m+n=________.25、某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系________.三、解答题(共5题,共计25分)26、求出下列图中x的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湘教版八年级下册数学期末考试试卷时间:120分钟满分:120分班级:__________姓名:__________得分:__________一、选择题(每小题3分,共30分)1.下列图形中,是中心对称图形的是()2.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°3.如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD =8,OP=10,则PE的长为()A.5 B.6C.7 D.8第3题图第5题图第6题图4.在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.添加的条件不能是()A.AB∥DC B.∠A=90°C.∠B=90°D.AC=BD5.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量是()A.20kg B.25kgC.28kg D.30kg6.如图,在Rt△ABC中,∠BAC=90°,点D,E分别是AB,BC的中点,点F在CA 的延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为() A.16 B.20 C.18 D.227.某次数学测验,抽取部分同学的成绩(得分为整数),整理制成如图所示的频数直方图,根据图示信息描述不正确的是()A.抽样的学生共50人B.估计这次测试的及格率(60分为及格)在92%左右C.估计优秀率(80分以上为优秀)在36%左右D.60.5~70.5这一分数段的频数为12第7题图第8题图8.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE∶EC=2∶1,则线段CH的长是()A.3 B.4 C.5 D.69.如图,直线y=kx+b与y轴交于点(0,3),与x轴交于点(a,0),当a满足-3≤a<0时,k的取值范围是()A.-1≤k<0 B.1≤k≤3 C.k≥1 D.k≥3第9题图第10题图10.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为() A.4S1B.4S2C.4S2+S3D.3S1+4S3二、填空题(每小题3分,共24分)11.如图,在Rt△ABC中,点E是斜边AB的中点.若AB=10,则CE=________.第11题图第12题图12.如图,AB⊥CF,垂足为B,AB∥DE,点E在CF上,CE=FB,AC=DF,依据以上条件可以判定△ABC≌△DEF,这种判定三角形全等的方法,可以简写为“________”.13.如图,△ABC向右平移4个单位后得到△A′B′C′,则A′点的坐标是________.第13题图第14题图14.如图,点D,E,F分别是△ABC各边的中点,连接DE,EF,DF.若△ABC的周长为10,则△DEF的周长为________.15.一次函数y=kx+b(k≠0)中,x与y的部分对应值如下表:x -2-101 2y 9630-3那么,一元一次方程kx+b=0在这里的解为________.16.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列四种说法:①小明中途休息用了20分钟;②小明休息前爬山的平均速度为每分钟70米;③小明在上述过程中所走的路程为6600米;④小明休息前爬山的平均速度大于休息后爬山的平均速度.其中正确的是________(填序号).第16题图第17题图17.在正方形ABCD中,O是对角线AC,BD的交点,过O作OE⊥OF,分别交AB,BC于E,F,若AE=4,CF=3,则EF的长为________.18.如图,依次连接第1个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第2个矩形,按照此方法继续下去.已知第1个矩形的面积为1,则第n个矩形的面积为________.三、解答题(共66分)19.(8分)如图所示的网格中,△ABC的顶点A的坐标为(0,5).(1)根据A点的坐标在网格中建立平面直角坐标系,并写出点B,C两点的坐标;(2)求△ABC的面积.20.(10分)如图,在矩形ABCD中,过对角线AC的中点O作垂线EF交边BC,AD分别为点E,F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AD=8,AB=4,求CF的长.21.(12分)如图,点N(0,6),点M在x轴负半轴上,ON=3OM.A为线段MN上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.(1)点M的坐标为________;(2)求直线MN的表达式;(3)若点A的横坐标为-1,求矩形ABOC的面积.22.(12分)为了提高学生书写汉字的能力,增强保护汉字的意识,我区举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数直方图,如图表:请结合图表完成下列各题: (1)求表中a 的值;(2)请把频数直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?23.