整式全章
人教版数学七年级上册《整式》全章测试无答案

人教版数学七年级上册《整式》全章测试一、选择题(每题5分,共25分)1、下列式子中,是单项式的是( )A.x +y 2B.-12x 3yz 2C.5xD.x -y 2、多项式4xy 2-3xy 3+12的次数为( )A.3B.4C.6D.73、一个多项式A 与多项式B =2x 2-3xy -y 2的和是多项式C =x 2+xy +y 2,则A 等于( )A .x 2-4xy -2y 2B .-x 2+4xy +2y 2C .3x 2-2xy -2y 2D .3x 2-2xy4、一种商品进价为每件a 元,按进价增加25%出售,后因库存积压降价,按售价的九折出售,每件还盈利( )A. 0.125a 元B. 0.15a 元C. 0.25a 元D. 1.25a 元5、给出下列判断:①单项式5×103x 2的系数是5;②x -2xy +y 是二次三项式;③多项式-3a 2b +7a 2b 2-2ab +1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的个数有( )A .1个B .2个C .3个 D. 4个二、填空题(每题5分,共25分)6、单项式32423ab π-的系数是 ,次数是 . 7、一个两位数,个位数字是a ,十位数字比个位数字大2,则这个两位数是 .8、如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2016的值为 .9、代数式a 2+a+3的值为8,则代数式2a 2+2a ﹣3的值为 .10、若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m 等于 .三、解答题(共50分)11、(20分)合并同类项:(1)3a 2+5b -2a 2-2a +3a -8b ; (2)-(3a 2-4ab )+[a 2-2(2a 2+2ab )].12、(10分)先化简,再求值:2xy -21(4xy -8x 2y 2)+2(3xy -5x 2y 2),其中x =31,y =-3.13、(20分)已知多项式(2x 2+ax -y +6)-(bx 2-2x +5y -1).(1)若多项式的值与字母x 的取值无关,求a 、b 的值;(2)在(1)的条件下,先化简多项式2(a 2-ab +b 2)-(a 2+ab +2b 2),再求它的值附加题:(10分)已知数轴有A 、B 、C 三点,位置如图,分别对应的数为x 、2、y ,若,BA=BC , 求4x+4y+30的值。
人教版八年级上册数学整式的乘除全章课件

3个10
通过观察可以发现1014、 103这两个因数是同底数 幂的形式,所以我们把 像1014×103的运算叫做
同底数幂的乘法 .
请同学们先根据自己的理解,解答下列各题. 103 ×102 =(10×10×10)×(10×10) = 10( 5 ) 23 ×22 =(2×2×2)×(2×2)=2×2×2×2×2 =2( 5 )
2.计算:(1)23×24×25
(2)y · y2 · y3
【解析】(1)23×24×25=23+4+5=212 (2)y · y2 · y3 = y1+2+3=y6
3.计算:(-a)2×a4
【解析】原式 = a2×a4 =a6
(-2)3×22 原式 = -23 ×22
= -25
当底数互为相反数时, 先化为同底数形式.
(an)3·(bm)3·b3=a9b15 a3n ·b3m·b3=a9b15 a3n ·b3m+3=a9b15 3n=9,3m+3=15
n=3,m=4.
通过本课时的学习,需要我们掌握:
积的乘方法则 (ab)n =anbn (n为正整数) 积的乘方等于把积的每个因式分别乘方,再把 所得的幂相乘.
通过本课时的学习,需要我们掌握: 1.am·an =am+n(m、n都是正整数) 2.am·an·ap = am+n+p (m、n、p都是正整数)
14.1.2 幂的乘方
1.经历探索幂的乘方运算性质的过程,进一步体会幂 的意义,发展推理能力和有条理的表达能力. 2.了解幂的乘方的运算性质,并能解决一些实际问题.
【解析】xm·x2m= x3m =2 x9m =(x3m)3 = 23 =8 6.若a3n=3,求(a3n)4的值.
