北京市朝阳区2015年中考数学二模试题
2015年北京市朝阳区初三毕业考数学试题及答案

北京市朝阳区2015年初中毕业考试数学试卷 2015.4一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个是符合题意的.请用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.1.2的绝对值是A .2B .-2C .21 D .21- 2.数据显示,2014年末北京市常住人口为2151.6万人,将2151.6用科学记数法表示为A .0.21516×103B .0.21516×104C .2.1516×103D .2.1516×104 3. 函数3-=x y 中,自变量x 的取值范围是A .3≠xB .x ≥3C .x >3D .x >-34. 如图,在△ABC 中,∠C=90°,直线l 与AC 、BC 分别相交于点D 、E ,则∠1+∠2的度数为A .45°B .60°C .90°D .120°5. 小翔同学在参加校运动会前进行了刻苦训练,如果对他10次训练成绩进行统计分析,判断他的成绩是否稳定,则需要知道他这10次成绩的A .众数B .中位数C .平均数D .方差6. 图中几何体的主视图是7.从单词mathematics (数学)所包含的字母中,随机选取一个字母,则这个字母是“m ”的概率是A . 51B .101C .112D . 111 8.如图,AB 是⊙O 的切线,切点为A ,OB 交⊙O 于点C ,点D若∠B =40°,则∠D 等于A .50°B .40°C .25°D .20°9.将抛物线y =(x+1)2+2向右平移2个单位后所得到的抛物线为A .2)1-(2+=x yB .2)3(2++=x yC .4)1(2++=x yD .4)1-(2+=x y 10.若关于x 的一元二次方程mx 2+ (2m -1)x +m = 0有两个不相等的实数根,则m 的取值 范围是B AA .m >-41B .m >-41且m ≠0 C .m <41 D .m <41且m ≠0第Ⅱ卷 (共70分)二、填空题 (共6道小题,每小题3分,共18分)11. 计算:23a a ⋅= .12.分解因式:x 2-25 = .13. 若反比例函数的图象经过点(2,6),则该反比例函数的表达式为 .14. 如图,利用标杆BE 测量建筑物的高度,如果标杆BE 高1.2m ,测得AB =1.4m ,BC =12.6m ,则楼高CD = m .15.对于实数a 、b ,定义运算“☆”:a ☆b =22()()a ab a b b ab a b ⎧+≥⎨+⎩<,例如4☆2,因为4>2,所以 4☆2=2442⨯+=24.若点A (1,m ),B (2,n )都在一次函数12+=x y 的图象上, 则m ☆n= 16.如图,将半径为6的圆形纸片,按下列顺序折叠,若和都经过圆心O ,则图中 阴影部分的面积是 (结果保留π).三、解答题(共10道小题,17-24题每小题5分,25-26题每小题6分,共52 分)17.(本小题5分)计算:011()4sin602-+︒. 18.(本小题5分)已知:如图,AB =DC ,∠ABC =∠DCB .求证:∠A =∠D .19.(本小题5分)解不等式5x -1≤5+3x ,并把它的解集在下面的数轴上表示出来.20.(本小题5分)先化简,再求值:2113()369x x x x -÷+++,其中4x =-. 21.(本小题5分)某校社团为了解本校学生在各项体育运动中对足球的喜欢程度,该社团随机调查了部分学生并将相关数据绘制成如下的两幅不完整的统计图.对足球喜欢程度的条形统计图 对足球喜欢程度的扇形统计图请你根据以上统计图提供的信息,回答下列问题:(1)本次随机调查了多少名学生?(2)补全图中的条形统计图.(3)若该校共有400名学生,请你估计该校有多少名学生“非常喜欢”足球.22. (本小题5分)如图,在平面直角坐标系xOy 中,正方形OABC 的顶点A 、C 分别在x 轴、y 轴上,OA =3.(1)求直线OB 的表达式;(2)若直线y=x+b 与该正方形有两个公共点,请直接写出....b 的取值范围.23.列方程或方程组解应用题(本小题5分)在学校组织的参观花卉基地的社会实践活动中,小何同学了解到该基地中甲、乙 两家种植户种植玫瑰花、薰衣草的种植面积与卖这两种花总收入的情况(见下表):(说明:甲、乙种植的同种花卉每亩卖花的平均收入相等)试求玫瑰花、薰衣草每亩卖花的平均收入各是多少?24.(本小题5分)如图,在矩形ABCD 中,点E 、F 分别在边AB 、CD 上,AE =CF .(1)求证:DE =BF ;(2)若AD=4,AB=8,AE=3,求证:四边形BEDF 是菱形.25.(本小题6分)如图,以△ABC 的一边AB 为直径的⊙O 经过BC 边的中点D ,过点D 作DE ⊥AC 于点E .(1)求证:DE 是⊙O 的切线;(2)若AE =3DE ,求tan B 的值.26. (本小题6分)抛物线32--=mx x y 与x 轴的两个交点分别为A (-1,0)、B ,与y 轴的交点为C .(1)求抛物线的顶点D 的坐标;(2)求证:△BCD 是直角三角形;(3)在该抛物线上是否存在点P ,使得△ABP 的面积是△BCD 的面积的103倍,若存在,直接写出....P 点坐标;若不存在,请说明理由. 草稿纸。
2015年北京中考数学二模各区29题汇总(含答案)

2015北京中考数学二模各区29题(含答案)昌平29. 在平面直角坐标系xOy 中,给出如下定义:形如()()2y a x m a x m =-+-与()()2y a x m a x m =---的两个二次函数的图象叫做“兄弟抛物线”. (1)试写出一对兄弟抛物线的解析式 与 ; (2)判断二次函数2y x x =-与232y x x =-+的图象是否为兄弟抛物线,如果是,求出a 与m 的值,如果不是,请说明理由;(3)若一对兄弟抛物线各自与x 轴的两个交点和其顶点构成直角三角形,其中一个抛物线的对称轴为直线2x =且开口向上,请直接写出这对兄弟抛物线的解析式.备用图朝阳29.如图,顶点为A (-4,4)的二次函数图象经过原点(0,0),点P 在该图象上,OP 交其对称轴l 于点M ,点M 、N 关于点A 对称,连接PN ,ON .(1)求该二次函数的表达式;(2)若点P 的坐标是(-6,3),求△OPN 的面积; (3)当点P 在对称轴l 左侧的二次函数图象上运动时,请解答下面问题:① 求证:∠PNM =∠ONM ;② 若△OPN 为直角三角形,请直接写出所有符合 条件的点P 的坐标.丰台29.对某一个函数给出如下定义:如果存在实数M ,对于任意的函数值y ,都满足y M ≤,那么称这个函数是有上界函数,在所有满足条件的M 中,其最小值称为这个函数的上确界.例如,图中的函数是有上界函数,其上确界是2. (1)分别判断函数1y x=-(0x <)和23y x =-(2x <) 是不是有上界函数?如果是有上界函数,求其上确界; (2)如果函数2y x =-+ (,a x b b a ≤≤>)的上确界是b ,且这个函数的最小值不超过21a +,求a 的取值范围;(3)如果函数222y x ax =-+(15x ≤≤)是以3为上确界的 有上界函数,求实数a 的值.怀柔29. 阅读理解:学习了三角形全等的判定方法:“SAS ”,“ASA ”,“AAS ”,“SSS ”和直角三角形全等的判定方法“HL ”后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”即“SSA ”的情形进行研究.我们不妨将问题用符号语言表示为:在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠A =∠D . 初步探究:如图1,已知AC=DF, ∠A =∠D ,过C 作CH ⊥射线AM 于点H ,对△ABC 的CB 边进行分类,可分为“CB<CH ,CB=CH ,CH<CB<CA ,”三种情况进行探究.深入探究: 第一种情况,当BC<CH 时,不能构成△ABC 和△DEF .第二种情况,(1)如图2,当BC=CH 时,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠A =∠D ,根据 ,可以知道Rt △ABC ≌Rt △DEF .HNANA第三种情况,(2)当CH<BC<CA 时,△ABC 和△DEF 不一定全等.请你用尺规在图1的两个图形中分别补全△ABC 和△DEF,使△DEF 和△ABC 不全等(表明字母,不写作法,保留作图痕迹).(3)从上述三种情况发现,只有当BC=CH 时,才一定能使△ABC ≌△DEF . 除了上述三种情况外,BC 边还可以满足什么条件,也一定能使△ABC ≌△DEF ?写出结论,并利用备用图证明.石景山29.对于平面直角坐标系xOy 中的点(),P m n ,定义一种变换:作点(),P m n 关于y 轴对称的点'P ,再将'P 向左平移()0k k >个单位得到点'k P ,'k P 叫做对点(),P m n 的k 阶“ℜ”变换.(1)求()3,2P 的3阶“ℜ”变换后3'P 的坐标;(2)若直线33y x =-与x 轴,y 轴分别交于,A B 两点,点A 的2阶“ℜ”变换后得到点C ,求过,,A B C 三点的抛物线M 的解析式; (3)在(2)的条件下,抛物线M 的对称轴与x 轴交于D ,若在抛物线M 对称轴上存在一点E ,使得以,,E D B 为顶点的三角形是等腰三角形,求点E 的坐标.房山29.如图1,若抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 也在抛物线L 1上(点A 与点B 不重合),我们把这样的两抛物线L 1、L 2互称为“友好”抛物线. (1)一条抛物线的“友好”抛物线有_______条.A . 1 B. 2 C. 3 D. 无数 (2)如图2,已知抛物线L 3:2284y x x =-+与y 轴交于点C ,点C 关于该抛物线对称轴的对称点为D ,请求出以点D 为顶点的L 3的“友好”抛物线L 4的表达式;(3)若抛物线21()y a x m n =-+的“友好”抛物线的解析式为22()y a x h k =-+,请直接写出1a 与2a 的关系式为 .ANH图2图1平谷29.定义:如图1,平面上两条直线AB 、CD 相交于点O ,对于平面内任意一点M ,点M 到直线AB 、CD 的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”.根据上述定义,“距离坐标”为(0,0)点有1个,即点O . (1)“距离坐标”为(1,0)点有 个;(2)如图2,若点M 在过点O 且与直线CD 垂直的直线l 上时,点M 的“距离坐标”为(p ,q ),且∠BOD =120°.请画出图形,并直接写出p ,q 的关系式; (3)如图3,点M 的“距离坐标”为(1,且∠AOB =30°,求OM 的长.顺义29.如图,在平面直角坐标系xOy 中,抛物线223y x bx c =-++与x 轴交于A ,B 两点,其中B (6,0),与y 轴交于点C (0,8),点P 是x 轴上方的抛物线上一动点(不与点C 重合). (1)求抛物线的表达式;(2)过点P 作PD ⊥x 轴于点D ,交直线BC 于点E ,点E 关于直线PC 的对称点为'E ,若点'E 落在y 轴上(不与点C 重合),请判断以P ,C ,E ,'E 为顶点的四边形的形状, 并说明理由; (3)在(2)的条件下直接写出点P 的坐标.图1O D C B A 图2 图3备用图西城29.对于平面直角坐标系xOy 中的点P 和图形G ,给出如下定义:在图形G 上若存在两点M ,N ,使△PMN 为正三角形,则称图形G 为点P 的τ型线,点P 为图形G 的τ型点, △PMN 为图形G 关于点P 的τ型三角形.(1)如图1,已知点(0,A ,(3,0)B ,以原点O 为圆心的⊙O 半径为1.在A ,B两点中,⊙O 的τ型点是____,画出并回答⊙O 关于该τ型点的τ型三角形;(画 出一个即可)(2)如图2,已知点(0,2)E ,点(,0)F m (其中m >0).若线段EF 为原点O 的τ型线,且线段EF 关于原点O 的τ,求m 的值; (3)若(0,2)H -是抛物线2y x n =+的τ型点,直接写出n 的取值范围.东城29.定义:如果一条直线能够将一个封闭图形的周长和面积平分,那么就把这条直线称作这个封闭图形的等分线。
2015北京各区中考数学二模26题全面总结及答案

x 的请回答:(1) 当k =1时,使得原等式成立的x 的个数为 _______; (2) 当0<k <1时,使得原等式成立的x 的个数为_______; (3) 当k >1时,使得原等式成立的x 的个数为 _______. 参考小明思考问题的方法,解决问题:关于x 的不等式240 ()x a a x+-<>0只有一个整数解,求a 的取值范围.26.(1)小明遇到下面一道题:如图1,在四边形ABCD 中,AD ∥BC ,∠ABC =90º,∠ACB =30º,BE ⊥AC 于点E ,且=CDE ACB ∠∠.如果AB =1,求CD 边的长.小明在解题过程中发现,图1中,△CDE 与△ 相似,CD 的长度等于,线段CD 与线段 的长度相等;他进一步思考:如果ACB α∠=(α是锐角),其他条件不变,那么CD 的长度可以表示为CD = ;(用含α的式子表示))(2)受以上解答过程的启发,小明设计了如下的画图题:在Rt △OMN 中,∠MON =90º,OM <ON ,OQ ⊥MN 于点Q ,直线l 经过点M ,且l ∥ON .请在直线l 上找出点P 的位置,使得NPQ ONM ∠=∠.请写出你的画图步骤,并在答题卡上完成相应的画图过程.(画出一个即可,保留画图痕迹,不要求证明)26 .阅读材料如图1,若点P 是⊙O 外的一点,线段PO 交⊙O 于点A,则PA 长是点P 与⊙O 上各点之间的最短距离.图1 图2 证明:延长PO 交⊙O 于点B ,显然PB>PA .如图2,在⊙O 上任取一点C (与点A ,B 不重合),连结PC ,OC .,,,,PO PC OC PO PA OA OA OC PA PC <+=+=∴<且∴PA 长是点P 与⊙O 上各点之间的最短距离.由此可以得到真命题:圆外一点与圆上各点之间的最短距离是这点到圆心的距离与半径的差.请用上述真命题解决下列问题.(1)如图3,在Rt △ABC 中,∠ACB =90°,AC =BC =2,以BC 为直径的半圆交AB 于D ,P 是上的一个动点,连接AP ,则AP长的最小值是.图3(2)如图4,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△MN A ',连接C A ',①求线段A ’M 的长度; ②求线段C A '长的最小值.26.问题背景:在△ABC 中,AB ,BC ,AC ,求这个三角形的面积.小军同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需要求出△ABC 的高,借用网格就能计算出它的面积.图4图1 图2 (1)请你直接写出△ABC 的面积________; 26.阅读下面材料:小玲遇到这样一个问题:如图1,在等腰三角形ABC 中,AC AB =,︒=∠45BAC ,22=BC ,BC AD ⊥图3小玲发现:分别以AB ,AC 为对称轴,分别作出△ABD ,△ACD 的轴对称图形,点D 的对称点分别为E ,F ,延长EB ,FC 交于点G ,得到正方形AEGF ,根据勾股定理和正方形的性质就能求出AD 的长.(如图2)请回答:BG 的长为,AD 的长为; 参考小玲思考问题的方法,解决问题:如图3,在平面直角坐标系xOy 中,点()0,3A ,()4,0B ,点P 是△OAB 的外角的角平分线AP 和BP 的交点,求点P 的坐标.CBAE图1 图226.