辽宁省师大附中2018_2019学年高一数学下学期期末考试试题
辽宁省师大附中高一期中考试(数学理).doc

辽宁省师大附中-高一期中考试(数学理)时间:1; 分数: 150分;一选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只 有一项是符合题目要求)1已知x 为第三象限角,化简=-x 2cos 1( )A. x sin 2B. x sin 2-x cos 2 D. x cos 2-2等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S等于( ) A .66 B .99C .144D .2973 △ABC 中,∠A 、∠B 的对边分别为a 、b ,4=a ,5=b 且∠A=60°,那么 满足条件的△ABC ( )A .有一个解B .有两个解C .无解D .不能确定4若0<<a b ,则下列结论不正确的是( )A 22b a <B 2b ab <C a b ab +<D ba b a -=- 5tan 20tan 4020tan 40︒︒︒︒+的值为( )A 1 BCD6设n S 是等差数列{}n a 的前n 项和,若59355,9a S a S ==则( ) A 1 B 1- C 2 D 127在△ABC 中,已知sinA:sinB:sinC =2:3:4,则此三角形是 ( )A 锐角三角形B 直角三角形C 钝角三角形D 不能确定8已知c b a ,,均为正实数,则)11)((c b a c b a ++++的最小值为( )A 2B 4C 6D 89已知等比数列{}n a 中,21=a ,21=q ,则2232221n a a a a ++++ 等于( )A])21(1[4n - B ])41(1[38n - C ])41(1[316n - D ])21(1[8n -10下列不等式中,对任意x ∈R 都成立的是 ( )A .2111x <+ B .x2+1>2x C .lg(x2+1)≥lg2x D .244x x +≤111 数列,)22(21,861,641,421+⨯⨯⨯⨯n n 的前n 项和为( )A 22+n nB 44+n nC 12+n nD 122+n n12在等比数列{}n a 中, )(0*N n an∈>,公比),1,0(∈q 且252825351=++a a a a a a ,又3a 与5a 的等比中项为2,nn a b 2log =,数列{}n b 的前n 项和为n S ,则当n S S S n+++ 2121最大时,n 的值等于 ( ) A 8 B 9 C 8或9 D 17二、填空题:(本大题共4小题;每小题5分,共把答案填在题中的横线上.)13若0>x ,0>y 且12=+y x ,则xy 的最大值为___________14设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =___________15设数列{}n a 中,112,1n n a a a n +==++,则通项n a = ___________ 。
湖南四大名校内部资料试卷-2018-2019-1师大附中高一期末考

湖南师大附中2018-2019高一第一学期数学期末考试数 学时量:120分钟 满分:150分一、选择题(共12小题,每小题5分,共60分)1.已知集合{}1,1,0M =-,{}0,1,2N =,则M N =I ( )A.{}0,1B.{}1,0,2-C.{}1,0,1,2-D.{}1,0,1- 2.若直线过点()1,2A -,()3,243B +,则此直线的倾斜角为( )A.30oB.45oC.60oD.90o 3.已知两条直线a ,b ,两个平面α,β,下面四个命题中不正确的是( )A.a α⊥,//αβ,b a b β⊂⇒⊥B.//αβ,//a b ,a b αβ⊥⇒⊥C.a α⊥,//b a b α⊥⇒D.//a b ,////a b αα⇒4.函数21x y =-的定义域为( )A.(),0-∞B.[)0,+∞C.(),1-∞-D.()1,+∞ 5.在空间直角坐标系中,点()0,2,1A ,()2,0,2B ,点A 关于平面xOy 对称的点为A ',则A ',B 两点间的距离A B '为( )A.32B.17C.4D.36.如图,OAB ∆是边长为2的正三角形,记OAB ∆位于直线()0x t t =>,左侧的图形的面积为()f t .则函数()y f t =的图像为( )A. B.C. D.7.如图,将一个长方体1111ABCD A B C D -由四个面的对角线截出一个棱锥11A B CD -,则棱锥11A B CD -的体积与长方体1111ABCD A B C D -的体积之比是( )A.2:3B.1:2C.1:3D.1:68.设函数()()()ln 1ln 1f x x x =+--,则()f x 是( )A.奇函数,且在()0,1上是增函数B.奇函数,且在()0,1上是减函数C.偶函数,且在()0,1上是增函数D.偶函数,且在()0,1上是减函数 9.圆心在直线13y x =上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得的弦长为42,则圆C 的标准方程为( )A.()()22319x y -+-=B.()()22319x y +++=C.()2244163x y ⎛⎫-+-= ⎪⎝⎭D.()()22629x y -+-= 10.底面为正方形的直四棱柱1111ABCD A B C D -中12AA AB =,则异面直线1CD 与11A C 所成角的余弦值为( )A.2B.12C.3D.10 11.若动点()11,M x y ,()22,N x y 分别在直线1:20l x y -+=,2:100l x y -+=上移动,则MN 中点Q 到原点距离的最小值为( )A.23B.32C.33D.42 12.设函数()x x x f x a b c =+-,其中0c a >>,0c b >>,若a ,b ,c 是ABC ∆的三条边长.现有下列命题:①任意(),1x ∈-∞,()0f x >②若a b =,则()f x 的零点的取值范围为()0,1③若222a b c +<,则存在()1,2x ∈,使得()0f x =.其中所有正确命题的序号为( )A.①B.①③C.②③D.①②③二、填空题(本大题共4个小题,每小题5分,共20分)13.已知直线l 过点()2,1-且与直线230x y -+=垂直,则直线l 的方程为___________(请用直线方程的一般式表示).14.已知11225x x -+=,则1x x -+=___________.15.已知()1,2B -、()5,1C ,若CAB ∠的平分线在1y x =+上,则AC 所在直线方程是___________.16.如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD 沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK AB ⊥,K 为垂足.设AK t =,则t 的取值范围是___________.三、解答题(本大题共6个小题,共70分)17.(本小题满分10分)已知函数()f x 是定义域为R 的奇函数,且当0x >时,()22f x x x =-,现已画出函数()f x 在y 轴右侧的图象,如图所示:(Ⅰ)请补出完整函数()y f x =的图象;(Ⅱ)根据图象写出()f x 的单调区间.如图,四棱锥E ABCD -中,平面EBA ⊥平面ABCD ,侧面ABE 是等腰直角三角形,EA EB =,//AB CD ,AB BC ⊥,222AB CD BC ===.(Ⅰ)求证:AB ED ⊥;(Ⅱ)求直线CE 与平面ABCD 的所成角的正弦值.19.(本小题满分12分)已知圆M 过()2,2A ,()6,0B ,且圆心在直线40x y --=上.(Ⅰ)求此圆的方程;(Ⅱ)求与直线350x y -+=垂直且与圆相切的直线方程;(Ⅲ)若点P 为圆M 上任意点,求ABP ∆的面积的最大值.20.