专题 整式的乘除(全章)(提升练)-2023-2024学年七年级数学下册专项突破讲与练(北师大版)

专题1.35整式的乘除(全章直通中考)(提升练)一、单选题(本大题共10小题,每小题3分,共30分)以下4组图形及相应的代数恒等式:①()2222a b a ab b +=++②()2222a b a ab b -=-+③22()()a b a b a b +-=-④22()()4a b a b ab-=+-其中,图形的面积关系能正确解释相应的代数恒等式的有()A .1个B .2个C .3个D .4个二、填空题(本大题共8小题,每小题4分,共32分)11.(2023·江西·统考中考真题)计算:(a+1)2﹣a 2=.12.(2020·广西·中考真题)计算:ab •(a +1)=.13.(2019·浙江衢州·统考中考真题)已知实数m ,n 满足13m n m n -=⎧⎨+=⎩,则代数式22m n -的值为.14.(2022·江苏泰州·统考中考真题)已知22222,2,()a m mn b mn n c m n m n =-=-=-≠用“<”表示a b c 、、的大小关系为.15.(2020·湖北宜昌·中考真题)数学讲究记忆方法.如计算()25a 时若忘记了法则,可以借助()25555510a a a a a +=⨯==,得到正确答案.你计算()5237a a a -⨯的结果是.16.(2012·山东菏泽·中考真题)将4个数,,,a b c a 排成2行、2列,两边各加一条竖直线记成a bc d,定义a b ad bc c d=-,上述记号就叫做2阶行列式.若11811x xx x +-=-+,则x =.17.(2012·辽宁阜新·中考真题)如图1,在边长为a 的大正方形中剪去一个边长为b 的小正方形,再将图中的阴影部分剪拼成一个长方形,如图2.这个拼成的长方形的长为30,宽为20.则图2中Ⅱ部分的面积是.18.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开)7,10三、解答题(本大题共6小题,共58分)19.(8分)(2023·江苏盐城·统考中考真题)先化简,再求值:()()()2333a b a b a b +++-,其中2a =,1b =-.20.(8分)(2022·广西·统考中考真题)先化简,再求值()()()22x y x y xy xy x +-+-÷,其中11,2x y ==.22.(10分)(2022·河北·统考中考真题)发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证:如,()()22212110++-=为偶数,请把10的一半表示为两个正整数的平方和.探究:设“发现”中的两个已知正整数为m ,n ,请论证“发现”中的结论正确.(2)一个“勾股和数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记()9c dG M +=,()()()103a cb d P M -+-=.当()G M ,()P M 均是整数时,求出所有满足条件的M .24.(12分)(2023·河北·统考中考真题)现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.参考答案:1.B【分析】分别利用合并同类项法则以及同底数幂的乘法运算法则和幂的乘方运算法则分别计算即可.解:235a a a ⋅=,故选项A 不符合题意;532a a a ÷=,故选项B 符合题意;23a a +无法合并同类项,故选项C 不符合题意;5051a a a -=-,故选项D 不符合题意.故选B .【点拨】本题主要考查合并同类项法则以及同底数幂的乘法运算法则和幂的乘方运算法则,熟练掌握运算法则是解题的关键.2.D【分析】根据科学记数法、同底数幂乘法和除法逐项分析即可解答.解:A.12119.4610109.4610⨯÷=⨯,故该选项错误,不符合题意;B.12129.46100.46910⨯-≠⨯,故该选项错误,不符合题意;C.129.4610⨯是一个13位数,故该选项错误,不符合题意;D.129.4610⨯是一个13位数,正确,符合题意.故选D .【点拨】本题主要考查了科学记数法、同底数幂乘法和除法等知识点,理解相关定义和运算法则是解答本题的关键.3.A【分析】根据幂的乘方法、同底数幂的除法法则、同底数幂的乘法以及合并同类项逐项判断即可.解:A .()23236a a a ⨯==,故A 选项计算正确,符合题意;B .62624a a a a -÷==,故B 选项计算错误,不合题意;C .34347a a a a +==⋅,故C 选项计算错误,不合题意;D .2a 与a -不是同类项,所以不能合并,故D 选项计算错误,不合题意.故选:A .