阅读下面材料:小凯遇到这样一个问题:如图1,在四边形ABCD 中,对角线AC 、BD 相交于点O , AC =4,BD =6,∠AOB =30°,求四边形ABCD 的面积.小凯发现,分别过点A 、C 作直线BD 的垂线,垂足分别为点E 、F ,设AO 为m ,通过计算△ABD 与△BCD 的面积和使问题得到解决(如图2).请回答:(1)△ABD 的面积为 (用含m 的式子表示). (2)求四边形ABCD 的面积.参考小凯思考问题的方法,解决问题:如图3,在四边形ABCD 中,对角线AC 、BD 相交于 点O ,AC =a ,BD =b ,∠AOB =α(0°<α<90°),则四边形ABCD 的面积为 (用含a 、b 、α的式子表示).26.【阅读学习】 刘老师提出这样一个问题:已知α为锐角,且tan α=13,求sin2α的值.小娟是这样解决的:如图1,在⊙O 中,AB 是直径,点C 在⊙O 上,∠BAC =α,所以∠ACB =90°,tan α=BCAC=13.易得∠BOC =2α.设BC =x ,则AC =3x ,则AB.作CD ⊥AB 于D ,求出CD = (用含x 的式子表示),可求得sin2α=CDOC= . 【问题解决】已知,如图2,点M 、N 、P 为圆O 上的三点,且∠P =β,tan β =12,求sin2β的值.图1图2图326. 如图,在平面直角坐标系xOy 中,矩形ABCD 各边都平行于坐标轴,且A (-2,2),C(3,-2).对矩形ABCD 及其内部的点进行如下操作:把每个点的横坐标乘以a ,纵坐标乘以b ,将得到的点再向右平移k (0k >)个单位,得到矩形''''A B C D 及其内部的点(''''A B C D 分别与ABCD 对应).E (2,1)经过上述操作后的对应点记为'E . (1)若a =2,b =-3,k =2,则点D 的坐标为 ,点'D 的坐标为 ; (2)若'A (1,4),'C (6,-4),求点'E 的坐标.26.阅读下面的材料:小明遇到一个问题:如图1,在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G . 如果3AF EF =,求CDCG的值. 他的做法是:过点E 作EH ∥AB 交BG 于点H ,那么可以得到△BAF ∽△HEF . 请回答:(1)AB 和EH 之间的数量关系是 ,CG 和EH 之间的数量关系是 ,图1图2CDCG的值为 . (2)参考小明思考问题的方法,解决问题:如图2,在四边形ABCD 中,DC ∥AB ,点E 是BC 延长线上一点,AE 和BD 相交于点F .如果2AB CD =,23BC BE =,求AFEF的值.图1 图226.在平面内,将一个图形以任意点O 为旋转中心,逆时针...旋转一个角度θ,得到图形'G ,再以O 为中心将图形放大或缩小得到图形''G ,使图形''G 与图形G 对应线段的比为k ,并且图形G 上的任一点P ,它的对应点''P 在线段'OP 或其延长线上;我们把这种图形变换叫做旋转相似变换,记为()O θ,k ,其中点O 叫做旋转相似中心,θ叫做旋转角,叫做相似比. 如图1中的线段''OA 便是由线段OA 经过()302︒O ,得到的.(1)如图2,将△ABC 经过☆ ()901,︒后得到△'''A B C ,则横线上“☆”应填下列四个点()00O ,、()01D ,、()0E ,-1、()12C ,中的点 . (2)如图3,△ADE 是△ABC 经过()A θ,k 得到的,90︒=EAB ∠,12cos EAC =∠ 则这个图形变换可以表示为(),A .HG F ECDBAFECB A D G 'G k图2图3O26.如图1,在□ABCD 中,点E 是BC 边上的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G ,若AB =6,3AF EF =,求DG 的长.小米的发现,过点E 作交BG 于点H (如图2),经过推理和计算能够使问题得到解决.则DG = .如图3,四边形ABCD 中,AD ∥BC ,点E 是射线DM 上的一点,连接BE 和AC 相交于点F ,若BC aAD =,CD bCE =,求BFEF的值(用含EH AB ∥,a 图1图2图326.如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点.(1)如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点. (2)如图③,在△ABC 中,∠A <∠B <∠C .①利用尺规作出△ABC 的自相似点P (不写出作法,保留作图痕迹);②如果△ABC 的内心P 是该三角形的自相似点,请直接写出该三角形三个内角的度数.BBC①②CBC③答案26. (本小题满分5分)解:(1)当k=1时,使1 ;…………………………………….(2)当0<k<1时,2 ;(3)当k>1时,使1 .…..解决问题:将不等式240 (x a ax+-<研究函数2(0)y x a a=+>与函数4yx=∵函数4yx=的图象经过点A(1,4),B函数2y x=的图象经过点C(1,1),D若函数2(y x=+3a=,结合图象可知,当03a<<时,关于x的不等式24(0)x a ax+<>只有一个整数解.也就是当03a<<时,关于x的不等式240()x a ax+-<>0只有一个整数解. ……………………5分26.解:(1)CAD BC. ……………………………………………………………3分1tan α.……………………………………………………………………………4分 (2)方法1:如图8,以点N 为圆心,ON 为半径作圆,交直线l 于点1P ,2P ,则点 1P ,2P 为符合题意的点.……………………………………………… 5分 方法2:如图9,过点N 画NO 的垂线1m ,画NQ 的垂直平分线2m ,直线1m 与2m 交于点R ,以点R 为圆心,RN 为半径作圆,交直线l 于点1P ,2P ,则点1P ,2P 为符合题意的点. ……………………………………… 5分26. 解:(1)△ABC 的面积是4.5;…….2分(2)如右图: …….4分△MNP 的面积是7. …….5分26.解:BG 的长为2,AD 的长为22+;…………………2分如图,过点P 分别作x PC ⊥轴于点C ,y PD ⊥轴于点D ,AB PE ⊥于点E …………………3分∵AP 和BP 是△OAB 的外角的角平分线 ∴CAP EAP ∠=∠,EBP DBP ∠=∠ ∴PD PE PC ==∴四边形OCPD 是正方形,AE AC =,BE BD =…………4分∴DO PD CP OC === ∵()0,3A ,()4,0B ∴5=AB∴12=++=+BO AB OA OD OC∴6==OD OC ,∴6==PD CP ∴()6,6P ……………………5分26. 解:(1)32m ;……………………………………………………………………………1分(2)由题意可知∠AEO =90°.∵ AO = m ,∠AOB =30°, ∴AE =12m .∴S △ABD =m AE BD 2321=⋅. 同理,CF =1(4)2m -.∴S △BCD =m CF BD 23621-=⋅.…………………………………………………2分 ∴S 四边形ABCD = S △ABD +S △BCD 6=.…………………………………………………3分解决问题:αsin 21⋅ab .………………………………………………………………5分 26.解:10103xCD =. ……………………………………………………………………… 1分Sin2α=CD OC=53. ……………………………………………………………………… 2分 如图,连接NO ,并延长交⊙O 于Q ,连接MQ ,MO ,作NO MH ⊥于H . 在⊙O 中,∠NMQ =90°. ∵ ∠Q=∠P =β,OM=ON,∴ ∠MON=2∠Q=2β. ………………………………………… 3分∵ tan β=21,∴ 设MN =k ,则MQ =2k ,∴ NQ =k MQ MN 522=+.∴ OM=21NQ=k 25. ∵ MH NQ MQ MN S NMQ ⋅=⋅=∆2121, ∴ MH k k k ⋅=⋅52 . ∴MH=k 552. ………………………………………………………………………………… 4分 在MHORt ∆中,sin2β=sin ∠MON =5425552==kkOM MH . …………………………………… 5分26. 解:(1)D (3,2),'D (8,-6),..................................................................................2分 (2)依题可列:21,3 6.a k a k -+=⎧⎨+=⎩则a =1,k =3,2b =4,b =2,.........................................................4分(a ,b ,k 求出一个给1分) ∵点E (2,1),∴'E (5,2)......................................................................................................5分26.(本小题满分5分)解:(1)AB =3EH ,CG =2EH ,32.………………………………………………3分 (2)如图,过点E 作EH ∥AB 交BD 的延长线于点H .∴ EH ∥AB ∥CD . ∵ EH ∥CD , ∴23CD BC EH BE ==, ∴ CD =23EH . 又∵2AB CD=,∴ AB =2CD =43EH .∵ EH ∥AB ,∴ △ABF ∽△EHF . ∴4433AF AB EH EH EF EH ===.……………………………………5分 26.(1)E ………………………………………………………………………………2分 (2)60,k︒………………………………………………………5分26.答案:DG =2;……………………………………………………………………………………2 如图(画图正确,正确标出点E 、F )………………………………………………………………3 过E 作EG ∥AD ,延长CA 交于点G ∴△CAD ∽△CGE .∴AD CDGE CE=. ∵CD bCE =,HF E CB AD∴ADb GE=.∴AD bEG=. (4)∵AD∥BC,∴BC∥EG.∴△GEF∽△CBF.∴BC BF EG EF=.∵BC aAD=,∴BC abEG=.∴BFabEF= (5)26.解:⑴在Rt△ABC中,∠ACB=90°,CD是AB上的中线,∴12CD AB=,∴CD=BD.∴∠BCE=∠ABC.……………………………….(1分)∵BE⊥CD,∴∠BEC=90°,∴∠BEC=∠ACB.……………………………….(2分)∴△BCE∽△ABC.∴E是△ABC的自相似点.………………………….(3分)⑵①作图略.(方法不唯一)……………………….(5分)②连接PB、PC.∵P为△ABC的内心,∴12PBC ABC∠=∠,12PCB ACB∠=∠.∵P为△ABC的自相似点,∴△BCP∽△ABC.∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC =2∠A,∠ACB=2∠BCP=4∠A.∵∠A+∠ABC+∠ACB=180°.∴∠A+2∠A+4∠A=180°.∴1807A∠=.∴该三角形三个内角的度数分别为1807、3607、7207.…………….(6分)。
2015朝阳中考二模

2015北京朝阳初三二模单项选择1.I have a sister. _____ name is Lucy.A.HerB.HisC.ItsD.Your2.My bike was broken on the way, _____ I was late for school.A.butB.forC.orD.so3.I think Lesson Five is _____ of the three lessons.A.difficultB.more difficultC.most difficultD.the most difficult4.I knew _____ about the car accident I because I was in the library at that time.A.somethingB.anythingC.nothingD.everything5.--_____did you pay for the CD?--Only 10 dollars.A.How manyB.How muchC.How longD.How often6.I often _____ my grandparents at weekends.A.visitB.visitedC.will visitD.have visited7.Mary_____ her homework when her mother got home yesterday.A.doesB.didC.is doingD.was doing8.–What an old college!--Yes, it _____ 100 years ago.A.builtB.buildsC.was builtD.is built9.–What did the teacher say to you just now?