(本小题满分12分)如图所示,平面ABCD ⊥平面BCEF ,且四边形ABCD 为矩形,四边形BCEF 为直角梯形,//BF CE ,BC CE ⊥,4DC CE ==,2BC BF ==.(Ⅰ)求证//AF 平面CDE ;(Ⅱ)求二面角A EF C --的正切值.如图,某海面上有O 、A 、B 三个小岛(面积大小忽略不计),A 岛在O 岛的东北方向202km 处,B 岛在O 岛的正东方向10km 处.(Ⅰ)以O 为坐标原点,O 的正东方向为x 轴正方向,1km 为单位长度,建立平面直角坐标系,试写出A 、B 的坐标,并A 、B 两岛之间的距离;(Ⅱ)已知在经过O 、A 、B 三个点的圆形区域内有未知暗礁,现有一船在O 岛的南偏西30o 方向距O 岛20km 处,正沿东北方向行驶,若不改变方向,试问该船有没有触礁的危险?22.(本小题满分12分)已知0a >,函数()21log f x a x ⎛⎫=+ ⎪⎝⎭. (Ⅰ)证明:()f x 在()0,+∞上单调递减;(Ⅱ)若对任意1,12t ⎡⎤∈⎢⎥⎣⎦,函数()f x 在区间[],1t t +上的最大值与最小值的差不超过1,求a 的取值范围;(Ⅲ)若关于x 的方程()()2log 4250f x a x a --+-=⎡⎤⎣⎦的解集中恰好有一个元素,求a 的取值范围.。
湖南省长沙市湖南师大附中高新实验中学2018-2019学年八年级下学期期末数学试题(含答案及解析)

湖南师大附中高新实验中学 2018—2019 学年度第二学期八年级期末考数学试卷一、选择题(本题共 12 个小题,每小题 3 分,满分 36 分)1. 下列函数中,y 是x 的正比例函数的是( ) A. 3x y =B. 21y x =-C. 22y x =D. 21y x =-+【答案】A 【解析】 【分析】根据正比例函数的定义逐一判断即可. 【详解】A. 3xy =是正比例函数,故A 符合题意; B. 21y x =-不是正比例函数,故B 不符合题意; C. 22y x =不是正比例函数,故C 不符合题意; D. 21y x =-+不是正比例函数,故D 不符合题意. 故选A.【点睛】此题考查的是正比例函数,掌握正比例函数的定义是解决此题的关键. 2. 方程x (x ﹣1)=0的根是( ) A. x =0 B. x =1C. x 1=0,x 2=1D. x 1=0,x 2=﹣1【答案】C 【解析】 【分析】由题意推出x =0,或(x ﹣1)=0,解方程即可求出x 的值. 【详解】解:∵x (x ﹣1)=0, ∴x 1=0,x 2=1, 故选C .【点睛】此题考查的是一元二次方程的解法,掌握用因式分解法解一元二次方程是解决此题的关键. 3. 甲、乙、丙、丁参加体育训练,近期10次跳绳测试的平均成绩都是每分钟174个,其方差如下表: 选手甲乙丙丁方差 0.0230.0180.0200.021则这10次跳绳中,这四个人发挥最稳定的是( ) A. 甲 B. 乙C. 丙D. 丁【答案】B 【解析】试题分析:方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.由S 乙2<S 丙2<S 丁2<S 甲2, ∴这10次跳绳中,这四个人发挥最稳定的是乙. 故选B .考点:方差,算术平均数.4. 已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是( ) A. 1 B. ﹣1C. 0D. 无法确定【答案】B 【解析】解:根据题意得:(m ﹣1)+1+1=0, 解得:m=﹣1. 故选B5. 若将抛物线y=x 2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为( ) A. ()223y x =++ B. ()223y x =-+C. ()223y x =+-D. ()223y x =--【答案】B 【解析】试题分析:∵函数y=x 2的图象的顶点坐标为()0,?0,将函数y=x 2的图象向右平移2个单位,再向上平移3个单位,∴其顶点也向右平移2个单位,再向上平移3个单位.根据根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.∴平移后,新图象的顶点坐标是()()02,?032,?3++⇒.∴所得抛物线的表达式为()223y x=-+.故选B.考点:二次函数图象与平移变换.6. 已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:x ﹣1 0 1 2 3y 5 1 ﹣1 ﹣1 1则该二次函数图象的对称轴为()A. y轴B. 直线x=52C. 直线x=1D. 直线x=32【答案】D 【解析】观察表格可知:当x=0和x=3时,函数值相同,∴对称轴为直线x=03322+=.故选D.7. 对一组数据:﹣2,1,2,1,下列说法不正确的是()A. 平均数是1B. 众数是1C. 中位数是1D. 极差是4【答案】A【解析】试题分析:A、这组数据的平均数是:(﹣2+1+2+1)÷4=,故原来的说法不正确;B、1出现了2次,出现的次数最多,则众数是1,故原来的说法正确;C、把这组数据从小到大排列为:﹣2,1,1,2,中位数是1,故原来的说法正确;D、极差是:2﹣(﹣2)=4,故原来的说法正确.故选A.考点:极差,算术平均数,中位数,众数.8. 一次函数y = 2x - 2 的大致图象是()A. B. C. D.【答案】A【解析】【分析】先判断出k、b的值,再根据一次函数的性质可画出函数的大致图象.【详解】解:∵k=2,b=-2,∴函数y=2x-2的图象经过第一、三、四象限.故选A.【点睛】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.9. 如图,在平行四边形ABCD中,下列各式不一定正确的是()A.012180∠+∠=B. 023180∠+∠=C. 034180∠+∠=D. 024180∠+∠=【答案】D 【解析】由▱ABCD的性质及图形可知:A、∠1和∠2是邻补角,故∠1+∠2=180°,正确;B、因为AD∥BC,所以∠2+∠3=180°,正确;C、因为AB∥CD,所以∠3+∠4=180°,正确;D、根据平行四边形的对角相等,∠2=∠4,∠2+∠4=180°不一定正确;故选D.10. P1(x1,y1),P2(x2,y2)是正比例函数1y x2=-图象上的两点,下列判断中,正确的是A. y1>y2 B. y1<y2C. 当x 1<x 2时,y 1<y 2D. 当x 1<x 2时,y 1>y 2【答案】D 【解析】试题分析:∵1y x 2=-,k=12-<0,∴y 随x 的增大而减小. ∴当x 1<x 2时,y 1>y 2.故选D . 11. 如图所示,函数1y x =和21433y x =+的图象相交于(–1,1),(2,2)两点.当12y y >时,x 的取值范围是( )A. x <–1B. x <–1或x >2C. x >2D. –1<x <2【答案】B 【解析】试题解析:当x≥0时,y 1=x ,又21433y x =+, ∵两直线的交点为(2,2), ∴当x <0时,y 1=-x ,又21433y x =+, ∵两直线的交点为(-1,1),由图象可知:当y 1>y 2时x 的取值范围为:x <-1或x >2. 故选B .12. 已知二次函数22y ax bx =--(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a ﹣b 为整数时,ab 的值为( ) A.34或1 B.14或1 C.34或12D.14或34【答案】A 【解析】 【分析】首先根据题意确定a 、b 的符号,然后进一步确定a 的取值范围,根据a ﹣b 为整数确定a 、b 的值,从而确定答案.