【点拨】本题主要考查同底数幂的乘除运算、幂的乘方运算以及整式的加减运算等知识点,同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘.4.D【分析】根据同底数幂的乘法法则、合并同类项法则、完全平方公式和幂的乘方的运算法则进行计算即可.解:∵325a a a ⋅=,故A 不符合题意;∵4=3ab ab ab -,故B 不符合题意;∵()22211a a a ++=+,故C 不符合题意;∵()236a a -=,故D 符合题意;故选:D .【点拨】本题考查同底数幂的乘法法则、合并同类项法则、完全平方公式和幂的乘方的运算法则,熟练掌握相关法则是解题的关键.5.B【分析】根据合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方法则逐项判断即可得.解:A 、2a a a -=,则此项错误,不符合题意;B 、325a a a ⋅=,则此项正确,符合题意;C 、()222ab a b =,则此项错误,不符合题意;D 、()428=a a ,则此项错误,不符合题意;故选:B .【点拨】本题考查了合并同类项、同底数幂的乘法、积的乘方与幂的乘方,熟练掌握各运算法则是解题关键.6.A【分析】先化简已知的式子,再整体代入求值即可.解:∵()()2221x x x +--=∴225x x -=∴222432(2)313x x x x -+=-+=故选:A .【点拨】本题考查平方差公式、代数式求值,利用整体思想是解题的关键.7.D【分析】直接利用积的乘方运算法则以及整式的除法运算法则、完全平方公式分别化简得出答案.③(b ﹣c )÷a =b÷a ﹣c÷a (a≠0),正确;④a÷(b+c )=a÷b+a÷c (a≠0),错误,无法分解计算.故选C .【点拨】本题考查的是去括号,熟练掌握乘法分配律,除法分配律是解题的关键.10.D【分析】观察各个图形及相应的代数恒等式即可得到答案.解:图形的面积关系能正确解释相应的代数恒等式的有①②③④,故选:D .【点拨】本题考查用图形面积解释代数恒等式,解题的关键是用两种不同的方法表示同一个图形的面积.11.2a+1解:【分析】原式利用完全平方公式展开,然后合并同类项即可得到结果.解:(a+1)2﹣a 2=a 2+2a+1﹣a 2=2a+1,故答案为2a+1.【点拨】本题考查了整式的混合运算,熟练掌握完全平方公式以及合并同类项的法则是解题的关键.12.a 2b +ab .【分析】根据整式的运算法则即可求出答案.解:原式=a 2b +ab ,故答案为:a 2b +ab .【点拨】此题考查整式的乘法运算法则:单项式乘以多项式,等于单项式分别乘以多项式的每一项的和.13.3【分析】先利用平方差公式因式分解,再将m +n 、m -n 的值代入、计算即可得出答案.解:∵1m n -=,3m n +=,∴22()()313m n m n m n -=+-=⨯=.故答案为3【点拨】本题考查平方差公式,解题关键是根据平方差公式解答.解得:=2x .【点拨】本题考查了新定义,整式的混合运算,解一元一次方程,理解新定义是关键.17.100.解:由题意,得图2中Ⅱ部分长为b ,宽为a -b ,∴a+b=30{a b=20-,解得a=25{b=5.∴图2中Ⅱ部分的面积是()()a b b=2555=100-⋅-⋅.18.()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究,可发现第n 个数对的第一个数为:()11n n ++,第n 个数对的第二个位:()211n ++,即可求解.解:每个数对的第一个数分别为3,7,13,21,31,…即:121⨯+,231⨯+,341⨯+,451⨯+,561⨯+,…则第n 个数对的第一个数为:()2111n n n n ++=++,每个数对的第二个数分别为5,10,17,26,37,…即:221+;231+;241+;251+;261+…,则第n 个数对的第二个位:()221122n n n ++=++,∴第n 个数对为:()221,22n n n n ++++,故答案为:()221,22n n n n ++++.【点拨】此题考查数字的变化规律,找出数字之间的排列规律,利用拐弯出数字的差的规律解决问题.19.226a ab +,4-【分析】根据完全平方公式和平方差公式展开后化简,最后代入求值即可.解:()()()2333a b a b a b +++-2222699a ab b a b =+++-226a ab=+当2a =,1b =-时,原式()2226214=⨯+⨯⨯-=-.【点拨】本题考查整式混合运算的化简求值,解题的关键是根据完全平方公式和平方差公式展开.20.x 2-2y ,0【分析】首先运用平方差公式计算,再运用单项式乘以多项式计算,最后合并同类项,即可化简,然为整数,【点拨】本题考查列代数式,整式的加减,完全平方公式等知识,会根据题意列式和掌握做差比较法是解题的关键.。