--She asked _____.A.where did I learn JapaneseB.where I learned JapaneseC.where do I learn JapaneseD.where I learn Japanese完形填空10.Finally I got my driving license(驾照) last summer. Mom decided to go with me to take my first trip around an empty parking lot. I knew my mother was an excellent 1 . she had driven over 20 years without getting one ticket. However, I found that she was not the best teacher for me. It wasn’t that she shouted, or told me that I was doing poorly. Her “helpful instructions ” 2 managed to make me more nervous.Since I could no longer practice with her, the job was 3 in the hands of my father. The idea of learning from Dad was not so 4 . I loved him dearly, but I just did not see Dad as someone I could be comfortable learning from. He almost never talked. We shared a typical father-daughter relationship. He’d ask how school was, and I’d say it was fine. Unluckily, that was the most of our 5 . Spendingseveral hours alone with someone who might as well have been a stranger reallyfrightened me.As we got into the car that first time, I was not surprised at what happened. Dadand I drove around, saying almost nothing, except for a few instructions on how toturn. As my lessons went on, however, things began to 6 . dad would turn theradio 7 so I could fully enjoy his favorite music. Then he actuallybegan 8 . I was soon hearing about past failed dates, “basic body” gym class,and other stories from his past, including some of his first meeting with Mom.I thought why Dad was telling me so much in the car. In all the years that Ihad 9 why my father never spoke that much, I had never stopped to consider thatit was because I had never stopped to listen. Homework, friends, and even TV had allcalled my away from him, and I never thought my 10 father had anything tosay.Since I began driving with him, my driving skill has greatly increased. Moreimportant is that I got to know my father more and more. Just living wit h him wasn’tenough--- it took driving with him for me to get to know someone who was amystery(神秘).1. A. doctorB. workerC. writerD. driver2. A. everB. onlyC. stillD. yet3. A. droppedB. returnedC. placedD. started4. A. excitingB. surprisingC. movingD. hurting5. A. instructionsB. conversationsC. introductionsD. competitions6. A. workB. appearC. changeD. continue7. A. overB. upC. offD. down8. A. talkingB. singingC. listeningD. thinking9. A. foundB. expectedC. wonderedD. understood10. A. understoodB. proudC. honestD. quiet阅读理解11.ABike Rentals(租赁)Zoo StationWe are directly at the Zoo train station, facing the parking area. You’Places 口) opposite the Zoo entrance. AlexanderplatzWe’re right under the TV tower. If you’re facing the entrance of the TOpen Hours 9:30—18:00Rental Prices 1/2 Day$7 One Day$12 2nd Day$10Please call 650 – 968 – 3575 for bike rentals.(1)Where is Alexnderrplatz?A.Near the Zoo entrance.B.Under the TV tower.C.In the parking area.D.At the train station.(2)When can we rent a bike?A.At 6:30B.At 8:00C.At 14:00D.At 21:00(3)How much is it if you keep the bike for one day?A.$7B.$10$12D.$2212.BPlaying video games has become a real job now. Players can get a lot of money. They complete, watched by thousands of fans in arenas(竞技场),with millions more following online.40 years ago the first known competition (playing Spacewar at the US’s Standford University) offered a magazine at first prize. In 2014 the world championship(冠军赛) for Dota 2 had the prize ofalmost 1millionand10,000fanswatchedlivesasChineseteamwonthefirstprize. Last yearalsosawthefirste−sportsarenasopenintheUSanda15,000−seatere−sportsstadiu m(体育场)inChina,thee−TVsportsreportbysportsnetworkESPNandthe450, 000 worth e-sports scholarship(奖学金) offered by Chicago’s Robert Morris University.If you’re over 30, you probably don’t, directly, unless you happen to be a fanatical(狂热的)player of the most popular e-sports games. But your children or grandchildren do. They know the players by their gaming handles (用户名) and hope to follow their heroes into a gaming world.(1)What has playing video games become now?A.A jobB.A sportC.A hobbyD.A competition(2)When did the Chinese team win the first prize?A.40 years agoB.30 years agoC.In 2014In 2015(3)What did Chicago’s Robert Morris University offer?A.The first e-sports arenas.B.An e-sports stadium.C.The e-TV reportD.An e-sports scholarship.(4)Who likes e-sports best, according to the passage?A.Newly-born babiesB.Young childrenC.Middle-aged peopleD.Old people13.CThe most interesting thing to see in Malaysia is the ever-increasing number of festivals held around the country. Make up of traditional cultural celebrations, religious(宗教) holidays and modern sporting or cultural events, Malaysia’s festivals mean there’s alw ays a part to be found.More traditional events, such as World Kite Festival, the Magic of the Night and the Lantern Festival – to name just a few --- all appear in many calendars around the nation. Traditional religious celebrations, such as Chinese New Year and Christmas, are also popular in Malaysia and are celebrated across different cultures and backgrounds.The greatest event of the year’s calendar for any food lover will be the Malaysia Gourmet Festival, held through chosen hotels in the capital city of Kuala Lumpur.One of the most popular of these new addition is the Malaysia Year End Sale, which runs from November through to early January. All around the nation there’re cheaper sales.When it comes to the celebrations, Malaysians are some of the most generous(慷慨的) people in the world. During many of the year’s important events, Malaysians will open their homes to friends, families and strangers (including tourists) in a tradition known as “Rumah Terbuka”or “Open House”. Atte nding an Open House is a great opportunity to join the Malaysian, make friends and enjoy delicious local food. The government or local groups will also sometimes offer an Open House in a larger place, such as a big hall. Everyone is welcome to take part in such events, which have helped create a positive air.2015 has been decided to be the Year of Festivals in Malaysia --- so there’s never been a better time to visit Malaysia than now. Just turn the page to see some of the important events taking place over the next 12 months. And for more information on traveling to Malaysia, please visit www. Tourism. Gov. my.(1)What kind of festival is World Kite Festival in Malaysia?A.A traditional eventB.A religious holidayC.A sporting eventD.A cultural celebration(2)Which of the following is the greatest event for food lovers?A.The Lantern FestivalB.The Malaysia Year End SaleC.The Magic of the NightD.The Malaysia Gourmet Festival(3)The underlined part “Ope n House” in the passage means “_____”A.leaving one’s room door openB.keeping a shop open day and nightC.letting visitors stay at one’s homeD.offering visitors free hotel rooms(4)What is the writer’s purpose in the passage?A.To encourage us to visit Malaysia.B.To report some interesting festival.C.To share his own experience.D.To introduce a foreign country.14.DWhen you first step out into that big world, it can be a little worrying, but as time goes by and you get into the new environment, you very quickly begin to love it because every traveler learns certain lessons, lessons about themselves, about travel, and about the world in general.You might have thought you’d have trouble with the language or that you’re terrible with directions, or that you’re shy around new people, or that you can’t deal with some problems, but once you throw yourself to the deep end and have to survive(生存) on your own in the world, you’ll come to know you’re far better at these things than you ever realize.Every time I go camping or stay in a poor hotel or even eat street food, the feeling is the same one that first day: sick. I can’t get clean. There are people