【详解】依题意知a >0,2ba>0,a+b ﹣2=0, 故b >0,且b=2﹣a , a ﹣b=a ﹣(2﹣a )=2a ﹣2, 于是0<a <2, ∴﹣2<2a ﹣2<2, 又a ﹣b 为整数, ∴2a ﹣2=﹣1,0,1,故a=12,1,32, b=32,1,12, ∴ab=34或1,故选A .【点睛】根据开口和对称轴可以得到b 的范围.按照左同右异规则.当对称轴在y 轴的左侧,则a,b 符号相同,在右侧则a,b 符号相反.二、填空题(本题共 6 个小题,每小题 3 分,满分 18 分)13. 直线 y =2x +3 与 x 轴相交于点 A ,则点 A 的坐标为_____. 【答案】(−32,0) 【解析】 【分析】根据一次函数与x 轴的交点,y=0;即可求出A 点的坐标. 【详解】解:∵当y=0时,有2x 30+=,解得:3x 2=-, ∴A 点的坐标为(−32,0); 故答案为(−32,0). 【点睛】本题考查了一次函数与x 轴的交点坐标,解答此题的关键是熟知一次函数与坐标轴的交点,与x 轴有交点,则y=0. 14. 函数y=1的自变量x 的取值范围是_____.【答案】x≥0 【解析】试题分析:根据二次根式有意义的条件是被开方数大于等于0,可知x≥0. 考点:二次根式有意义15. 如图菱形 ABCD 的对角线 AC ,BD 的长分别为 12 cm ,16 cm ,则这个菱形的周长为____.【答案】40cm 【解析】 【分析】根据菱形的对角线互相垂直平分可得AC ⊥BD ,OA=12AC ,OB=12BD ,再利用勾股定理列式求出AB ,然后根据菱形的四条边都相等列式计算即可得解. 【详解】解:∵四边形ABCD 是菱形, ∴AC ⊥BD ,OA=12AC=12×12=6cm , OB=12BD=12×16=8cm , 根据勾股定理得,22226810AB OA OB ++=, 所以,这个菱形的周长=4×10=40cm . 故答案为40cm.【点睛】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记. 16. 若关于 y 的一元二次方程 y 2﹣4y +k +3=﹣2y +4 有实根,则 k 的取值范围是_____. 【答案】k 2≤ 【解析】 【分析】首先把方程化为一般形式,再根据方程有实根可得△=240b ac -≥,再代入a 、b 、c 的值再解不等式即可. 【详解】解:y 2﹣4y +k +3=﹣2y +4,化为一般式得:2210y y k -+-=, 再根据方程有实根可得:△=240b ac -≥,则2241k 10--⨯⨯-≥()(),解得:k 2≤;∴则 k 的取值范围是:k 2≤. 故答案为k 2≤.【点睛】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.17. 在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高度为 1m ,那么它的下部应设计的高度为_____. 【答案】512- 【解析】 【分析】设雕像的下部高为x m ,则上部长为(1-x )m ,然后根据题意列出方程求解即可. 【详解】解:设雕像的下部高为x m ,则题意得:11x xx -=, 整理得:210x x +-=, 解得:1512x =- 或 2512x =-- (舍去); ∴它的下部应设计的高度为5122-:. 故答案为512-. 【点睛】本题考查了黄金分割,解题的关键在于读懂题目信息并列出比例式,难度不大.18. 二次函数 y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴是直线 x =1,则下列四个结论:①c >0; ②2a +b =0; ③b 2-4ac >0; ④a -b +c >0;正确的是_____.【答案】①②③ 【解析】 【分析】由抛物线开口方向得到a <0,由抛物线与y 轴交点位置得到c >0,则可对①进行判断;利用抛物线的对称轴方程可对②进行判断;由抛物线与x 轴的交点个数可对③进行判断;由于x=-1时函数值小于0,则可对④进行判断.【详解】解:∵抛物线开口向下,∴a <0,∵抛物线与y 轴交点位于y 轴正半轴, ∴c >0,所以①正确; ∵抛物线的对称轴为直线x 12ba=-=, ∴b=-2a ,即2a+b=0,所以②正确; ∵抛物线与x 轴有两个不同的交点, ∴b2-4ac >0,所以③正确; ∵x=-1时,y <0, ∴a-b+c <0,所以④错误. 故答案为①②③.【点睛】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b2-4ac <0时,抛物线与x 轴没有交点.三.解答题(本题共 8 个小题,满分 66 分)19. 已知y 是x 的一次函数,当x=3时,y=1;当x=−2时,y=−4,求这个一次函数的解析式. 【答案】y=x-2. 【解析】试题分析:设这个一次函数的解析式为y="kx+b," 分别将x=3,y=1和x=−2,y=−4分别代入y=kx+b 得方程组,解这个方程组即可求得k 、b 的值,也就求得了函数的解析式.试题解析:解:设这个一次函数的解析式为y="kx+b," 将x=3,y=1和x=−2,y=−4分别代入y=kx+b 得,31{24k b k b +=-+=-, 解这个方程组得,1{2k b ==-.∴所求一次函数的解析式为y=x —2. 考点:用待定系数法求函数解析式.20. 已知:12x x 、是一元二次方程2510x x --=的两实数根. (1)求 1222+x x 的值; (2)求 x 1- x 2的值. 【答案】(1)27;(2)29± 【解析】 【分析】(1)根据根与系数的关系,求出12 x x +和 12x x 的值,即可得到答案;(2)根据题意,可得212x x -=()1222122x x x x -+,计算即可得到答案. 【详解】解:(1)∵12,x x 是一元二次方程2510x x --=的两实数根, ∴12x x 5+=,12x x 1=-,∴122221212225227x x x x x x =+-=+=+();(2)根据题意,212x x -=()122212227229x x x x -=+=+, ∴12x x 29-=±;【点睛】本题考查了一元二次方程的根与系数的关系,解题的关键是掌握12b x x a +=-,12cx x a=,然后变形计算即可.21. 七年级某班体育委员统计了全班同学 60 秒垫排球次数,并列出下列频数分布表:次数 0≤x <10 10≤x <2020≤x <30 30≤x <4040≤x <5050≤x <60频数14211554(1)全班共有 名同学;(2)垫排球次数 x 在 20≤x <40 范围的同学有 名,占全班人数的 %;(3)若使垫排球次数 x 在 20≤x <40 范围的同学到九年级毕业时占全班人数的 87.12%,则八、九年级平均每年的垫排球次数增长率为多少? 【答案】(1)50;(2)36,72;(3)10%. 【解析】 【分析】(1)由图可知所有的频数之和即为人数;(2)由图可知,把20≤x <40的两组频数相加即可,然后除以总人数即可得到答案;(3)先计算到九年级20≤x <40的人数,然后设增长率为m ,列出方程,解除m 即可.【详解】解:(1)全班总人数=1+4+21+15+5+4=50(人),故答案为50.(2)垫排球次数 x 在 20≤x <40 范围的同学有:21+15=36(人); 百分比为:36100%72%50⨯=; 故答案为36,72.(3)根据题意,设平均每年的增长率为m ,则2361m 5087.12%⨯+=⨯()解得:120.110% 2.1m m ===-,(舍去),故八、九年级平均每年的垫排球次数增长率为:10%.【点睛】本题考查了一元二次方程的应用和频数分布表,频数分布表能够表示出具体数字,知道频率=频数÷总数和考查根据图表获取信息的能力,以及增长率的计算.解题的关键是在频数分布表中得到正确的信息. 22. 如图,分别以 Rt △ ABC 的直角边 AC 及斜边 AB 向外作等边△ ACD ,等边△ ABE .已知∠ABC =60°,EF ⊥AB ,垂足为 F ,连接 DF .