整式乘除全章讲义

整式乘除全章讲义 The document was finally revised on 2021幂的乘方【学习目标】1.会根据乘方的意义推导幂的乘方法则.2.熟练运用幂的乘方法则进行计算. 预习案一、知识3(-5)底数为_______,指数为_____,幂为______二、探究新知1想一想()3210等于多少?分析:()3210将括号里的数看作整体,()3210表示3个210相乘,即(210)×(210)×(210)321010222⨯==++2.仔细阅读第一上面部分,计算下列各式,并说明理由。
(1)()426=( )×( )×( )×( )=()()()()()()⨯+++=66=(2)32)(a =( )×( )×( )=()()()()()⨯++=a a(3)2)(m a =( )×( )=()()()()⨯+=a a(4)n m a )(=( )×( )×……×( )×( )=()()()()()⨯+++=a a总结为:()=nma ____即:幂的乘方,底数______,指数______ 3牛刀小试 (1)()5310=_______(2)()24a =____________(3) ()3m a =___________ ⑷()4mx =_________(5)x 2·x 4+(x 3)2=___________ (6)、()()()()234612====x教学案例1、⑴ ()1033 ⑵ ()x 32 ⑶()x m 5- ⑷ ()a a 533•(5)()4p p -⋅- (6) ()2332)(a a ⋅(7)()t t m⋅2(8)()()8364x x -例2、已知3,2==n m a a (m 、n 是正整数).求n m a 23+ 的值.例3.已知3460x y +-=,求816x y ⋅ 当堂检测1、43)2(2、()23a -3、2221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛ 4、()423)(p p -⋅- 5、 -(a2)7 6、(103)37、4332⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛8、()[]436-9、(x3)4·x 2 ; 10;()()3232a a a --⋅(11)[-(a +b )4]3(12)523423)()(2)()(c c c c ----⋅⋅2若()[]1223xxm=,则m=________。
整式的加减全章知识点总结

整式的加减全章知识点总结整式的加减是代数中的基本运算之一,也是代数学习中的基础内容。
下面是整式的加减全章知识点总结,包括定义、规律、方法等详细内容。
1.定义整式是指由常数和未知量的系数与幂的乘积相加或相减得到的代数式。
其中,未知量的幂必须是非负整数。
例如,3x² - 5x + 2和4y³ - 2y² + y - 1都是整式。
2.规律(1) 同类项相加或相减同类项指未知量的幂和次数相同的项。
将同类项的系数相加或相减,然后将同类项的系数与该项的幂相乘,得到新的同类项。
例如,3x² - 5x + 2和2x² + 4x - 1是同类项,将它们相加,得到5x² - x + 1。
(2) 加减法的性质加减法有以下性质:加减法的顺序可以随意交换,不影响结果。
相同的式子相加减,结果为0。
例如,(3x² - 5x + 2) + (2x² + 4x - 1) = 5x² - x + 1,(3x² - 5x + 2) - (3x² - 2x + 1) = -3x + 1。
3.方法(1) 垂直加减法将同类项对齐,按照加减法的规则逐项计算,然后将结果写在下面,得到新的整式。
例如:3x² - 5x + 22x² + 4x - 15x² - x + 1(2) 括号展开法将括号内的每一项与另一个括号内的每一项相乘,然后将所得的每一项相加或相减,得到新的整式。
例如,将(3x - 2)(2x + 5)展开得到6x² + 11x - 10。
(3) 合并同类项将给定的整式中同类项合并,并按照同类项的系数大小进行排序,得到新的整式。
例如,将3x² + 2x + 4 + 2x² - 3x - 1合并同类项,得到5x² - x + 3。
4.注意事项(1) 一定要注意每一项的系数和幂,判断是否为同类项。
2024七年级数学上册第2章整式及其加减全章热门考点整合应用课件新版沪科版

面留出宽都是 x (0< x <8)米的小路,余下的部分是菜
地,用含 x 的式子表示:
2
3
4
5
6
7
8
9
10
11
米;
(10- x )
平方米.