making noise in my room. This food is going to make me ill. But after about three days of anything --- any level of discomfort --- you just get used to it. And then it becomes fun.Couldn’t find an ywhere to have breakfast this morning? No worries. Stayed up all night drinking and now you have to catch a bus? It’ll all be fine. See the above –it’ll take about three days to get used to it.What you may have one thought was very unpleasant --- showering in a dirty bathroom, drying yourself with a dirty hotel towel, wearing the same T-shirt four days, never washing your socks – becomes routine (惯例) once you’ve been traveling for a couple of months. Keep clean? It’s a first –world problem.First-time travelers are usually worried about safety, but after a while you realize that the world isn’t out to get you, and if you just take a few easy precautions (警觉), the probability is high that you’ll never get stolen while you travel. Although you st ill might, so don’t carry anything you can’t bear to lose.The first price is never the right price. This holds true for anywhere that the priceisn’t stamped onto the thing or clearly shown in some way. While arguing about the price doesn’t come naturally to some. It’s something you have to get used to if you don’t want to ripped off over and over again.Things go wrong when you travel ---lots of things. The train is late, the money exchange place is closed, the hotel has lost your booking, and you can feel a pain in your stomach that means last night’s street food was a bad choice. But you have to be able to deal with these problems when you travel, or you’ll quickly go silly.(1)What makes travelers love their travel, according to the passage?A.Time’s going byB.Lessons they’ve learntC.The exercise they takeD.The new environment(2)The second paragraph mainly tells us that _____.A.traveling abroad causes a lot of problemsB.one must be brave to travel in the worldC.we’re better than we realize when travelingD.nothing can stop us from going abroad(3)Which of the following is true, according to the passage?A.We can get used to a different life style in a short time.B.It’s important to keep clean all the time when traveling.C.First-time travelers are usually safe all over the world.D.it’s not necessary to buy things during our travel abroad.From the last paragraph, we can infer that______.A.we can only depend on luck when travelingB.traveling is rather hard work than happy timeC.traveling service is not good all over the worldD.we must be ready to face problems when traveling五选五15.Mike and John are good friends. Both of them like traveling very much.One day, when they were traveling through a desert, they quarreled (吵架) with each other. Mike was very angry and hit John in the face. John was hurt, 1 , he wrote in the sand, “Today my best friend hit me in the face.”Then they went on walking and found an oasis (绿洲). It was veryhot, 2 . john was not good at swimming and he start drowning(溺水) after a few minutes. 3 . when John got up, he wrote on a stone, “Today my friend save my life.”Mike felt a little surprised and asked, “Why, after I hurt you, you wrote some words in the sand, and now you wrote on a stone?” John smiled and said, “When a friend hurts us, we should write it down in the sand.. 4 . However, when something great happens, we should write it in the stone of our memory and remember it forever.” 5 . He learned what true friendship was. Let’s learn to write in the sand and on the stone.A.Mike was very movedB.But without anything to sayC.So they wanted to have a swimD.And the wind can blow it away easilyE.Mike swam to him quickly and saved him任务型阅读Bashert is a gentle, golden dog. In her mind, tere is no human problem so big she can’t lick (舔) better. When her owner is sad, she licks him to make him happy. When her owner feels upset, she licks him again to encourage him.“When I go to camp, I miss Bashert a lot, ” Bashert’s owner Aaron Richards, a 14-year-old boy in the US, told the New York Times.Animals like Bashert play an important part in people’s lives. Whether it is a dog, a cat or a goldfish, people always enjoy their companionship(陪伴). But do you know that people also love animals for other reason?When staying with animals, people can relax. Compared to the human world, the animals world seems to be simpler. People don’t need to worry about being judged by words or behaviors. For children, they can forget grades and class performance. What they feel is warmth and acceptance without any conditions.Animals, especially pets, also teach people to learn responsibility. Besides feeding and cleaning them, you also need to care for them. When they are sick, take them to an animal hospital. When are feel lonely, just play with them for a while. When they get old, you should spend time with them and let them know that you will always love them. Such a caring heart also tells you to treat people in a nice way. Then, you will find yourself a much beloved person.(1)What does Bashert do when her owner is sad?(2)How old is Bashert’s owner?(3)Do animals play an important part in people’s lives?(4)What are the other reasons that people love animals?(5)What is the passage mainly about?书面表达17.假如你叫李华,最的和英国朋友Jim 通过邮件谈论校园安全,他想了解你的看法。
2015年区二模数学答案

3 2 2
3 ..............................................................................................2 分
22.(本题满分 7 分) (1)画图正确...............................................................................................................................................3 分 △ABC 的面积为6..................................................................................................................................1 分 (2) 画图正确.................................................................................................................................................3 分 23.(本题满分 8 分) (1)解:m = 100,x = 40,y = 0.18........................................................................................................3 分 (2)补图正确..................................................................................................................................................2 分 (3)解: 估计该校学生劳动的总时间为 2640 小时..........................................................................................3 分 24.(本题满分 8 分) (1)在△ABC 中,∵AC=BC,∠ACB=90,CG 平分∠ACB, ∴∠CAB=∠CBA=
2015北京各区中考数学二模25题全面总结及答案