(1)证明:△ACB ≌△EFB ;(2)求证:四边形 ADFE 是平行四边形.【答案】(1)见详解;(2)见详解.【解析】【分析】(1)由△ABE 是等边三角形可知:AB=BE ,∠EBF=60°,于是可得到∠EFB=∠ACB=90°,∠EBF=∠ABC ,接下来依据AAS 证明△ABC ≌△EBF 即可;(2)由△ABC ≌△EBF 可得到EF=AC ,由△ACD 是的等边三角形进而可证明AC=AD=EF ,然后再证明∠BAD=90°,可证明EF ∥AD ,故此可得到四边形EFDA 为平行四边形.【详解】解:(1)证明:∵△ABE 是等边三角形,EF ⊥AB ,∴∠EBF=60°,AE=BE ,∠EFB=90°.又∵∠ACB=90°,∠ABC=60°,∴∠EFB=∠ACB,∠EBF=∠ABC.∵BE=BA,∴△ABC≌△EBF(AAS).(2)证明:∵△ABC≌△EBF,∴EF=AC.∵△ACD是的等边三角形,∴AC=AD=EF,∠CAD=60°,又∵Rt△ABC中,∠ABC=60°,∠BAC=30°,∴∠BAD=∠BAC+∠CAD=90°,∴∠EFA=∠BAD=90°,∴EF∥AD.又∵EF=AD,∴四边形EFDA是平行四边形.【点睛】本题主要考查了平行四边形的判定、全等三角形的性质和判定、等边三角形的性质,解题的关键是掌握证明全等三角形的判定方法和证明平行四边形的判定方法.23. 2019 年7 月1 日,《上海市生活垃圾管理条例》正式实施,生活垃圾按照“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”的分类标准.没有垃圾分类和未指定投放到指定垃圾桶内等会被罚款和行政处罚.垃圾分类制度即将在全国范围内实施,很多商家推出售卖垃圾分类桶,某商店经销垃圾分类桶.现有如下信息:信息1:一个垃圾分类桶的售价比进价高12 元;信息2:卖3 个垃圾分类桶的费用可进货该垃圾分类桶 4 个;请根据以上信息,解答下列问题:(1)该商品的进价和售价各多少元?(2)商店平均每天卖出垃圾分类桶16 个.经调查发现,若销售单价每降低1 元,每天可多售出2 个.为了使每天获取更大的利润,垃圾分类桶的售价为多少元时,商店每天获取的利润最大?每天的最大利润是多少?【答案】(1)进价为36元,售价为48元;(2)当售价为46元时,商店每天获利最大,最大利润为:200元.【解析】【分析】(1)根据题意,设一个垃圾分类桶的进价为x 元,则售价为(x+12)元,列出方程,解方程即可得到答案; (2)根据题意,可设每天获利为w ,当垃圾分类桶的售价为y 元时,每天获利w 最大,然后列出方程,解出方程即可得到答案.【详解】解:(1)设一个垃圾分类桶的进价为x 元,则售价为(x+12)元,则3x 124x ⨯+=,解得:x 36=,∴售价为:36+12=48元.答:一个垃圾分类桶的进价为36元,售价为48元;(2)设每天获利为w ,当一个垃圾分类桶的售价为y 元时,每天获利最大,则()()w y 3616248y ⎡⎤=-⨯+-⎣⎦,整理得:()2w 246200y =--+;∴当y 46= 时,商店每天获利最大,最大利润为:200元.【点睛】该题以二次函数为载体,以二元一次方程组的应用、二次函数的性质及其应用为考查的核心构造而成;解题的关键是深入把握题意,准确找出命题中隐含的数量关系;灵活运用有关性质来分析、判断、解答.24. 定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图 1,等腰直角四边形 ABCD ,AB =BC ,∠ABC =90°.图 1①若 AB =CD =1,AB ∥CD ,求对角线 BD 的长.②若 AC ⊥BD ,求证:AD =CD ;(2) 如图 2,矩形 ABCD 的长宽为方程 2x -14x +40=0 的两根,其中(BC >AB ),点 E 从 A 点出发,以 1 个单位每秒的速度向终点 D 运动;同时点 F 从 C 点出发,以 2 个单位每秒的速度向终点 B 运动,当点 E 、F 运动过程中使四边形 ABFE 是等腰直角四边形时,求 EF 的长.图2【答案】(1)①BD=2;②证明见详解;(2)25或17【解析】【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)先解方程,求出AB和BC的长度,然后根据题意,讨论当AB=AE,或AB=BF时,四边形ABFE是等腰直角四边形.当AB=AE=4时,连接EF,过F作FG⊥AE,交AE于点G,可得运动的时间为4s,可得CF=8,然后得到GE=2,利用勾股定理得到EF的长度;当AB=BF=4时,连接EF,过点E作EH⊥BF,交BF于点H ,可得CF=6,运动的时间为3s,可得AE=3,然后得到FH=1,利用勾股定理求得EF的长度. 【详解】解:(1)①∵AB=CD=1,AB∥CD,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC=22112+=;②如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠BAC=∠BCA,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)由AB和BC的长度是方程2x-14x+40=0的两根,则解方程:2x -14x +40=0得,12410x x ==,,∵BC >AB ,∴AB=4,BC=10.根据题意,当AB=AE 和AB=BF 时,四边形ABFE 是等腰直角四边形;当AB=AE 时,如图,连接EF ,过F 作FG ⊥AE ,交AE 于点G :∴AB=AE=4,四边形ABFG 是矩形,∴运动的时间为:414s ÷=,∴CF=248⨯=,∴BF=2=AG ,∴GE=2,GF=AB=4,由勾股定理得:EF=222425+=;当AB=BF 时,如图,连接EF ,过点E 作EH ⊥BF ,交BF 于点H :∴AB=BF=4,∴CF=10-4=6, 则运动的时间为:623s ÷=,∴AE=3,EH=AB=4∴FH=4-3=1,由勾股定理得:221417+=;故EF 长度为:2517【点睛】本题考查四边形综合题、矩形的判定和性质、全等三角形的判定和性质、等腰直角四边形的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.25. 已知二次函数2y x bx c =++(b ,c 为常数).(1)当2b =,3c =-时,求二次函数的最小值;(2)当5c =时,若在函数值1y =的情况下,只有一个自变量x 的值与其对应,求此时二次函数的解析式; (3)当2c b =时,若在自变量x 的值满足b ≤x ≤3b +的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.【答案】(1)二次函数取得最小值-4;(2)245y x x =++或245y x x =-+;(3)27y x =+或2416y x x =-+.【解析】【分析】(1)当b=2,c=-3时,二次函数的解析式为223y x x =+-,把这个解析式化为顶点式利用二次函数的性质即可求最小值.(2)当c=5时,二次函数的解析式为25y x bx =++,又因函数值y=1的情况下,只有一个自变量x 的值与其对应,说明方程251x bx ++=有两个相等的实数根,利用0∆=即可解得b 值,从而求得函数解析式. (3)当c=b 2时,二次函数的解析式为22y x bx b =++,它的图象是开口向上,对称轴为2b x =-的抛物线.分三种情况进行讨论,①对称轴位于b≤x≤b+3范围的左侧时,即2b -<b ;②对称轴位于b≤x≤b+3这个范围时,即b≤2b -≤b+3;③对称轴位于b≤x≤b+3范围的右侧时,即2b ->b+3,根据列出的不等式求得b 的取值范围,再根据x 的取值范围b≤x≤b+3、函数的增减性及对应的函数值y 的最小值为21可列方程求b 的值(不合题意的舍去),求得b 的值代入也就求得了函数的表达式.