(18-2 x )(10- x )
(2)菜地的面积为
1
米,宽为
(18-2 x )
(1)菜地的长为
12
13
(3)整式:{- x2, xy2, m2-5 m , - x ,0,-π,…}.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
概念4
同类项
7. [2024·北师大附中期中]下列各组中,不是同类项的是
(
D
)
A. 23与52
B. -5 xy2与3 xy2
C. -3 t 与20 t
D. 2 a2 b 与- b2 a
所以当参加旅游的总人数是80人时,采用方案二
省钱.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
一个规律——整式规律的探究
12. [新考法·归纳法 2023·临沂]观察下列式子:
1×3+1=22;
2×4+1=32;
3×5+1=42;
…;
( n -1)( n +1)+1
按照上述规律,
1
2
3
4
5
整式的加减全章知识点总结
整式的加减全章知识点总结整式是数学中的一个概念,它是由常数和变量经过加法和减法运算组成的代数式。
在学习整式的加减运算时,我们需要掌握一些基本的知识点。
本文将对整式的加减运算进行全面总结,以帮助读者更好地理解和掌握这一知识。
1. 整式的定义整式是由常数项和各个变量项的系数乘积相加减而成的代数式。
常数项是没有变量的项,变量项是由变量的幂次方和系数相乘的项,系数是指变量项中的常数因子。
2. 整式的加法整式的加法是指将两个或多个整式相加得到一个新的整式。
在进行整式的加法运算时,需要按照变量的幂次从高到低的顺序进行相加,同类项的系数相加保持不变,如果没有同类项则直接相加。
3. 整式的减法整式的减法是指将一个整式减去另一个整式得到一个新的整式。
在进行整式的减法运算时,需要按照变量的幂次从高到低的顺序进行相减,同类项的系数相减保持不变,如果没有同类项则直接相减。
4. 同类项的合并在整式的加减运算中,如果存在相同的变量项,我们称它们为同类项。
在进行合并同类项时,需要将它们的系数相加保持不变,变量的幂次保持不变。
5. 单项式和多项式单项式是只有一个变量项的整式,例如3x、-5xy²等。
多项式是由多个单项式相加减而成的整式,例如2x²+3xy+1、-4x²y²+5xy。
6. 整式的加减乘法运算整式的加减运算已经在前面进行了详细介绍。
整式的乘法是指将两个整式相乘得到一个新的整式。
在进行整式的乘法运算时,要将每个变量项按照幂次进行相乘,同时将系数相乘。
7. 完全平方公式完全平方公式是整式中的一个重要概念。
对于一个二次整式a²+2ab+b²,它可以写成(a+b)²的形式,称为完全平方公式。
8. 整式的应用整式的加减运算是代数学中非常重要的一部分,它在各个学科的应用中都起到了重要的作用。
在物理、经济学等领域,整式的加减运算被广泛应用于问题的建模和解决。
通过对整式的加减运算的全面总结,我们对整式的概念、加减法的运算规则以及应用进行了详细的了解。
(学生版)-整式的运算全章测试卷
第一章 整式的运算全章测试卷一. 选择题(每小题3分,共30分) 1. 下列说法中正确的是( )A. 5不是单项式 B a bc .3没有系数 C x .41-不是整式 D x y z.26-+不是整式2. 下列多项式中,按x 升幂排列的是( )A x y xy y .32223++B y x x y x y .4223362-+- C xy x y x y .232244-++D x x y x y .--+381233 3496521322324.若多项式为八次四项式,则正整数的值a b a b a b ma b m m +-+-为( )A. 2B. 3C. 4D. 5()()4.21432a x b x x ax bc x a b c +--+-+++为的二次二项式,则的值为()A B C D ....--2112 5842342610.多项式是()x x y z x -++A. 八次四项式B. 十次四项式C. 七次四项式D. 六次四项式()()6222222.化简的结果是()a ab b a b -+--+A a abB a ab ..3322--C a abD a ab ..2322++()72047632.a b c a b ab ÷-÷的结果是()A a b cB a b ..--553355 C a b D a b ..555552-()()8.已知的乘积式中不含的一次项,则,满足()x a x b x a b ++A a bB aC a bD b ....===-=092004422.用乘法公式计算,应选择的公式是()-A. 平方和公式B. 完全平方公式C. 平方差公式D. 无法计算()10562.已知,,则的值是()a b ab a b +=-=-A. 13B. 25C. -1D. 1二. 填空题(每小题2分,共20分)1325.长为,宽为的长方形的面积为。