2015北京各区中考数学25题汇编及答案25.如图,Rt △ABC 中,∠A =90°,以AB 为直径的⊙O 交BC 于点D ,点E 在⊙O 上, CE =CA , AB ,CE 的延长线交于点F . (1) 求证:CE 与⊙O 相切;(2) 若⊙O 的半径为3,EF =4,求BD 的长.25.如图1,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,点F 在线段ED 上.连接AF 并延长交 ⊙O 于点G ,在CD 的延长线上取一点P ,使PF=PG .(1)依题意补全图形,判断PG 与⊙O 的位置关系,并证明你的结论;(2)如图2,当E 为半径OA 的中点,DG ∥AB,且OA PG 的长.25.如图,已知AB 是⊙O 的直径,C 是⊙O 上一点,∠BAC 的平分线交⊙O 于 点D ,交⊙O 的切线BE 于点E ,过点D 作DF ⊥AC ,交AC 的延长线于点F . (1)求证:DF 是⊙O 的切线;F(2)若DF =3,DE =2.①求值;②求FAB ∠的度数.25.如图,点A B C D E 、、、、在⊙O 上,AB CB ⊥于点B ,tan 3D =,2BC=,H为CE 延长线上一点,且AH =CH =(1)求证:AH 是⊙O 的切线;(2)若点D 是弧CE 的中点,且AD 交CE 于点F ,求EF 的长.25.如图,⊙O 是△ABC 的外接圆,AB= AC ,BD 是⊙O的直径,P A ∥BC ,与DB 的延长线交于点P ,连接AD . (1)求证:P A 是⊙O 的切线;(2)若BC =4 ,求AD 的长.25.如图,△ABC 中,AB =AC ,点D 为BC 上一点,且AD =DC ,过A ,B ,D 三点作⊙O ,AE是⊙O 的直径,连结DE . (1)求证:AC 是⊙O 的切线;BEADCC(2)若4sin 5C =,AC =6,求⊙O 的直径.25.如图,AB 是⊙O 的直径.半径OD 垂直弦AC 于点E .F 是BA 延长线上一点,CDB BFD ∠=∠.(1)判断DF 与⊙O 的位置关系,并证明; (2)若AB =10,AC =8,求DF 的长.25.如图,AB 是⊙O 的直径,以AB 为边作△ABC ,使得AC = AB ,BC 交⊙O 于点D ,联结OD ,过点D 作⊙O 的切线,交AB 延长线于点E ,交AC 于点F .25.如图,⊙O 为△ABC 的外接圆,BC 为⊙O 的直径,AE 为⊙O 的切线,过点B 作BD ⊥AE 于D .(1)求证:∠DBA =∠ABC ;(2)如果BD =1,tan ∠BAD =12,求⊙O 的半径.25.如图,AB 是⊙O 的直径,点C 是⊙O 上一点, AD ⊥ DC 于D , 且AC 平分∠DAB ,延长DC 交AB 的延长线于点P ,弦CE 平分∠ACB ,交AB 于点F ,连接BE . (1)求证:PD 是⊙O 的切线; (2)若tan ABC =43∠,BE =PC 的长.25.如图,△ABC 内接于⊙O ,OC ⊥AB 于点E ,点D 在OC 的延长线上,且∠B =∠D =30°.(1)求证:AD 是⊙O 的切线;(2)若AB =求⊙O 的半径.25.如图,已知,⊙O 为△ABC 的外接圆,BC 为直径,点E 在AB 边上,过点E 作EF ⊥BC ,延长FE 交⊙O 的切线AG 于点G . (1)求证:GA =GE .PE(2)若AC =6,AB =8,BE =3,求线段OE 的长.答案25.(本小题满分5分) 证明:连接OE ,OC .在△OEC 与△OAC 中, ,,,OE OA OC OC CE CA =⎧⎪=⎨⎪=⎩F∴△OEC ≌△OAC . (1)分∴∠OEC =∠OAC .∵∠OAC =90°,∴∠OEC =90°. ∴OE ⊥CF 于E . ∴CF与⊙O相切.………………………………………………………………………………...2分(2)解:连接AD .∵∠OEC =90°, ∴∠OEF =90°. ∵⊙O 的半径为3, ∴OE =OA=3.在Rt △OEF 中,∠OEF =90°,OE = 3,EF = 4,∴5OF ,………………………………………………………………………3分3tan 4OE F EF ==. 在Rt △F AC 中,∠F AC =90°,8AF AO OF =+=, ∴tan 6AC AF F =⋅=.…………………………………………………………………………4分∵AB 为直径,∴AB =6=AC ,∠ADB =90°. ∴BD =2BC. 在Rt △ABC 中,∠BAC =90°,∴BC =F∴BD=.…………………………………………………………………………………….5分25. 解:(1)补全图形如图5所示. ………………………………………………………… 1分 答:PG 与⊙O 相切. 证明:如图6,连接OG .∵ PF =PG , ∴ ∠1=∠2.又∵OG =OA , ∴ ∠3=∠A .∵ CD ⊥AB 于点E , ∴ ∠A +∠AFE =90°. 又∵∠2 =∠AFE ,∴ ∠3+∠1=90°. ……………………… 2分 即 OG ⊥PG . ∵ OG 为⊙O 的半径,∴ PG 与⊙O 相切. …………………… 3分(2)解:如图7,连接CG . ∵ CD ⊥AB 于点E ,∴ ∠OEC =90°. ∵ DG ∥AB ,∴∠GDC =∠OEC =90°. ∵∠GDC 是⊙O 的圆周角, ∴ CG 为⊙O 的直径. ∵ E 为半径OA 的中点, ∴ 22OA OCOE ==. ∴ ∠OCE =30°即∠GCP =30°.又∵∠CGP =90°,2CG OA ==A∴tan 4PG CG GCP =⋅∠==. …………………………… 5分25. (1)连结OD , ∵AD 平分∠BAC ∴∠DAF =∠DAO ∵OA =OD ∴∠OAD =∠ODA ∴∠ DAF =∠ODA ∴AF ∥OD .┉┉1分 ∵DF ⊥AC ∴OD ⊥DF ∴DF 是⊙O 的切线┉┉2分 (2)①连接BD ∵直径AB , ∴∠ADB =90° ∵圆O 与BE 相切 ∴∠ABE =90°∵∠DAB +∠DBA =∠DBA +∠DBE =90° ∴∠DAB =∠DBE ∴∠DBE =∠F AD ∵∠BDE=∠AFD =90° ∴△BDE ∽△AFD ∴32==DF DE AD BE ┉┉3分 ②连接OC ,交AD 于G 由①,设BE =2x ,则AD =3x ∵△BDE ∽△ABE ∴BE DE AE BE =∴xx x 22232=+∵AB BC ⊥于点B∴AC 是⊙O 的直径…………………………………1分 ∵D ACB ∠=∠,∴tan tan 3D ACB =∠= 在Rt ABC ∆中,2BC =,∴36AB BC == 由勾股定理AC =在CAH ∆中,由勾股定理逆定理:22250AC AH CH +==∴90CAH ∠=°即CA AH ⊥∴AH 是⊙O 的切线…………………………………2分 (2)解:∵点D 是弧CE 的中点∴EAD DAC ∠=∠…………………………………3分 ∵AC 是⊙O 的直径 ∴AE CH ⊥∴90H EAH H HCA ∠+∠=∠+∠=° ∴EAH HCA ∠=∠∴EAD EAH DAC HCA ∠+∠=∠+∠ 即AFH HAF ∠=∠∴HF HA =∵CA AH ⊥AE CH ⊥∴2AH EH CH =⨯可得EH = ∴EF =5分25.(1)证明:连接OA 交BC 于点E ,由AB =AC 可得OA ⊥BC .………………………1分C B∵PA ∥BC , ∴∠PAO =∠BEO =90°. ∵OA 为⊙O 的半径,∴PA 为⊙O 的切线. …………………………… 2分 (2)解:根据(1)可得CE =21BC=2. Rt △ACE 中,122=-=CE AC AE . ………………………………3分∴tan C =21=CE AE . ∵BD 是直径,∴∠BAD =90°.…………………………………………………………4分 又∵∠D =∠C , ∴AD =52tan =DAB.………………………………………………………5分25. (1)证明:∵AB =AC ,AD =DC ,∴∠1=∠C =∠B ,..................................................1分 又∵∠E =∠B ,∴∠1=∠E , ∵AE 是⊙O 的直径,∴∠ADE =90°, ∴∠E +∠EAD =90°, ∴∠1+∠EAD =90°,∴AC 是⊙O 的切线............................................2分 (2)解:过点D 作DF ⊥AC 于点F , ∵DA =DC ,AC =6, ∴CF =12AC =3,..................................... ............3分 ∵4sin 5E =,∴4sin 5C =, ∴在Rt △DFC 中,DF =4,DC =5, ∴AD =5,∵∠ADE =∠DFC =90°,∠E =∠C ,∴△ADE ∽△DFC ,.............................................4分C∴AD DFAE DC =, ∴545AE =, ∴AE =254,∴⊙O 的直径为254.....................5分25.解:(1)DF 与⊙O 相切. ∵CAB CDB ∠=∠, 又∵CDB BFD ∠=∠,∴BFD CAB ∠=∠. ∴AC ∥DF . ………………………………… 2分∵半径OD 垂直于弦AC 于点E ,∴DF OD ⊥. ∴DF 与⊙O 相切. ………………………………… 3分 (2)∵半径OD 垂直于弦AC 于点E ,AC =8,∴482121=⨯==AC AE . ∵AB 是⊙O 的直径, ∴5102121=⨯===AB OD OA . 在AEORt ∆中,3452222=-=-=AE OA OE . ……………………………………… 4分∵AC ∥DF , ∴OAE ∆∽OFD ∆. ∴DF AEOD OE = . ∴DF453=. ∴321DF CEB A O320=DF . ………………………………………………… 5分25.(1)证明:联结AD .∵AB 是⊙O 的直径,∴∠ADB =90°,AD ⊥BC .∵AC = AB ,∴12∠=∠.…….1分 ∵OA OD =,∴13∠=∠. ∴23∠=∠,∴OD ∥AC .…….2分(2)∵AC = AB =10,∴B C ∠=∠.∴cos C=cos 5ABC ∠=. 在Rt △ABD 中,∠ADB =90°,cos 5BD ABC AB ∠==, ∴BDCD = BD….3分∵EF 为⊙O 的切线,∴OD ⊥EF ,由∵OD ∥AC ,∴∠DFC =90°. …….4分 在Rt △CDF 中,cos C=5CF CD =,∴CF =2.∴AF =8. ∵OD ∥AC ,∴ODE ∆∽AFE ∆.∴OE OD AE AF =.∴OB BE ODAB BE AF+=+. ∵152OB OA OD AB ====,∴103BE =.…….5分 25.(本小题满分5分)(1)证明:连接OA .(如图)∵ AE 为⊙O 的切线,BD ⊥AE , ∴ ∠DAO =∠EDB =90°. ∴ DB ∥AO .∴ ∠DBA =∠BAO . …………1分 又 ∵OA =OB , ∴ ∠ABC =∠BAO .∴ ∠D B A =∠A B C . ………………………………………………2分(2)在Rt △ADB 中,∠ADB =90°,C∵ BD =1,tan ∠BAD =12, ∴ AD =2,……………………………………………………………………3分由勾股定理得AB .∴ cos ∠DBA 又∵ BC 为⊙O 的直径, ∴ ∠BAC =90°. 又∵∠DBA =∠ABC .∴ cos ∠ABC = cos ∠DBA∴ 5.cos ABBC ABC===∠…………………………………………4分 ∴ ⊙O 的半径为5.2…………………………………………………………5分25.解:(1)∵ OC =OA∴ ∠CAO =∠OCA ∵ AC 平分∠DAB ∴ ∠DAC =∠CAO , ∴ ∠ACO =∠DAC . ∴ OC ∥AD .…………………………………………………………………….1分 ∵ AD ⊥PD , ∴OC ⊥PD . ∴ PD 是⊙O 的切线……………………………………………………………...2分(2)连接AE .∵CE 平分∠ACB ,∴AE BE =,∴AE BE == ∵AB 为⊙O 的直径, ∴∠AEB =90°.在Rt △ABE 中,14AB =………………………………………3分 ∵ ∠P AC =∠PCB ,∠P =∠P , ∴ △P AC ∽△PCB , ∴ PC AC PB BC =.…………………………………………………………………..4分 又∵4tan 3ABC =∠,∴43AC PCBC PB==, 设PC =4k ,PB =3k ,则在Rt △POC 中,PO =3k +7,OC =7,∵ PC 2+OC 2=OP 2, ∴()()2224737k k +=+, ∴ 126,0k k ==(舍去).∴ PC =4k =4×6=24. …………………………………………………………..5分25证明:(1)连接OA .∵∠B =∠D =30°,∴∠AOC =2∠B =60°,……………………….(1分) ∴∠OAD =180°-∠AOD -∠D =90°,…………….(2分) 即OA ⊥AD ,∴AD 是⊙O 的切线.……………….(3分)(2)∵OA =OC ,∠AOC =60°,∴△ACO 是等边三角形, ∵CO ⊥AB ∴ ……………………….(4分)在Rt △ABC 中∴⊙O 的半径为6.……………………………….(5分)1122AE AB ==⨯=sin sin60AEACE AC∠==︒6AC ===。
2015年北京13区中考数学二模分类汇编及答案——选填最后一道
(东城)10. 如图,矩形ABCD 中,AB =3,BC =4,动点P 从A 点出发,按A →B →C 的方向在AB 和BC 上移动,记P A =x ,点D 到直线P A 的距离为y ,则y 关于x 的函数图象大致是A .B .C .D .16.如图,已知A 1,A 2,……,A n ,A n +1在x 轴上,且OA 1=A 1A 2=A 2A 3=……=A n A n +1=1,分别过点A 1,A 2,……,A n ,A n +1作x 轴的垂线交直线y =x 于点B 1,B 2,……,B n ,B n +1,连接A 1B 2,B 1A 2,A 2B 3,B 2A 3,……,A n B n +1,B n A n +1,依次相交于点P 1,P 2,P 3,……,P n ,△A 1B 1P 1,△A 2B 2P 2,……,△A n B n P n 的面积依次为S 1,S 2,……,S n ,则S 1= ,S n = .(西城)10.在平面直角坐标系xOy 中,点M 的坐标为(,1)m .如果以原点为圆心,半径为1的⊙O上存在点N ,使得45OMN ∠=︒,那么m 的取值范围是A .1-≤m ≤1 B. 1-<m <1 C. 0≤m ≤1 D. 0<m <116.如图,在平面直角坐标系xOy 中,点D 为直线2y x =上且在第一象限内的任意一点,1DA ⊥x 轴于点1A ,以1DA 为边在1DA 的右侧作正方形111A B C D ;直线1OC 与边1DA 交于点2A ,以2DA 为边在2DA 的右侧作正方形222A B C D ;直线2OC 与边1DA 交于点3A ,以3DA 为边在3DA 的右侧作正方形333A B C D ,……,按这种方式进行下去,则直线1OC 对应的函数表达式为 ,直线3OC 对应的函数表达式为 .(海淀)10.如右图所示,点Q 表示蜜蜂,它从点P 出发,按照着箭头所示的方向沿P →A →B →P →C →D →P 的路径匀速飞行,此飞行路径是一个以直线l 为对称轴的轴对称图形,在直线l 上的点O 处(点O 与点P 不重合)利用仪器测量了∠POQ 的大小.设蜜蜂飞行时间为x ,∠POQ 的大小为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是AB C D16.五子棋是一种两人对弈的棋类游戏,规则是:在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图.观察棋盘,以点O 为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点,若黑子A 的坐标为(7,5),则白子B 的坐标为______________;为了不让白方获胜,此时黑方应该下在坐标为______________的位置处.(朝阳)10. 如图,矩形ABCD 中,E 为AD 中点,点F 为BC 上的动点(不 与B 、C 重合).连接EF ,以EF 为直径的圆分别交BE ,CE 于点G 、H . 