(12分)如图,点O 是△ABC 内一点,连接OB ,OC ,并将AB ,OB ,OC ,AC 的中点D ,E ,F ,G 依次连接,得到四边形DEFG .(1)求证:四边形DEFG 是平行四边形;(2)若点M 为EF 的中点,OM =3,∠OBC 和∠OCB 互余,求DG 的长度.24.(12分)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一”假期,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠,优惠期间,设某游客的草莓采摘量为x (千克),在甲采摘园所需总费用组别 成绩x (分) 频数 (人数) 第1组 25≤x <30 4 第2组 30≤x <35 6 第3组 35≤x <40 14 第4组40≤x <45a第5组 45≤x <50 10为y 1(元),在乙采摘园所需总费用为y 2(元),图中折线OAB 表示y 2与x 之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克________; (2)求y 1,y 2与x 的函数表达式;(3)在图中画出y 1与x 的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x 的范围.参考答案与解析1.A 2.C 3.B 4.A 5.A 6.A 7.D 8.B9.C 解析:把点(0,3),(a ,0)代入y =kx +b ,得b =3.则a =-3k .∵-3≤a <0,∴-3≤-3k<0.解得k ≥1.故选C.10.A 解析:设等腰直角三角形纸片的直角边长为a, 中间一张正方形纸片的边长为m ,则S 1=12a 2,S 3=m 2,∴S 2=12(a -m )(a +m )=12(a 2-m 2)=12(2S 1-S 3),即S 3=2S 1-2S 2,∴这个平行四边形的面积为2S 1+2S 2+S 3=2S 1+2S 2+(2S 1-2S 2)=4S 1.故选A.11.5 12.HL 13.(1,2) 14.5 15.x =1 16.①②④ 17.5 18.⎝⎛⎭⎫122n -219.解:(1)如图所示,(2分)B (-2,2),C (2,3).(4分)(2)S △ABC =4×3-12×4×1-12×2×2-12×2×3=5.(8分)20.(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,∠AFO =∠CEO .∵点O 为AC 的中点,∴AO =OC .(2分)在△AFO 和△CEO 中,⎩⎪⎨⎪⎧∠AFO =∠CEO ,∠AOF =∠COE ,AO =CO ,∴△AFO ≌△CEO (AAS),∴OE =OF ,∴四边形AECF 是平行四边形.∵EF ⊥AC ,∴平行四边形AECF 是菱形.(5分)(2)解:∵四边形ABCD 是矩形,∴∠B =90°.由(1)知四边形AECF 是菱形,∴设AE =CE =CF =x .则BE =8-x .在Rt △ABE 中,AB 2+BE 2=AE 2,即42+(8-x )2=x 2,解得x =5,∴CF =5.(10分)21.解:(1)(-2,0)(3分)(2)该直线MN 的表达式为y =kx +b ,分别把M (-2,0),N (0,6)代入,得⎩⎪⎨⎪⎧-2k +b =0,b =6,解得⎩⎪⎨⎪⎧k =3,b =6,∴直线MN 的表达式为y =3x +6.(8分)(3)在y =3x +6中,当x =-1时,y =3,∴OB =1,AB =3,∴S 矩形ABOC =1×3=3.(12分)22.解:(1)a =50-4-6-14-10=16.(4分) (2)补图略.(8分)(3)本次测试的优秀率是16+1050×100%=52%.(11分)答:本次测试的优秀率为52%.(12分)23.(1)证明:∵点D ,G 分别是AB ,AC 的中点,∴DG ∥BC ,DG =12BC .(2分)∵点E ,F 分别是OB ,OC 的中点,∴EF ∥BC ,EF =12BC ,∴DG =EF ,DG ∥EF ,∴四边形DEFG是平行四边形.(6分)(2)解:∵∠OBC 和∠OCB 互余,∴∠OBC +∠OCB =90°,∴∠BOC =90°.(8分)∵点M 为EF 的中点,OM =3,∴EF =2OM =6.由(1)知DG =EF ,∴DG =6.(12分)24.解:(1)30元(3分)(2)因为甲需要购买60元的门票,采摘的草莓六折优惠 ∴y 1=0.6×30x +60=18x +60.(5分)图中OA 段:y 2=30x .图中AB 段:设y 2与x 的函数表达式为y 2=kx +b ,∴⎩⎪⎨⎪⎧10k +b =300,20k +b =450, 解得⎩⎪⎨⎪⎧k =15,b =150,∴y 2=15x +150.∴y 1与x 的函数表达式为y 1=18x +60,y 2与x 的函数表达式为y 2=⎩⎪⎨⎪⎧30x (0≤x ≤10),15x +150(x >10).(8分)(3)当y 1与y 2交于OA 段时,18x +60=30x, 解得x =5;当y 1与y 2交于AB 段时,18x +60=15x +150.解得x =30,y 1与x 的函数图象如图所示.(10分)故当5<x <30时,选择甲采摘园所需总费用较少.(12分)。