【详解】解:(1)当b=2,c=-3时,二次函数的解析式为223y x x =+-,即2y (x 1)4=+-. ∴当x=-1时,二次函数取得最小值-4.(2)当c=5时,二次函数的解析式为25y x bx =++.由题意得,方程251x bx ++=有两个相等的实数根.有2160b ∆=-=,解得124,4b b ==-,∴此时二次函数的解析式为245y x x =++或245y x x =-+.(3)当c=b 2时,二次函数的解析式为22y x bx b =++.它的图象是开口向上,对称轴为2b x =-的抛物线. ①若2b -<b 时,即b >0, 在自变量x 的值满足b≤x≤b+3的情况下,与其对应的函数值y 随x 的增大而增大,故当x=b 时,2223y b b b b b =+⋅+=为最小值.∴2321b =,解得17b =,27b =-(舍去).②若b≤2b -≤b+3,即-2≤b≤0, 当x=2b -时,2223224b b y b b b ⎛⎫⎛⎫=-+⋅-+= ⎪ ⎪⎝⎭⎝⎭为最小值. ∴23214b =,解得127b =(舍去),227b =-(舍去). ③若2b ->b+3,即b <-2, 在自变量x 的值满足b≤x≤b+3的情况下,与其对应的函数值y 随x 的增大而减小,故当x=b+3时,222(3)(3)399y b b b b b b =++++=++为最小值.∴239921b b ++=,即2340b b +-=解得11b =(舍去),24b =-.综上所述,7b =或b=-4.∴此时二次函数的解析式为277y x x =++或2416y x x =-+.考点:二次函数综合题.26. 已知直线 y =kx +b (k ≠0)过点 F (0,1),与抛物线 214y x =相交于B 、C 两点(1)如图1,当点C 的横坐标为1 时,求直线BC 的解析式;(2)在(1)的条件下,点M 是直线BC 上一动点,过点M 作y 轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F 为顶点的四边形为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由;(3)如图2,设B(m,n)(m<0),过点E(0,-1)的直线l∥x 轴,BR⊥l 于R,CS⊥l 于S,连接FR、FS.试判断△ RFS 的形状,并说明理由.【答案】(1)314y x=-+;(2)存在;M点坐标为:(-3,134),⎝⎭,⎝⎭;(3)△RFS是直角三角形;证明见详解.【解析】【分析】(1)首先求出C的坐标,然后由C、F两点用待定系数法求解析式即可;(2)因为DM∥OF,要使以M、D、O、F为顶点的四边形为平行四边形,则DM=OF,设M(x,3x1 4-+),则D(x,14x2),表示出DM,分类讨论列方程求解;(3)根据勾股定理求出BR=BF,再由BR∥EF得到∠RFE=∠BFR,同理可得∠EFS=∠CFS,所以∠RFS=12∠BFC=90°,所以△RFS是直角三角形.【详解】解:(1)因为点C在抛物线上,所以C(1,14),又∵直线BC过C、F两点,故得方程组:114 bk b=⎧⎪⎨+=⎪⎩解之,得341kb⎧=-⎪⎨⎪=⎩,所以直线BC的解析式为:314y x=-+;(2)存在;理由如下:要使以M、D、O、F为顶点的四边形为平行四边形,则MD=OF,如图1所示,设M (x ,3x 14-+),则D (x ,14x 2), ∵MD ∥y 轴, ∴231144MD x x =-+-, 由MD=OF ,可得:2311144x x -+-=; ①当2311144x x -+-=时, 解得:x 1=0(舍)或x 1=-3,所以M (-3,134); ②当2311144x x -+-=-时, 解得:3412x -±=, 所以M 3411734128⎛-+ ⎝⎭或M 3411734128⎛⎫-- ⎪ ⎪⎝⎭, 综上所述,存在这样的点M ,使以M 、D 、O 、F 为顶点的四边形为平行四边形,M 点坐标为:(-3,134),3411734128⎛-+ ⎝⎭,34117341,28⎛-+- ⎝⎭; (3)△RFS 是直角三角形;理由如下:过点F 作FT ⊥BR 于点T ,如图2所示,∵点B(m,n)在抛物线上,∴m2=4n,在Rt△BTF中,22BF BT TF=+22(1)n m=-+2(1)4n n=-+2(1)n=+∵n>0,∴BF=n+1,又∵BR=n+1,∴BF=BR.∴∠BRF=∠BFR,又∵BR⊥l,EF⊥l,∴BR∥EF,∴∠BRF=∠RFE,∴∠RFE=∠BFR,同理可得∠EFS=∠CFS,∴∠RFS=12∠BFC=90°,∴△RFS是直角三角形.【点睛】本题主要考查了待定系数法求解析式,平行四边形的判定,平行线的性质,勾股定理以及分类讨论和数形结合等数学思想.解题的关键是掌握待定系数法求解析式,以及学会运用分类讨论和数形结合等数学思想去解题.。
江苏省南京市鼓楼区南师附中2018-2019学年高一下学期期中考试英语试题(原卷版)

2018--2019学年度第二学期南京师大附中高一年级期中考试英语试卷第二部分:带向选择(共15小题;每小题1分,满分15分)请认真阅读下面各题,从题中所给的A,B,C,D四个选项中,选出最佳选项并在答题卡上将该项涂黑。
1.The cash the company has recently received from the government is not enough to cover the debt ______.A. remained to payB. remaining to be paidC. remaining to payD. remained to be paid2.As long as there are still flames inside the museum, no one but member of the fire department ______ to go inside.A. is allowedB. has been allowedC. are allowedD. have been allowed3.—In spring, hens start laying eggs again, bringing a welcome source of protein.—It is ____ that lots of cultures celebrate spring by honoring the egg!A. no doubtB. no surpriseC. no wayD. no need4.Good-looking women are ______ to be turned down for a job interview as unattractive ones, claims a study.A. twice as likely asB. as likely twiceC. more than likely asD. more than twice as likely5.The winds of the freedom were so powerful as to cause the citizens to _____ the king and bring him down.A. watch out forB. look down onC. put up withD. rise up against6.Man had used metals for centuries in _____ increasing quantities but they did not come to be employed in vast quantities until the Industrial Revolution.A. extremelyB. completelyC. naturallyD. gradually7.Overcrowding in some hospitals has led to patients _____ in hallways.A. treatedB. to treatC. being treatedD. treating8.Don't you hate _____when somebody shows up at a party wearing the same dress as you?A. himB. thatC. itD. them9.Voluntary teaching is a difficult and stressful job but one ____ you can really help children in rural areas.A. thatB. whereC. whichD. who.10.