设BF 的长度为x ,弦FG 与FH 的长度和为y ,则 下列图象中,能表示y 与x 之间的函数关系的图象大致是A B C D16.如果一个平行四边形一个内角的平分线分它的一边为1:2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,它的周长为 .(丰台)10.如图,点N 是以O 为圆心,AB 为直径的半圆上的动点,(不与点A ,B 重合),AB =4,M 是OA 的中点,设线段MN 的长为x ,△MNO 的面积为y ,那么下列图象中,能表示y 与x 的函数关系的图象大致是A B C D16.如图,在平面直角坐标系xOy 中,直线l 的表达式是y ,点A 1坐标为(0,1),过点A 1作y 轴的垂线交直线l 于点B 1,以原点O 为圆心,OB 1长为半径画弧交y 轴于点A 2;再过点A 2作y 轴的垂线交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画弧交y 轴于点A 3,…,按此做法进行下去,点B 4的坐标为 ,2015OA = .(顺义)10.如图,大小两个正方形在同一水平线上,小正方形从图①的位置开始,匀速向右平移,3AOBMN到图③的位置停止运动.如果设运动时间为x ,大小正方形重叠部分的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是C.B.A.D.16.如图,在平面直角坐标系xOy 中,点1A ,2A ,3A ,…,n A在x 轴的正半轴上,且1=2OA ,212OA OA =,322OA OA =,…,12n n OA OA -=,点1B ,2B ,3B ,…,n B 在第一象限的角平分线l 上,且11A B ,22A B ,…,n nA B 都与射线l 垂直, 则1B 的坐标是_ _____, 3B 的坐标是_ _____,n B 的坐标是_ _____.(昌平)10.如图,正方形ABCD 的边长为5,动点P 的运动路线为AB →BC ,动点Q 的运动路线为BD .点P 与Q 以相同的均匀速度分别从A ,B 两点同时出发,当一个点到达终点停止运动时另一个点也随之停止.设点P 运动的路程为x ,△BPQ 的面积为y ,则下列能大致表示y 与x 的函数关系的图象为16. 如图所示,是一张直角三角形纸片,其中有一个内角为30︒,最小边长为2,点D 、E 分别图③图②图①是一条直角边和斜边的中点,先将纸片沿DE 剪开,然后再将两部分拼成一个四边形,则所得四边形的周长是 .(石景山)10.在平面直角坐标系中,四边形ABCD 是菱形,其中点B 的坐标是(0,2),点D 的坐标是(34,2),点M 和点N 是两个动点,其中点M 从点B 出发沿BA 以每秒1个单位的速度做匀速运动,到点A 后停止,同时点N 从B 点出发沿折线BC →CD 以每秒2个单位的速度做匀速运动,如果其中一点停止运动,则另一点也停止运动,设M 、N 两点的运动时间为x ,BMN ∆的面积是y ,下列图象中能表示y 与x 的函数关系的图象大致是A B C D16.在平面直角坐标系xOy 中,我们把横,纵坐标都是整数的点叫做整点,已知在函数()50050<<+-=x x y 上有一点()n m P ,(,m n 均为整数),过点P 作x PA ⊥轴于点A ,y PB ⊥轴于点B ,当2=m 时,矩形PAOB 内部(不包括边界)有47个整点,当3=m 时,矩形PAOB 内部有92个整点,当4=m 时,矩形PAOB 内部有_________个整点,当=m 时,矩形PAOB 内部的整点最多_______.(门头沟)10.在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为(4,3).平行于对角线AC 的直线m 从原点O 出发,沿x 轴正方向以每秒1个单位长度 的速度运动,设直线m 与矩形OABC 的两边分别交于点M ,N , 直线m 运动的时间为t (秒).设△OMN 的面积为S ,那么能反 映S 与t 之间函数关系的大致图象是yxOM AB C Nmxy OA BCA B C D16.在平面直角坐标系xOy 中,矩形OABC 如图放置,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时 反射角等于入射角,当点P 第2次碰到矩形 的边时,点P 的坐标为 ;当点P 第 6次碰到矩形的边时,点P 的坐标为 ;当点P 第2015次碰到矩形的边时,点P 的坐标为____________.(平谷)10.在平行四边形ABCD 中,点P 从起点B 出发,沿BC ,CD 逆时针方向向终点D 匀速运动.设点P 所走过的路程为x ,则线段AP ,AD 与平行四边形的边所围成的图形面积为y ,表示y 与x 的函数关系的图象大致如下图,则AB 边上的高是A .3B .4C .5D .616.在平面直角坐标系中,点A,B,C 的坐标分别为()1,0,()0,1,()1,0-.一个电动玩具从坐标原点O 出发,第一次跳跃到点P 1,使得点P 1与点O 关于点A 成中心对称;第二次跳跃到点P 2,使得点P 2与点P 1关于点B 成中心对称;第三次跳跃到点P 3,使得点P 3与点P 2关于点C 成中心对称;第四次跳跃到点P 4,使得点P 4与点P 3关于点A 成中心对称;第五次跳跃到点P 5,使得点P 5与点P 4关于点B 成中心对称;.…照此规律重复下去.则点P 3的坐标为 ;点P n 在y 轴上,则点P n 的坐标为 .通州10.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度......y 之间的关系用图象描述大致是( )A .B .C .D . 16.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是1112=--,-1的差倒数为11112=-(-),现已知,x 1=13-,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,……,依次类推,则x 2015= .房山10. 如图,在矩形A BCD 中,AB =2,点E 在边AD 上,∠ABE =45°,BE=DE ,连接BD ,点P 在线段DE 上,过点P 作PQ ∥BD 交BE 于点Q ,连接QD .设PD =x ,△PQD 的面积为y ,则能表示y 与x 函数关系的图象大致是第10题图A B C D16.正方形111A B C O ,2221A B C C ,3332A B C C ,…,按如图所示的方式放置.点1A ,2A ,3A ,…,和点1C ,2C ,3C ,…,分别在直线1y x =+和x 轴上,则点B 1的坐标是; 点B n 的坐标是 .(用含n 的代数式表示)怀柔10.小丽早上从家出发骑车去上学,途中想起忘了带昨天晚上完成的数学作业,于是打电话让妈妈马上从家里送来,同时小丽也往回骑,遇到妈妈后停下说了几句话,接着继续骑车去学校.设小丽从家出发后所用时间为t ,小丽与学校的距离为S .下面能反映S 与t 的函数关系的大致图象是16.已知等腰△ABC 中,AD⊥BC 于点D ,且AD=21BC ,则△ABC 底角的度数为__________. 答案 东城 10,B 1616;24+2n n 西城朝阳10(写出一个正确结果给1分)丰台顺义10,C 16. 1A (1,1),3A (4,4),11n n n A --(2,2).(每空1分)昌平石景山10,D 16.135;25. 门头沟平谷通州10. B . 16.34. 房山10.C16. ()111B , ,()121,2n n n B --怀柔。
2015北京初三数学二模试题及答案WORD
中考统一练习㈡数 学 2015.5考生须知1.本试卷共6页,共五道大题,25个小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和考试编号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.考试结束,请将本试卷和答题卡一并交回。
一、选择题(共8道小题,每小题4分,共32分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.21-的倒数是( ). A .2 B .2- C .21D . 21-2.根据中国汽车工业协会的统计,2011年上半年的中国汽车销量约为932.5万辆,同比增速3.35%.将932.5万辆用科学记数法表示为( )辆A .93.25×105B .0.9325×107C .9.325×106D .9.325×1023.若一个正多边形的每个内角都为135°,则这个正多边形的边数是( ). A .9 B .8 C .7 D .6 4.下列运算正确的是( ).A .22a a a =⋅B .22=÷a aC . 22423a a a +=D . ()33a a -=-5.如图所示,直线a ∥b ,直线c 与直线a ,b 分别相交于点A 、点B ,AM ⊥b ,垂足为点M ,若∠1=58°,则∠2的度数是( ).A .22B .30C .32D .426.某校抽取九年级的8名男生进行了1次体能测试,其成绩分别为90,75,90,85, 75,85,95,75,(单位:分)这次测试成绩的众数和中位数分别是 ( ).A .85,75B .75,85C .75,80D .75,757.已知圆锥的底面半径为3,母线长为4,则圆锥的侧面积等于( ).A .15πB .14π C.13π D .12π8.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为( ) .A B C D 二、填空题(共4道小题,每小题4分,共16分)第5题图2a bcMB A 19.在函数3+=x y 中,自变量x 的取值范围是 .10.若()022=++-a b a ,则=+b a .11.把代数式142-+m m 化为()b a m ++2的形式,其中a 、b 为常数,则a +b = . 12.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探索可得,第20个点的坐标是__________;第90个点的坐标为____________.三、解答题(共6道小题,每小题5分,共30分) 13.()33602120---+︒-πcos解:14.解方程:2132+=+-a a a解:15. 已知4+=y x ,求代数式2524222-+-y xy x 的值.解:16.如图,在△ABC 中,AD 是中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F .求证:BE =CF . 证明:17.如图,某场馆门前台阶的总高度CB 为0.9m ,为了方便残疾人行走,该场馆决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角A ∠为8°,请计算从斜坡起点A 到台阶最高点D 的距离(即斜坡AD 的长).(结果精确到0.1m ,参考数据:sin 8°≈0.14,cos 8°≈0.99,tan 8°≈0.14)C ABD解:18.如图,平面直角坐标系中,直线AB 与x 轴交于点A (2,0),与y 轴交于点B ,点D 在直线AB 上.⑴求直线AB 的解析式;⑵将直线AB 绕点A 逆时针旋转30°,求旋转后的直线解析式.解:⑴⑵四、解答题(共4道小题,每小题均5分,共20分)19.如图1,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形. ⑴求证:四边形ABCD 是菱形;⑵如图2,若2AED EAD ∠=∠,AC =6.求DE 的长.OBEACD OB EACD图1 图2 证明:⑴ ⑵ 20. 如图,⊙O 中有直径AB 、EF 和弦BC ,且BC 和EF 交于点D ,点D 是弦BC 的中点,CD =4,DF =8.⑴求⊙O 的半径及线段AD 的长; ⑵求sin ∠DAO 的值. 解:⑴ ⑵21.图①、图②反映是某综合商场今年1-4月份的商品销售额统计情况.观察图①和图②,解答下面问题:y x31D B O A FED BOA C⑴来自商场财务部的报告表明,商场1-4月份的销售总额一共是280万元,请你根据这一信息补全图①;⑵商场服装部4月份的销售额是多少万元;⑶小华观察图②后认为,4月份服装部的销售额比3月份减少了.你同意他的看法吗?为什么? 解:⑴ ⑵ ⑶22.⑴阅读下面材料并完成问题:已知:直线AD 与△ABC 的边BC 交于点D ,①如图1,当BD =DC 时,则S △ABD ________S △ADC .(填“=”或“<”或“>”)DBCADBCABCAD图1 图2 图3②如图2,当BD =21DC 时,则=∆ABD S ADC S ∆ . ③如图3,若AD ∥BC ,则有ABC S ∆ DBC S ∆ .(填“=”或“<”或“>”)⑵请你根据上述材料提供的信息,解决下列问题:过四边形ABCD 的一个顶点画一条直线,把四边形ABCD 的面积分成1︰2的两部分.(保留画图痕迹)BCAD五、解答题(共3道小题,23题7分,24题8分,25题7分,共22分)23.已知:关于x 的方程mx 2-3(m -1)x +2m -3=0.⑴当m 取何整数值时,关于x 的方程mx 2-3(m -1)x +2m -3=0的根都是整数; ⑵若抛物线32)1(32-+--=m x m mx y 向左平移一个单位后,过反比例函数)0(≠=k xky 上的一点(-1,3),①求抛物线32)1(32-+--=m x m mx y 的解析式; ②利用函数图象求不等式0>-kx x k 的解集.解:⑴⑵①② 24.探究问题:已知AD 、BE 分别为△ABC 的边BC 、AC 上的中线,且AD 、BE 交于点O .⑴△ABC 为等边三角形,如图1,则AO ︰OD = ;⑵当小明做完⑴问后继续探究发现,若△ABC 为一般三角形(如图2),⑴中的结论仍成立,请你给予证明.⑶运用上述探究的结果,解决下列问题:如图3,在△ABC 中,点E 是边AC 的中点,AD 平分∠BAC , AD ⊥BE 于点F ,若AD =BE =4. 求:△ABC 的周长.ODE ABCOE DBCA1 2 3 4 4 3 2 1xy O -1 -2 -3 -4 -4 -3-2-1D CF B EA图1 图2 图3解:⑴⑵⑶25.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(可用含t的代数式表示);⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;⑶在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..写出t的取值范围.解:⑴⑵⑶参考答案一、选择题1 2 3 4 5 6 7 8 B C B D C B DB二、填空题9、x ≥-3 10、-4 11、-3 12、(6,4);(13,1) 三、解答题(共6道小题,每小题5分,共30分) 13.解:原式=3121232-+⨯----------------------------------------4分 =3---------------------------------------5分14.解:()()()()32322-=+-++a a a a a ---------------------------------------1分a a a a a364222-=--++ ---------------------------------------2分 24=a ---------------------------------------3分 21=a ---------------------------------------4分是原方程的根经检验:21=a∴是原方程的根21=a ---------------------------5分15.44=-∴+=y x y x 解:---------------------------------------1分原式=2524222-+-y xy x ---------------------------------------2分()2522--=y x ---------------------------------------4分7254242=-⨯==-时,原式当y x ---------------------------------------5分 16.证明: AD 是中线∴BD=CD ---------------------------------------1分 分别过点B 、C 作AD 及其延长线的垂线BE 、CFCFD E ∠=∠∴---------------------------------------2分中和在CFD BED ∆∆ ⎪⎩⎪⎨⎧∠=∠=∠=∠CDF BDE CDBD CFD E ()AAS CFD BED ∆≅∆∴-------------------------------4分 CF BE =∴---------------------------------------5分17.解:E AB DE D 于点作过⊥---------------------------------------1分 ,于B AB CB ⊥ DC ∥AB∴.90==CB DE ---------------------------------------2分A DE AD AED Rt sin =∆ 中,在---------------------------------------4分∴m AD 4.614.09.0≈= EC AD B∴从斜坡起点A 到台阶最高点D 的距离约为6.4m 。