第三章《整式》全章复习知识讲解
第三章《整式的加减》全章复习、知识讲解【全章重点知识】1、用字母表示数的书写原则是什么?2、什么是代数式?3、求代数式的值的步骤是什么?4、什么是单项式?单项式的次数?单项式的系数?5、什么是多项式?多项式的次数?多项式的项?6、如何将多项式进行升、降幂排列?排列时要注意什么?7、什么是同类项?同类项与什么有关?与什么无关?8、合并同类项的法则?9、去括号、添括号的法则?10、整式的加法、减法的法则?做整式的加法、减法的一般步骤是什么?【全章重点知识概述】一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配律。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
人教版七年级上数学教学课件第二章整式全章
注意:在含有字母的式子中若出现乘号,通常将乘 号写作“•”或省略不写.如:100×a可以写成100•a或 100a.
用含有字母的式子填空: 1.边长为a的正方体的表面积为__6_a_2,体积为__a_3__. 2.铅笔的单价是x元,圆珠笔的单价是铅笔单价的2.5倍, 圆珠笔的单价是_2__.5_x__元. 3.全校学生总数是m,其中女生占总数的48%,则男生人 数是 _5_2_%__m____. 4. 一辆汽车的速度是v千米/时,它t小时行驶的 路程为____v_t_____千米. 5.数n的相反数是 __-_n___.
像3ab2与-4ab2 这样,所含字母相同,并且相同字母的指 数也相同的项叫做同类项.几个常数项也是同类项.
1.判断下列各组中的两项是否是同类项: (1) -5ab3与3a3b ( 否 ) (2)3xy与3x( 否 ) (3) -5m2n3与2n3m2( 是 ) (4)53与35 ( 是 ) (5) x3与53 ( 否 )
5 (3) 4a2 3b2 2ab 4a2 4b2.
解:1 xy2 1 xy2
5
(1 1)xy2 5
4 xy2. 5
请你自己做做第(2)、(3)小 题
(1) 运用有理数的运算律计算: 100×2+252×2=____7_0_4___, 100×(-2)+252×(-2)=___-_7_0_4___;
(2) 根据(1)中的方法完成下面的运算, 100t+252t=___3_5__2_t__.
填空: (1) 100t-252t=( -152 )t; (2) 3x2+2x2=( 5 )x2; (3) 3ab2-4ab2=( -1 )ab2. 上述运算有什么共同特点,你能从中得出什么规律? 100t和-252t 都含有相同的字母 t,并且t 的指数都是 1,我们就把100t与-252t 叫做同类项.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 整式的加减 课题:2.1单项式【学习目标】:1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
【学习重点】:掌握单项式及单项式的系数、次数的概念。
【学习难点】:区别单项式的系数和次数 【导学指导】:一.知识链接:1.列代数式(1)若边长为a 的正方体的表面积为________,体积为 ;(2)铅笔的单价是x 元,圆珠笔的单价是铅笔的 2.5倍,圆珠笔的单价是 元;(3) 一辆汽车的速度是v 千米/小时,行驶t 小时所走的路程是_______千米; (4) 设n 是一个数,则它的相反数是________. 2.请学生说出所列代数式的意义。
3.请学生观察所列代数式包含哪些运算,有何共同运算特征。
(由小组讨论后,经小组推荐人员回答) 二、自主学习: 1.单项式:通过上述特征的描述,从而概括单项式的概念,:单项式:即由_________与______的乘积组成的代数式称为单项式。
补充: 单独_________或___________也是单项式,如a ,5。
2.练习:判断下列各代数式哪些是单项式? (1)21x ; (2)abc ; (3)b 2; (4)-5ab 2; (5)y+x ; (6)-xy 2; (7)-5。