—Did Peter fix the computer himself?—No. He______, because he does not know much about ocmputers.A. had it fixedB. has fixed itC. has it fixedD. fixed it11.If I don't laugh, I have to cry. Maybe this is _____at many funeral people share funny stories about theperson who has just died.A. whyB. howC. becauseD. when12.Training of the employees was suggested as one _____ to dealing with the problem of low efficiencyA. methodB. wayC. approachD. means13.—I have studies gardening as one of my hobbies. Could I make some suggestions?—_____.A. Don't mention itB. Go right aheadC. Take it easyD. You will make it14.In developing countries, energy can be used wastefully by _______ has the money to use it, while poorer and less powerful go without.A. whoB. whichC. whoeverD. whomever15.—Will you go to Mary’s birthday party?—No. _____ invited, I cannot go to it. I will be very busy then.A. Only ifB. Now thatC. As thoughD. Even though第三部分:完形填空(共20小题,每小题1分,满分20分)阅读下面短文,从短文后所给各题的四个选项A,B,C,D中,选出可以填入空白处的最佳选项,并在答题卡上将该项涂黑。
2019年东北三省三校(哈尔滨师大附中、东北师大附中、 辽宁省实验中学)高考数学一模试卷(文科)-解析版

2019年东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)高考数学一模试卷(文科)一、选择题(本大题共12小题,共60.0分) 1. 复数(1-i )(3+i )的虚部是( )A. 4B. −4C. 2D. −2 2. 若集合A ={x |-1≤x ≤2},B ={x |log 3x ≤1},则A ∩B =( )A. {x|−1≤x ≤2}B. {x|0<x ≤2}C. {x|1≤x ≤2}D. {x|x ≤−1或x >2}3. 已知向量a ⃗ ,b ⃗ 的夹角为60°,|a⃗ |=1,|b ⃗ |=2,则|3a ⃗ +b ⃗ |=( ) A. √5 B. √17 C. √19 D. √214. 设直线y =x -√2与圆O :x 2+y 2=a 2相交于A ,B 两点,且|AB |=2√3,则圆O 的面积为( )A. πB. 2πC. 4πD. 8π 5. 等差数列{a n }的前n 项和为S n ,且a 2+a 10=16,a 8=11,则S 7=( )A. 30B. 35C. 42D. 566. 已知α∈(0,π2),tan (α+π4)=-3,则sinα=( )A. 2√55B. √55C. 45D. 357. 执行两次如图所示的程序框图,若第一次输入的x 的值为4,第二次输入的x 的值为5,记第一次输出的a 的值为a 1,第二次输出的a 的值为a 2,则a 1-a 2=( )A. 0B. −1C. 1D. 28. 设a =(57)37,b =(37)57,c =(37)37,则a ,b ,c 的大小关系为( )A. a <b <cB. b <c <aC. a <c <bD. c <a <b9. 已知α,β是不重合的平面,m ,n 是不重合的直线,则m ⊥α的一个充分条件是( )A. m ⊥n ,n ⊂αB. m//β,α⊥βC. n ⊥α,n ⊥β,m ⊥βD. α∩β=n ,α⊥β,m ⊥n10. 圆周率是圆的周长与直径的比值,一般用希腊字母π表示.早在公元480年左右,南北朝时期的数学家祖冲之就得出精确到小数点后7位的结果,他是世界上第一个把圆周率的数值计算到小数点后第七位的人,这比欧洲早了约1000年.在生活中,我们也可以通过设计下面的实验来估计π的值:从区间[-1,1]内随机抽取200个数,构成100个数对(x ,y ),其中满足不等式y >√1−x 2的数对(x ,y )共有11个,则用随机模拟的方法得到的π的近似值为( )A. 7825B. 7225C. 257D. 22711. 已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左焦点为F (-√5,0),点A 的坐标为(0,2),点P 为双曲线右支上的动点,且△APF 周长的最小值为8,则双曲线的离心率为( ) A. √2 B. √3 C. 2 D. √512. 若函数f (x )=e x -ax 2在区间(0,+∞)上有两个极值点x 1,x 2(0<x 1<x 2),则实数a 的取值范围是( ) A. a ≤e2B. a >eC. a ≤eD. a >e2二、填空题(本大题共4小题,共20.0分)13. 已知x ,y 满足约束条件:{x +2y −1≤0x −y −2≤0x ≥−1,则z =2x +y 的最大值是______.14. 甲、乙、丙三人中,只有一个会弹钢琴.甲说:“我会”,乙说:“我不会”,丙说:“甲不会”.如果这三句话只有一句是真的,那么会弹钢琴的是______.15. 等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,则S 4=______.16. 四面体A -BCD 中,AB ⊥底面BCD ,AB =BD =√2,CB =CD =1,则四面体A -BCD 的外接球的表面积为______.三、解答题(本大题共7小题,共82.0分) 17. 设函数f (x )=sin (2x -π6)+2cos 2x .(Ⅰ)当x ∈[0,π2]时,求函数f (x )的值域;(Ⅱ)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且f (A )=32,a =√6,b =2,求△ABC 的面积.18. 