2015北京13区初三二模数学分类汇编--四边形
源-于-网-络-收-集(2015东城二模)23.如图,矩形ABCD 中,点O 为AC 的中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO.若∠COB =60°,FO =FC . 求证:(1)四边形EBFD 是菱形;(2)MB : OE=3:2 .(2015西城二模)23.如图,将平行四边形纸片ABCD 按如图方式折叠,使点C与点A 重合,点D 的落点记为点D ′ ,折痕为EF ,连接 CF . (1)求证:四边形AFCE 是菱形;(2)若∠B =45°,∠FCE =60°,AB =2D ′F 的长.(2015海淀二模)23.已知,ABC △中,D 是BC 上的一点,且∠DAC=30°,过点D 作ED ⊥AD 交AC 于点E ,4AE =,2EC =.(1)求证:AD=CD ;(2)若tan B=3,求线段AB 的长.(2015朝阳二模)23.如图,点F 在□ABCD 的对角线AC 上,过点F 、 B 分别作AB 、AC 的平行线相交于点E ,连接BF ,∠ABF=∠FBC+∠FCB . (1)求证:四边形ABEF 是菱形; (2)若BE=5,AD=8,21sin =∠CBE ,求AC 的长.(2015丰台二模)ECD源-于-网-络-收-集23.如图,在□ABCD 中,E 为BC 边上的一点,将△ABE 沿AE 翻折得到△AFE ,点F 恰好落在线段DE 上.(1)求证:∠F AD =∠CDE ;(2)当AB =5,AD =6,且tan 2ABC ∠=时,求线段EC 的长.(2015石景山二模)23.如图,在ABC ∆中,M ,N 分别是边AB 、BC 的中点,E 、F 是边AC 上的三等分点,连接ME 、NF 且延长后交于点D ,连接BE 、BF (1)求证:四边形BFDE 是平行四边形 (2)若AB =︒=∠45A ,︒=∠30C ,求:四边形BFDE 的面积(2015顺义二模)23.如图,四边形ABCD 为矩形,DE ∥AC ,且DE =AB ,过点E 作AD 的垂线交AC 于点F . (1)依题意补全图,并证明四边形EFCD 是菱形; (2)若AB =3,BC=DE 与AC 间的距离.(2015昌平二模)23.如图,在矩形ABCD 中,AB =3,BC =6,对角线交于点O .将△BCD 沿直线BD 翻折,得到△BED . (1)画出△BED ,连接AE ; (2)求AE 的长.(2015房山二模)23.已知:如图,在矩形ABCD 中,E 是BC 边上一点,DE 平分ADC ∠,EF ∥DC 交AD 边于点F ,连结BD . BFACEDA BCDEOABCD源-于-网-络-收-集(1) 求证:四边形FECD 是正方形;(2) 若BE ED ==122,,求tan DBC ∠的值.(2015门头沟二模)23.如图,在△ABC 中,D 为AB 边上一点,F 为AC 的中点,连接DF 并延长至E ,使得EF =DF ,连接AE 和EC .(1)求证:四边形ADCE 为平行四边形;(2)如果DF =22,∠FCD =30°,∠AED =45°,求DC 的长.(2015平谷二模)四、解答题(本题共20分,每小题5分) 23.如图,已知点E ,F 分别是□ABCD 的边BC ,AD 上的中点,且∠BAC =90°. (1)求证:四边形AECF 是菱形; (2)若∠B =30°,BC =10,求菱形AECF 面积.(2015通州二模)23.如图.在直角梯形ABCD 中,AD //BC ,∠B =90°,AG //CD 交BC 于点G ,点E 、F 分别为AG 、CD 的中点,连接DE 、FG .(1)求证:四边形DEGF 是平行四边形;(2)如果点G 是BC 的中点,且BC =12,DC =10,求四边形AGCD 的面积.BAEFCDBFACEG。
2015年北京市朝阳区高三二模数学理试题及答案word版
北京市朝阳区2015学年度第二学期高三综合练习数学(理科)2015.5第一部分(选择题共40 分)一、选择题(共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合,集合,则=().B.C.D.2.执行如图所示的程序框图,则输出的n的值是().A.7 B.10 C.66 D.1663.设为虚数单位,,“复数是纯虚数”是“”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.已知平面上三点A,B,C,满足,则=().A.48 B.-48 C.100 D.-1005.已知函数,若对任意的实数x,总有,则的最小值是().A.2 B.4 C.D.26.已知双曲线与抛物线有一个公共的焦点F,且两曲线的一个交点为P.若,则双曲线的渐近线方程为().7.已知函数,若对任意,都有成立,则实数m的取值范围是().8.如图,将一张边长为1的正方形纸ABCD折叠,使得点B始终落在边AD上,则折起部分面积的最小值为().第Ⅱ卷(非选择题共110 分)二、填空题:本小题共6 小题,每小题5 分,共30 分.9.展开式中含项的系数是__________.10.已知圆C的圆心在直线x-y=0上,且圆C与两条直线x+y=0和x+y-12=0都相切,则圆C的标准方程是__________.11.如图,已知圆B的半径为5,直线AMN与直线ADC为圆B的两条割线,且割线AMN过圆心B.若AM=2,,则AD=__________.12.某四棱锥的三视图如图所示,则该四棱锥的侧面积为__________.13.已知点在函数的图像上,则数列的通项公式为__________;设O为坐标原点,点,则,中,面积的最大值是__________.14.设集合,集合A中所有元素的个数为__________;集合A 中满足条件“”的元素个数为__________.三、解答题:本大题共6 小题,共80 分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题共13分)在梯形ABCD中,(Ⅰ)求AC的长;(Ⅱ)求梯形ABCD的高.某学科测试中要求考生从A,B,C三道题中任选一题作答,考试结束后,统计数据显示共有600名学生参加测试,选择A,B,C三题答卷数如下表:(Ⅰ)某教师为了解参加测试的学生答卷情况,现用分层抽样的方法从600份答案中抽出若干份答卷,其中从选择A题作答的答卷中抽出了3份,则应分别从选择B,C题作答的答卷中各抽出多少份?(Ⅱ)若在(Ⅰ)问中被抽出的答卷中,A,B,C三题答卷得优的份数都是2,从被抽出的A,B,C三题答卷中再各抽出1份,求这3份答卷中恰有1份得优的概率;(Ⅲ)测试后的统计数据显示,B题的答卷得优的有100份,若以频率作为概率,在(Ⅰ)问中被抽出的选择B题作答的答卷中,记其中得优的份数为X,求X的分布列及其数学期望EX.如图,在直角梯形ABCD中,.直角梯形ABEF可以通过直角梯形ABCD以直线AB为轴旋转得到,且平面平面ABCD.(Ⅰ)求证:;(Ⅱ)求直线BD和平面BCE所成角的正弦值;(Ⅲ)设H为BD的中点,M,N分别为线段FD,AD上的点(都不与点D重合).若直线平面MNH,求MH的长.18.(本小题共13分)已知点M为椭圆的右顶点,点A,B是椭圆C上不同的两点(均异于点M),且满足直线MA与直线MB斜率之积为14.(Ⅰ)求椭圆C的离心率及焦点坐标;(Ⅱ)试判断直线AB是否过定点:若是,求出定点坐标;若否,说明理由.19.(本小题共14分)已知函数.(Ⅰ)当时,求函数的单调区间;(Ⅱ)若在区间(1,2)上存在不相等的实数成立,求的取值范围;(Ⅲ)若函数有两个不同的极值点,,求证:.20.(本小题共13分)已知数列,是正整数1,2,3,,n的一个全排列.若对每个都有或3,则称为H数列.(Ⅰ)写出满足的所有H数列;(Ⅱ)写出一个满足的数列的通项公式;(Ⅲ)在H数列中,记.若数列是公差为d的等差数列,求证:或.参考答案及评分标准高三数学(理科)一、选择题:题号(1)(2)(3)(4)(5)(6)(7)(8)答案 A B B C A C D B二、填空题:题号(9)(10)(11)(12)(13)(14)答案三、解答题:15.(本小题共13 分)解:(Ⅰ)在中,因为,所以.由正弦定理得:,即.(Ⅱ)在中,由余弦定理得:,整理得,解得(舍负).过点作于,则为梯形的高.因为,,所以.在直角中,.即梯形的高为.16.(本小题共13 分)解:(Ⅰ)由题意可得:题 A B C答卷数180 300 230抽出的答卷数 3 5 2应分别从题的答卷中抽出份,份.(Ⅱ)记事件:被抽出的三种答卷中分别再任取出份,这份答卷中恰有份得优,可知只能题答案为优,依题意.(Ⅲ)由题意可知,题答案得优的概率为,显然被抽出的题的答案中得优的份数的可能取值为,且.;;;;;.随机变量的分布列为:所以.17.(本小题共14分)证明:(Ⅰ)由已知得,.因为平面平面,且平面平面,所以平面,由于平面,所以.(Ⅱ)由(1)知平面所以,.由已知,所以两两垂直.以为原点建立空间直角坐标系(如图).因为,则,,,,所以,,设平面的一个法向量.所以,即.令,则.设直线与平面所成角为,因为,所以.所以直线和平面所成角的正弦值为.(Ⅲ)在为原点的空间直角坐标系中,,,,,.设,即.,则,,.若平面,则.即..解得.则,.18.(本小题共13分)解:(Ⅰ)椭圆的方程可化为,则,,.故离心率为,焦点坐标为,.(Ⅱ)由题意,直线的斜率存在,可设直线的方程为,,,则,.由得.判别式.所以,,因为直线与直线的斜率之积为,所以,所以.化简得,所以,化简得,即或.当时,直线方程为,过定点.代入判别式大于零中,解得.当时,直线的方程为,过定点,不符合题意.故直线过定点.19.(本小题共14分)解:(Ⅰ)当时,,.由,解得,.当时,,单调递增;当时,,单调递减;当时,,单调递增.所以的单调增区间为,单调减区间为.(Ⅱ)依题意即求使函数在上不为单调函数的的取值范围.,设,则,.因为在上为增函数.当,即当时,函数在上有且只有一个零点,设为,当时,,即,为减函数;当时,,即,为增函数,满足在上不为单调函数.当时,,,所以在上成立(因在上为增函数),所以在上成立,即在上为增函数,不合题意.同理时,可判断在为减函数,不合题意.综上.(Ⅲ).因为函数有两个不同的零点,即有两个不同的零点,即方程的判别式,解得.由,解得,.此时,.随着变化,和的变化情况如下:+ +极大值极小值所以是的极大值点,是的极小值点,所以是极大值,是极小值所以因为,所以,所以.20.(本小题共13分)解:(Ⅰ)满足条件的数列有两个:.(Ⅱ)由(1)知数列满足,把各项分别加后,所得各数依次排在后,因为,所得数列显然满足或,,即得数列.其中,.如此下去即可得到一个满足的数列为:(其中)(写出此通项也可以(其中))(Ⅲ)由题意知,,且.有解:①,,,则,这与是矛盾的.②时,与①类似可得不成立.③时,,则不可能成立.④时,若或,则或.若或,则,类似于③可知不成立.④时,若同号,则,由上面的讨论可知不可能;若或,则或;⑤时,若异号,则,不行;若同号,则,同样由前面的讨论可知与矛盾.综上,只能为或,且(2)中的数列是的情形,将(2)中的数列倒过来就是,所以为或.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市朝阳区2015年中考数学二模试题学校 班级 姓名 考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.某种埃博拉病毒(EBV )长0.000 000 665nm左右.将0.000 000 665用科学记数法表示 应为A .0. 665×10-6B .6.65×10-7C .6.65×10-8D .0. 665×10-92A C 3.在下面的四个几何体中,它们各自的左视图与主视图不相同的是A B C D4.如图,在△ABC 中,D 为AB 边上一点,DE ∥BC 交AC 于点E , 若23AD DB ,AE =6,则EC 的长为 A . 6 B. 9 C. 15 D. 185.在一个不透明的盒子中装有n 个小球,它们除了颜色不同外,其余都相同,其中有4个 白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中. 大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n 大约是A . 10 B. 14 C. 16 D. 406.某射击教练对甲、乙两个射击选手的5次成绩(单位:环)进行了统计,如下表 所示:设甲、乙两人射击成绩的平均数分别为x 甲、x 乙,射击成绩的方差分别为2s 甲、2s 乙,则 下列判断中正确的是A .x 甲<x 乙,2s 甲>2s 乙B .x 甲=x 乙,2s 甲<2s 乙C .x 甲=x 乙,22=s s 甲乙D .x 甲=x 乙,2s 甲>2s 乙7.一个隧道的横截面如图所示,它的形状是以点O 为圆心, 5为半径的圆的一部分,M 是⊙O 中弦CD 的中点,EM 经过圆心O 交⊙O 于点E ,若CD =6,则隧道的高(ME 的 长)为A .4B .6C .8D .98.某数学课外活动小组利用一个有进水管与出水管的容器 模拟水池蓄水情况:从某时刻开始,5分钟内只进水不出 水,在随后的10分钟内既进水又出水,每分钟的进水量和 出水量是两个常数.容器内的蓄水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则第12分钟容器内的 蓄水量为A. 22B. 25C. 27D. 289. 如图,点M 、N 分别在矩形ABCD 边AD 、BC 上,将 矩形ABCD 沿MN 翻折后点C 恰好与点A 重合,若 此时BN CN =13,则△AMD′ 的面积与△AMN 的面积的比为 A .1:3 B .1:4 C .1:6 D .1: 910. 如图,矩形ABCD 中,E 为AD 中点,点F 为BC 上的动点(不 与B 、C 重合).