解:是单项式的有(填序号):________________________ 3.单项式系数和次数: 四个单项式31a 2h ,2πr ,a bc ,-m 中,请说出它们的数字因数和字母因数分别是什么?小结:一个单项式中,单项式中的数字因数称为这个单项式的________一个单项式中,_____________的指数的和叫做这个单项式的次数4.学生阅读课本55页,完成例1【课堂练习】:1.课本p56:1,2。
2.判断下列各代数式是否是单项式。
如不是,请说明理由;如是,请指出它的系数和次数。
①x +1; ②x 1; ③πr 2; ④-23a 2b 。
答:3.下面各题的判断是否正确? ①-7xy 2的系数是7;( ) ②-x 2y 3与x 3没有系数;( ) ③-ab 3c 2的次数是0+8+2;( ) ④-a 3的系数是-1;( ) ⑤-32x 2y 3的次数是7;( ) ⑥31πr 2h 的系数是31。
( )【要点归纳】: 1. 单项式:2. 单项式系数和次数:3.通过例题及练习,应注意以下几点: ①圆周率π是常数;②当一个单项式的系数是1或-1时,“1” 通常省略不写,如x 2,-a 2b 等; ③单项式次数只与字母指数有关 【拓展训练】: 1、a 3,x +1, -2,3b, 0.72xy ,各式中单项式的个数是( ) A. 2个 B.3个 C.4个 D.5个 2、单项式-x 2yz 2的系数、次数分别是( ) A. 0,2 B. 0, 4 . C. -1,5 D.1,4【总结反思】:课题:2.1 多项式【学习目标】:1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念。
2.能确定一个多项式的项数及其次数。
【学习重点】:多项式的定义、多项式的项和次数,以及常数项等概念。
【学习难点】:多项式的次数。
【导学指导】: 一、温故知新:1.下列说法或书写是否正确: ①1x ②-1x ③a ×3 ④a ÷2 ⑤ 2411xy ⑥b 的系数为1,次数为0 ⑦ R π2的系数为2,次数为2 2.列代数式:(1)长方形的长与宽分别为a 、b ,则长方形的周长是 ; (2)某班有男生x 人,女生21人,则这个班共有学生 人; (3)一个数比数x 的2倍小3,则这个数为_________;(4)鸡兔同笼,鸡a 只,兔b 只,则共有头 个,脚 只。
2.观察以上所得出的四个代数式与上节课所学单项式有何区别。
(由小组讨论后,经小组推荐人员回答)二、自主探究: 1.多项式:学生阅读课本57页完成下列问题:上面这些代数式都是由几个单项式相加而成的。
像这样,_______________的和叫做多项式。
在多项式中,每个单项式叫做多项式的___。
其中,不含字母的项,叫做_______。
例如,多项式5232+-x x 有_____项,它们是______________。
其中常数项是________。
一个多项式含有几项,就叫几项式。
多项式里________________________,叫做这个多项式的次数。
例如,多项式5232+-x x 是一个____次______项式。
问题:(1)多项式的次数是所有项的次数之和吗? (2)多项式的每一项都包括它前面的符号吗?2、自学例2、例3(教师指导)注:__________与___________统称整式。
【课堂练习】:1.课本59页1、2 (直接做在课本上)【要点归纳】:1.你知道多项式的定义、多项式的项和次数,以及常数项等概念了吗?2. 整式的概念:__________与___________统称整式。
【拓展训练】:1.下列说法中,正确的是( )2.下列关于23的次数说法正确的是( )A. 2次B. 3次C. 0次D. 无法确定 3.-45a 2b -34a b +1是 次 项式,其中三次项系数是 ,二次项为 ,常数项为 ,写出所有的项 。
4.如果15--m xy 为四次单项式,则m=____;【总结反思】:29,2231,1430,03,232222---+---系数为的次数是单项式常数项是是三次三项式次数是的系数是单项式次数是的系数是单项式ab D、x y x C 、a B、yx A 、课题:2.2 同类项【学习目标】:1.理解同类项的概念,在具体情景中,认识同类项。
2.初步体会数学与人类生活的密切联系。
【学习重点】:理解同类项的概念。
【学习难点】:根据同类项的概念在多项式中找同类项。
【导学指导】:一.知识链接1.运用有理数的运算律计算:(1)100×2+252×2=__________, (2)100×(-2)+252×(-2)=__________, (3)100t+252t=__________,思路点拨:根据逆用乘法对加法的分配律可得。