世界卫生组织的最新研究报告显示,目前中国近视患者人数多达6亿,高中生和大学生的近视率均已超过七成,为了研究每周累计户外暴露时间(单位:小时)与近视发病率的关系,对某中学一年级200名学生进行不记名问卷调查,得到如下数据: 每周累计户外暴露时间 (单位:小时) [0,7) [7,14) [14,21) [21,28) 不少于28小时 近视人数 21 39 37 2 1 不近视人数3375253(Ⅰ)在每周累计户外暴露时间不少于28小时的4名学生中,随机抽取2名,求其中恰有一名学生不近视的概率;(Ⅱ)若每周累计户外暴露时间少于14个小时被认证为“不足够的户外暴露时间”,根据以上数据完成如下列联表,并根据(Ⅱ)中的列联表判断能否在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?近视 不近视足够的户外暴露时间 不足够的户外暴露时间附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d) P (K 2≥k 0) 0.050 0.010 0.001 k 03.8416.63510.82819. 如图,四棱锥P -ABCD 中,底面ABCD 是平行四边形,P 在平面ABCD 上的射影为G ,且G 在AD 上,且AG =13GD ,BG ⊥GC ,GB =GC =2,E 是BC 的中点,四面体P -BCG 的体积为83.(Ⅰ)求异面直线GE 与PC 所成的角余弦值; (Ⅱ)求点D 到平面PBG 的距离;(Ⅲ)若F 点是棱PC 上一点,且DF ⊥GC ,求PFFC 的值.20. 已知F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,点P (-1,√22)在椭圆E 上,且抛物线y 2=4x 的焦点是椭圆E 的一个焦点.(Ⅰ)求椭圆E 的标准方程;(Ⅱ)过点F 2作不与x 轴重合的直线l ,设l 与圆x 2+y 2=a 2+b 2相交于A ,B 两点,且与椭圆E 相交于C ,D 两点,当F 1A ⃗⃗⃗⃗⃗⃗⃗ ⋅F 1B⃗⃗⃗⃗⃗⃗⃗ =1时,求△F 1CD 的面积.21. 已知函数f (x )=e x (e 为自然对数的底数),g (x )=ax (a ∈R ).(Ⅰ)当a =e 时,求函数t (x )=f (x )-g (x )的极小值;(Ⅱ)若当x ≥1时,关于x 的方程f (x )+ln x -e =g (x )-a 有且只有一个实数解,求实数a 的取值范围. 22. 在直角坐标系xOy 中,曲线C 的参数方程为{x =2+√3cosαy =√3sinα(α为参数),直线l 的方程为y =kx ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)曲线C 与直线l 交于A ,B 两点,若|OA |+|OB |=2√3,求k 的值.23. 已知函数f (x )=|x -4a |+|x |,a ∈R .(Ⅰ)若不等式f (x )≥a 2对∀x ∈R 恒成立,求实数a 的取值范围;(Ⅱ)设实数m 为(Ⅰ)中a 的最大值,若实数x ,y ,z 满足4x +2y +z =m ,求(x +y )2+y 2+z 2的最小值.答案和解析1.【答案】D【解析】解:∵(1-i)(3+i)=4-2i.∴复数(1-i)(3+i)的虚部是-2.故选:D.再利用复数代数形式的乘除运算化简得答案.本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.【答案】B【解析】解:B={x|0<x≤3};∴A∩B={x|0<x≤2}.故选:B.可解出集合B,然后进行交集的运算即可.考查描述法的定义,对数函数的单调性,以及交集的运算.3.【答案】C【解析】解:∵向量,的夹角为60°,||=1,||=2,∴==1,则|3+|====,故选:C.由已知结合向量数量积的定义可求,然后根据向量数量积的性质|3+|=,展开后可求.本题主要考查了向量数量积的定义及性质的简单应用,属于基础试题.4.【答案】C【解析】解:根据题意,圆O:x2+y2=a2的圆心为(0,0),半径r=|a|,圆心到直线y=x-的距离d==1,又由弦长|AB|=2,则有a2=1+()2=4,则圆O的面积S=πa2=4π;故选:C.根据题意,求出圆O的圆心与半径,求出圆心O到直线的距离,由直线与圆的位置关系可得a2=1+()2=4,结合圆的面积公式计算可得答案.本题考查直线与圆的位置关系,涉及弦长的计算,属于基础题.5.【答案】B【解析】解:∵等差数列{a n}的前n项和为S n,且a2+a10=16,a8=11,∴,解得a1=,d=,∴S7=7a1+==35.故选:B.利用等差数列通项公式列方程组,能求出a1=,d=,由此再利用等差数列前n项和公式能求出S7.本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.6.【答案】A【解析】解:∵利用两角和的正切公式得tan ()==-3,∴tanα=2.∵α∈(0,),∴.再根据sin2α+cos2α=1,解得.故选:A.利用两角和的正切公式求出tanα,再结合角的范围及同角三角函数基本关系即可求出sinα.本题考查两角和的正切公式,考查同角三角函数基本关系式的应用,是基础题.7.【答案】B【解析】解:当输入的x值为4时,b=2,第一次,不满足b2>x,不满足x能被b整数,故输出a=0;当输入的x值为5时,第一次,不满足b2>x,也不满足x能被b整数,故b=3;第二次,满足b2>x,故输出a=1;即第一次输出的a的值为a1的值为0,第二次输出的a的值为a2的值为1,则a1-a2=0-1=-1.故选:B.根据已知中的程序框图,模拟程序的执行过程,可得答案.本题考查的知识点是程序框图,难度不大,属于基础题.8.【答案】B【解析】解:由函数y=()x为减函数,可知b<c,由函数y=x为增函数,可知a>c,即b<c<a,故选:B.根据指数函数和幂函数的单调性即可求出.本题考查了指数函数和幂函数的单调性,属于基础题.9.【答案】C【解析】解:当n⊥β,m⊥β时,m∥n,当n⊥α时,m⊥α,即充分性成立,即m⊥α的一个充分条件是C,故选:C.根据空间直线和平面垂直的判定定理以及性质结合充分条件和必要条件的定义进行求解即可.本题主要考查充分条件和必要条件的判断,结合空间直线和平面垂直的位置关系是解决本题的关键.10.【答案】A【解析】解:从区间[-1,1]内随机抽取200个数,构成100个数对(x,y),其中满足不等式y >的数对(x,y)共有11个,即从区间[-1,1]内随机抽取200个数,构成100个数对(x,y),其中满足不等式y≤的数对(x,y)共有100-2×11=78个,由几何概型中的面积型可得:=,所以π==,故选:A.由不等式表示的平面区域得:不等式y >的平面区域为正方形内位于第一,二象限圆x2+y2=1外的区域,由几何概型中的面积型得:=,即π==,得解本题考查了几何概型中的面积型,及不等式表示的平面区域,属中档题11.【答案】D【解析】解:由|AF|==3,三角形APF的周长的最小值为8,可得|PA|+|PF|的最小值为5,又F'为双曲线的右焦点,可得|PF|=|PF'|+2a,当A,P,F'三点共线时,|PA|+|PF'|取得最小值,且为|AF'|=3,即有3+2a=5,即a=1,c=,可得e==.故选:D.由题意可得|AF|=3,可得|PA|+|PF|的最小值为5,由双曲线的定义可得|PA|+|PF'|+2a的最小值为5,当A,P,F'三点共线时,取得最小值,可得a=1,由离心率公式可得所求值.本题考查双曲线的定义、方程和性质,主要是离心率的求法,考查三点共线取得最小值的性质,考查方程思想和运算能力,属于中档题.12.【答案】D【解析】解:f′(x)=e x-2ax,若f(x)在(0,+∞)上有两个极值点x1,x2(0<x1<x2),则y=e x和y=2ax在(0,+∞)上有2个交点,设直线y=2ax和y=e x相切时切点是A(m,e m),则y′=e x,y′|x=m=e m,故y-e m=e m(x-m),即y=e m x+(1-m)e m=2ax,故(1-m)e m=0,解得:m=1,故A(1,e),故2a=e,a=,故直线y=2ax和y=e x相交时,a >,故选:D.求出函数的导数,问题转化为y=e x和y=2ax在(0,+∞)上有2个交点,设直线y=2ax和y=e x相切时切点是A(m,e m),求出临界值,求出a的范围即可.