连接EF ,以EF 为直径的圆分别交BE ,CE 于点G 、H . 设BF 的长度为x ,弦FG 与FH 的长度和为y ,则 下列图象中,能表示y 与x 之间的函数关系的图象大致是A B C D二、填空题(本题共18分,每小题3分) 11.若分式162+-x x 的值为0,则x 的值为 . 12.分解因式:22312x y - .13.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为 .14. 如图,△ABC 中,AB=AC ,AD 是BC 边中线,分别以点A 、C 为圆心,以大于12AC 长为半径画弧,两弧交点分别为点E 、F ,直线EF 与AD 相交于点O ,若OA =2,则△ABC 外接圆的面积为 .(第14题) (第15题)15.如图,点B 在线段AE 上,∠1=∠2,如果添加一个条件,即可得到△ABC ≌△ABD ,那么这个条件可以是 (要求:不在图中添加其他辅助线,写出一个条件即可 ). 16.如果一个平行四边形一个内角的平分线分它的一边为1:2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,它的周长为 .17.已知:如图,在△ABC 中,∠ACB =90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D . 求证:BE=CD .18.计算:-2018cos60(2π⎛⎫- ⎪⎝⎭.19.解不等式12212333x x --≥,并把它的解集在数轴上表示出来.20.已知a b -2(2)(2)4(1)a b b a a -+-+-的值.21.如图,一次函数y kx b =+()0≠k 的图象与反比例函数 my x=()0≠m 的图象交于A (-3,1),B (1,n )两点. (1)求反比例函数和一次函数的表达式;(2)设直线AB 与y 轴交于点C ,若点P 在x 轴上,使BP =AC ,请直接写出点P 的坐标.22.列方程或方程组解应用题:23.如图,点F 在□ABCD 的对角线AC 上,过点F 、 B 分别作AB 、AC 的平行线相交于点E ,连接BF ,∠ABF=∠FBC+∠FCB . (1)求证:四边形ABEF 是菱形; (2)若BE=5,AD=8,21sin =∠CBE ,求AC 的长.24.某校为了更好的开展“学校特色体育教育”,从全校八年级的各班分别随机抽取了5名男生和5名女生,组成了一个容量为60的样本,进行各项体育项目的测试,了解他们的身体素质情况.下表是整理样本数据,得到的关于每个个体的测试成绩的部分统计表、图:(说明:40---55分为不合格,55---70分为合格,70---85分为良好,85---100分为优秀) 请根据以上信息,解答下列问题: (1)表中的a = ,b= ;(2)请根据频数分布表,画出相应的频数分布直方图;(3)如果该校八年级共有150名学生,根据以上数据,估计该校八年级学生身体素质良好及以上的人数为 .25.如图,⊙O 是△ABC 的外接圆,AB= AC ,BD 是⊙O的直径,PA ∥BC ,与DB 的延长线交于点P ,连接AD . (1)求证:PA 是⊙O 的切线; (2)若BC =4 ,求AD 的长.正正正 正26.阅读下面材料:小凯遇到这样一个问题:如图1,在四边形ABCD 中,对角线AC 、BD 相交于点O ,AC =4,BD =6,∠AOB =30°,求四边形ABCD 的面积.小凯发现,分别过点A 、C 作直线BD 的垂线,垂足分别为点E 、F ,设AO 为m ,通过计算△ABD 与△BCD 的面积和使问题得到解决(如图2).请回答:(1)△ABD 的面积为 (用含m 的式子表示). (2)求四边形ABCD 的面积.参考小凯思考问题的方法,解决问题:如图3,在四边形ABCD 中,对角线AC 、BD 相交于 点O ,AC =a ,BD =b ,∠AOB =α(0°<α<90°),则四边形ABCD 的面积为 (用含a 、b 、α的式子表示).五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. 已知:关于x 的一元二次方程22(1)20(0)ax a x a a --+-=>. (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中1x >2x ).若y 是关于a 的函数,且21y ax x =+,求这个函数的表达式;(3)在(2)的条件下,结合函数的图象回答:若使231y a ≤-+,则自变量a 的取值范围为 .图1 图2图328.数学活动课上,老师提出这样一个问题:如果AB =BC ,∠ABC =60°,∠APC =30°,连接PB ,那么PA 、PB 、PC 之间会有怎样的等量关系呢?经过思考后,部分同学进行了如下的交流:小蕾:我将图形进行了特殊化,让点P 在BA 延长线上(如图1),得到了一个猜想:PA 2+PC 2=PB 2 .小东:我假设点P 在∠ABC 的内部,根据题目条件,这个图形具有“共端点等线段”的特点,可以利用旋转解决问题,旋转△PAB 后得到△P′C B ,并且可推出△PBP′ ,△PCP ′ 分别是等边三角形、直角三角形,就能得到猜想和证明方法. 这时老师对同学们说,请大家完成以下问题: (1)如图2,点P 在∠ABC 的内部,①PA =4,PC=PB= .②用等式表示PA 、PB 、PC 之间的数量关系,并证明.(2)对于点P 的其他位置,是否始终具有②中的结论?若是,请证明;若不是,请举例说明.29.如图,顶点为A (-4,4)的二次函数图象经过原点(0,0),点P 在该图象上,OP 交其对称轴l 于点M ,点M 、N 关于点A 对称,连接PN ,ON . (1)求该二次函数的表达式; (2)若点P 的坐标是(-6,3),求△OPN 的面积;(3)当点P 在对称轴l 左侧的二次函数图象上运动时,请解答下面问题:① 求证:∠PNM =∠ONM ;② 若△OPN 为直角三角形,请直接写出所有符合 条件的点P 的坐标.图1 图2草稿纸北京市朝阳区九年级综合练习(二)数学试卷答案及评分参考 2015.6一、选择题(本题共30分,每小题3分)二、填空题 (本题共18分,每小题3分) 11. 312. )2)(2(3y x y x -+13. 214. π415. 答案不惟一,例如D C ∠=∠ 16. 8或10(写出一个正确结果给1分)三、解答题(本题共30分,每小题5分) 17. 证明:∵BE ⊥CE ,AD ⊥CE ,∴∠BEC=∠CDA =90°. ………………………1分 ∴∠EBC +∠ECB =90°. 又∵∠DCA +∠ECB =90°,∴∠EBC=∠DCA . ………………………………2分 又∵BC=AC ,……………………………………3分∴△BEC ≌△CDA . ………………………………………………………………4分 ∴BE =CD . ………………………………………………………………………5分18. 解:原式 =1218324-⨯-+. ………………………………………………………4分 =132-. ……………………………………………………………………5分19. 解:2443-≥-x x .……………………………………………………………………1分4243+-≥-x x .……………………………………………………………………2分2≥-x . …………………………………………………………………………3分解得2-≤x . ………………………………………………………………………4分 …………………………5分20. 解:)1(4)2()2(2-+-+-a a b b a=4424422-+-++-a ab b a a . ……………………………………………3分 =ab b a 222-+=2)(b a -.……………………………………………………………………………4分 ∵2=-b a ,∴原式=2)2(2=. ………………………………………………………………5分21. 解:(1)把A (-3,1)代入,有31-=m, 解得3-=m .∴反比例函数的表达式为xy 3-=. ……………………………………1分 当1=x 时,313-=-=y . ∴B (1,-3). …………………………………………………………2分 把A (-3,1),B (1,-3)代入b kx y +=,有⎩⎨⎧+=-+-=b k bk 331, 解得⎩⎨⎧-=-=21b k .∴一次函数的表达式为2--=x y . ……………………………………3分 (2)(4,0)或(-2,0). ……………………………………………………5分22. 解:设小白家这两年用水的年平均下降率为x . …………………………………………1分由题意,得1264000)1(%3630002=-⋅x . ………………………………………2分 解得 8.11=x ,2.02=x . ……………………………………………3分 ∵8.1=x 不符合题意,舍去. ………………………………………………4分 ∴%.20=x答:小白家这两年用水的年平均下降率为%.20 ………………………………5分四、解答题(本题共20分,每小题5分) 23.(1)证明:∵EF ∥AB ,BE ∥AF ,∴四边形ABEF 是平行四边形.∵∠ABF=∠FBC +∠FCB ,∠AFB=∠FBC +∠FCB ,∴∠ABF=∠AFB . …………………………………………………………………1分 ∴AB =AF .∴□ABEF 是菱形. ………………………………………………………………2分 (2)解:作DH ⊥AC 于点H ,∵21sin =∠CBE , ∴︒=∠30CBE . ∵BE ∥AC , ∴CBE ∠=∠1. ∵AD ∥BC , ∴12∠=∠.∴︒=∠=∠302CBE .Rt△ADH 中,342cos =∠⋅=AD AH .………………………………………………3分 42sin =∠⋅=AD DH .∵四边形ABEF 是菱形, ∴CD= AB=BE=5, Rt△CDH 中,322=-=DH CD CH . ………………………………………………4分∴334+=+=CH AH AC .…………………………………………5分24.(1)18,50%. …………………………………………………………………………2分 (2)…………………………………………4分(3)120. ………………………………………………………………………………5分25.(1)证明:连接OA 交BC 于点E ,由AB =AC 可得OA ⊥BC .………………………1分 ∵PA ∥BC ,∴∠PAO =∠BEO =90°. ∵OA 为⊙O 的半径,∴PA 为⊙O 的切线. …………………………… 2分 (2)解:根据(1)可得CE =21BC=2. Rt△ACE 中,122=-=CE AC AE . ………………………………3分∴tan C =21=CE AE . ∵BD 是直径,∴∠BAD =90°.…………………………………………………………4分 又∵∠D =∠C , ∴AD =52tan =DAB.………………………………………………………5分 26. 解:(1)32m ;……………………………………………………………………………1分(2)由题意可知∠AEO =90°.∵ AO = m ,∠AOB =30°,∴AE =12m .∴S △ABD =m AE BD 2321=⋅. 同理,CF =1(4)2m -.∴S △BCD =m CF BD 23621-=⋅.…………………………………………………2分 ∴S 四边形ABCD = S △ABD +S △BCD 6=.…………………………………………………3分解决问题:αsin 21⋅ab .………………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. (1)证明:22(1)20(0)ax a x a a --+-=>是关于x 的一元二次方程,2[2(1)]4(2)a a a ∴∆=---- ···················· 1分=4. 即0∆>.∴方程有两个不相等的实数根. ·················· 2分 (2) 解:由求根公式,得2(1)22a x a-±=. ∴1x =或21x a=-. ······················· 3分 0a > ,1x >2x ,11x ∴=,221x a=-. ······················· 4分 211y ax x a ∴=+=-.即1(0)y a a =->为所求.………………………………………………………5分(3)0<a ≤23.…………………………………………………………………………7分28. (1)①72;……………………………………………………………………………1分②222PB PC PA =+. ..................................................................2分 证明:作∠PBP ′=∠ABC =60°,且使BP ′=BP ,连接P ′C 、P ′P . (3)分∴∠1=∠2. ∵AB =CB ,∴△ABP ≌△CBP′. …………………………4分∴PA =P ′C ,∠A =∠BCP ′. 在四边形ABCP 中,∵∠ABC =60°,∠APC =30°, ∴∠A +∠BCP =270°. ∴∠BCP ′+∠BCP =270°.∴∠PCP ′=360°-(∠BCP ′+∠BCP )=90°. ……………………………………5分 ∵△PBP ′是等边三角形. ∴PP ′=PB .在Rt △PCP ′中,222''P P PC C P =+.……………………………………………6分 ∴222PB PC PA =+.(2)点P 在其他位置时,不是始终具有②中猜想的结论,举例: 如图,当点P 在CB 的延长线上时,结论为222PC PB PA =+. (说明:答案不惟一)……………………………………………………………………………………………7分29.(1)解:设二次函数的表达式为4)4(2++=x a y , 把点(0,0)代入表达式,解得41-=a . ………………………………………1分 ∴二次函数的表达式为4)4(412++-=x y , 即x x y 2412--=. ……………………………………………………………2分 (2)解:设直线OP 为y kx =,将P (-6,3)代入y kx =,解得12k =-, ∴12y x =-. 当4-=x 时,2=y .∴M (-4,2). ……………………………………………………………………3分 ∵点M 、N 关于点A 对称, ∴N (-4,6). ∴MN =4.∴12=+=∆∆∆PMN O MN PO N S S S . ……………………………………………………4分(3)①证明:设点P 的坐标为)241,(2t t t --, 其中4-<t ,设直线OP 为x k y '=, 将P )241,(2t t t --代入x k y '=,解得'=k ∴x t y 48+-=. 当4-=x 时,8+=t y . ∴M (-4,8+t ).∴AN =AM =)8(4+-t =4--t .设对称轴l 交x 轴于点B ,作PC ⊥l 于点C 则B (-4,0),C )241,4(2t t ---. ∴OB =4,NB =)4(4--+t =t -,PC =-4NC =)241(2t t t ----=t t +241.则44412tt tt PC NC -=--+=,44t t OBNB -=-=. ∴OBNBPC NC =. 又∵∠NCP =∠NBO =90°, ∴△NCP ∽△NBO .∴∠PNM =∠ONM . …………………………………………………………………6分 ② (4,244---). ………………………………………………………………8分其他正确解法,请参考标准给分.。