2.请根据上面得到结论的方法探究下面各式的结果: (1)100t —252t=( )t (2)3x 2 + 2 x 2 = ( ) x 2(3)3ab 2 - 4 ab 2 = ( ) ab 2上述运算有什么共同特点,你能从中得出什么规律?二.自主学习 同类项的定义:1.观察:3x 2 和 2 x 2 ; 3ab 2 与 -4 ab 2 在结构上有哪些相同点和不同点?2.归纳:_______________________________________________叫做同类项 ____________________也是同类项。
如3和-5是同类项【课堂练习】:1、判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。
(1)3x 与3mx 是同类项。
( ) (2)2a b 与-5a b 是同类项。
( )(3)3x 2y 与-31yx 2是同类项。
( ) (4)5a b 2与-2a b 2c 是同类项。
( ) (5)23与32是同类项。
( )2、下列各组式子中,是同类项的是( )A 、y x 23与23xy - B 、xy 3与yx 2- C 、x 2与22x D 、xy 5与yz 53、在下列各组式子中,不是同类项的一组是( ) A 、 2 ,-5 B 、 -0.5xy 2, 3x 2y C 、 -3t ,200πt D 、 ab 2,-b 2 a4、已知x m y 2与-5y n x 3是同类项,则m= ,n= 。
5、指出下列多项式中的同类项:(1)3x -2y +1+3y -2x -5; (2)3x 2y -2xy 2+31xy 2-23yx 2;6、游戏:规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项。
要求出题同学尽可能使自己的题目与众不同。
请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念。
【要点归纳】:1. 同类项的概念:2.注意:① 两个相同:字母相同;相同字母的指数相等。
② 两个无关:与系数无关;与字母顺序无关。
③ 所有的常数项都是同类项。
④ 两个项虽然所含字母相同,但相同字母的指数不全相同就不是同类项。
【拓展训练】:1、若my x 35和219y xn +-是同类项,则m=_________,n=___________。
2、若把(s +t)、(s -t)分别看作一个整体,指出下面式子中的同类项。
(1)31(s +t)-51(s -t)-43(s +t)+61(s -t); (2)2(s -t)+3(s -t)2-5(s -t)-8(s -t)2+(s -t)。
3、观察下列一串单项式的特点:xy ,y x 22- ,y x 34 ,y x 48- ,y x 516 ,…(1)按此规律写出第6个单项式.(2)试猜想第n 个单项式为多少?它的系数和次数分别是多少?【总结反思】:课题:2.2合并同类项【学习目标】:理解合并同类项的概念,掌握合并同类项的法则。
【重点难点】:正确合并同类项。
【导学指导】一、知识链接1.下列各组式子中是同类项的是().A.-2a与a2B.2a2b与3ab2C.5ab2c与-b2ac D.-17ab2和4ab2c2、思考⑴6个人+4个人= ⑵6只羊+4只羊= ⑶6个人+4只羊=二.自主探究1.思考:具备什么特点的多项式可以合并呢?2.因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、•分配律把多项式中的同类项进行合并.例如,4x2+2x+7+3x-8x2-2 (找出多项式中的同类项)= (交换律)= (结合律)= (分配律)=把多项式中的同类项合并成一项,叫做合并同类项.3. 合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?归纳:(1)合并同类项法则:在合并同类项时,把同类项的系数相加,字母和字母的指数保持不变。
(2) 若两个同类项的系数互为相反数,则两项的和等于零,如-3ab 2+3ab 2=(-3+3)ab 2=0〃ab 2=0。
多项式中只有同类项才能合并,不是同类项不能合并。
例1.合并下列各式的同类项: (1)xy 2-15xy 2; (2)-3x 2y+2x 2y+3xy 2-2xy 2; (3)4a 2+3b 2+2ab-4a 2-4b 2 解:例2.(1)求多项式2x 2-5x+x 2 +4x-3x 2 - 2的值,其中x=12。