本题考查了切线方程,考查函数的单调性,极值问题,考查导数的应用以及转化思想,是一道综合题.13.【答案】3【解析】解:作出x,y满足约束条件:对应的平面区域如图:(阴影部分),由z=2x+y得y=-2x+z,平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,此时z最大.由,解得A (,),代入目标函数z=2x+y得z=3.即目标函数z=2x+y的最大值为3.故答案为:3.作出不等式组对应的平面区域,利用目标函数的几何意义,即可求最大值.本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.14.【答案】乙【解析】解:①设会弹钢琴的是甲,则甲、乙说的是真话,与题设矛盾,故会弹钢琴的不是甲,②设会弹钢琴的是乙,则丙说的是真话,与题设相符,故会弹钢琴的是乙,③设会弹钢琴的是丙,则乙、丙说的时真话,与题设矛盾,故会弹钢琴的不是丙,综合①②③得:会弹钢琴的是乙,故答案为:乙先理解题意,再进行简单的合情推理,逐一进行检验即可得解.本题考查了进行简单的合情推理,属简单题.15.【答案】30【解析】解:设等比数列{a n}的公比为q>0,∵2S3=8a1+3a2,a4=16,∴2a1(1+q+q2)=a1(8+3q ),=16,解得a1=q=2.则S4==30.故答案为:30.利用等比数列的通项公式与求和公式即可得出.本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.16.【答案】4π【解析】解:如图,在四面体A-BCD中,AB⊥底面BCD,AB=BD=,CB=CD=1,可得∠BCD=90°,补形为长方体,则过一个顶点的三条棱长分别为1,1,,则长方体的对角线长为,则三棱锥A-BCD的外接球的半径为1.其表面积为4π×12=4π.故答案为:4π.由题意画出图形,补形为长方体,求其对角线长,可得四面体外接球的半径,则表面积可求.本题考查多面体外接球表面积的求法,补形是关键,是中档题.17.【答案】(本题满分为12分)解:(Ⅰ)f(x)=sin(2x-π6)+2cos2x=√32sin2x+12cos2x+1=sin(2x+π6)+1,…………………(2分)∵x∈[0,π2],∴π6≤2x +π6≤7π6,…………………(4分)∴1 2≤sin(2x+π6)+1≤2,∴函数f(x)的值域为[12,2];…………………(6分)(Ⅱ)∵f(A)=sin(2A+π6)+1=32,∴sin(2A+π6)=12,∵0<A<π,∴π6<2A+π6<13π6,∴2A+π6=5π6,即A=π3,…………………(8分)由余弦定理,a2=b2+c2-2bc cos A,∴6=4+c2-2c,即c2-2c-2=0,又c>0,∴c=1+√3,…………………(10分)∴S△ABC=12bc sin A=12×2×(1+√3)×√32=32+√32.…………………(12分)【解析】(Ⅰ)利用三角函数恒等变换的应用化简函数解析式可得f(x)=sin(2x+)+1,由已知可求范围≤2x+≤,利用正弦函数的性质可求其值域.(Ⅱ)由已知可求sin(2A+)=,可求范围<2A+<,从而可求A=,由余弦定理解得c的值,即可根据三角形的面积公式计算得解.本题主要考查了三角函数恒等变换的应用,正弦函数的性质,余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.【答案】解:(Ⅰ)设“随机抽取2名,其中恰有一名学生不近视”为事件A,则P(A)=C31C11C42=12故随机抽取2名,其中恰有一名学生不近视的概率为12.(Ⅱ)根据以上数据得到列联表:近视不近视足够的户外暴露时间4060不足够的户外暴露时间6040所以K2的观测值k2=200×(40×40−60×60)2(40+60)×(60+40)×(40+60)×(60+40)=8.000>6.635,故能在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系.【解析】(Ⅰ)根据古典概型概率公式计算可得;(Ⅱ)先得2×2列联表,再根据表格中数据计算k2,再根据临界值表作答.本题考查了独立性检验,属中档题.19.【答案】解:(I )由已知V P−BGC =13S △BCG ⋅PG =13⋅12BG ⋅GC ⋅PG =83,∴PG =4.在平面ABCD 内,过C 点作CH ∥EG 交AD 于H ,连接PH ,则∠PCH (或其补角)就是异面直线GE 与PC 所成的角.在△PCH 中,CH =√2,PC =√20,PH =√18,由余弦定理得,cos ∠PCH =√1010,∴异面直线GE 与PC 所成的角的余弦值为√1010.(II )∵PG ⊥平面ABCD ,PG ⊂平面PBG ∴平面PBG ⊥平面ABCD ,在平面ABCD 内,过D 作DK ⊥BG ,交BG 延长线于K ,则DK ⊥平面PBG ∴DK 的长就是点D 到平面PBG 的距离.∵BC =2√2∴GD =34AD =34BC =32√2.在△DKG ,DK =DG sin45°=32,∴点D 到平面PBG 的距离为32.(III )在平面ABCD 内,过D 作DM ⊥GC ,M 为垂足,连接MF , 又因为DF ⊥GC ,∴GC ⊥平面MFD ,∴GC ⊥FM .由平面PGC ⊥平面ABCD ,∴FM ⊥平面ABCD ∴FM ∥PG ; 由GM ⊥MD 得:GM =GD •cos45°=32. ∵PFFC =GMMC =3212=3,∴由DF ⊥GC 可得PFFC =3.【解析】(1)先利用等体积法求出PG 的长,在平面ABCD 内,过C 点作CH ∥EG 交AD 于H ,连接PH ,则∠PCH (或其补角)就是异面直线GE 与PC 所成的角,在△PCH 中利用余弦定理求出此角即可; (2)在平面ABCD 内,过D 作DK ⊥BG ,交BG 延长线于K ,则DK ⊥平面PBG ,DK 的长就是点D 到平面PBG 的距离,在△DKG 利用边角关系求出DK 长;(3)在平面ABCD 内,过D 作DM ⊥GC ,M 为垂足,连接MF ,先证明FM ∥PG ,然后利用三角形相似对应边成比例建立等量关系即可.本题主要考查四棱锥的有关知识,以及求异面直线所成角的问题,以及分析问题与解决问题的能力.简单几何体是立体几何解答题的主要载体,特别是棱柱和棱锥.20.【答案】解:(Ⅰ)y 2=4x 焦点为F (1,0),则F 1(-1,0),F 2(1,0),2a =|PF 1|+|PF 2|=2√2解得a =√2,c =1,b =1,所以椭圆E 的标准方程为x 22+y 2=1,(Ⅱ)由已知,可设直线l 方程为x =ty +1,设A (x 1,y 1),B (x 2,y 2), 联立{x 2+y 2=3x=ty+1得(t 2+1)y 2+2ty -2=0 易知△>0, 则y 1+y 2=-2t t 2+1,y 1y 2=-2t 2+1,所以F 1A ⃗⃗⃗⃗⃗⃗⃗ •F 1B ⃗⃗⃗⃗⃗⃗⃗ =(x 1+1)(x 2+1)+y 1y 2=(ty 1+2)(ty 2+2)+y 1y 2=(t 2+1)y 1y 2+2t (y 1+y 2)+4=2−2t 2t 2+1 因为F 1A ⃗⃗⃗⃗⃗⃗⃗ ⋅F 1B ⃗⃗⃗⃗⃗⃗⃗ =1, 所以2−2t 2t 2+1=1,解得t 2=13.联立{x =ty +1x 22+y 2=1,得(t 2+2)y 2+2ty -1=0 易知△=8(t 2+1)>0,设C (x 3,y 3),B (x 4,y 4),则y 3+y 4=-2t t 2+2,y 1y 2=-1t 2+2,∴|y 3-y 4|=√(y 3+y 4)2−4y 3y 4=√8(1+t 2)t 2+2∴△F 1CD 的面积S =12|F 1F 2|•|y 3-y 4|=√8(1+t 2)t 2+2=√8×4373=4√67 【解析】(Ⅰ)y 2=4x 焦点为F (1,0),则F 1(-1,0),F 2(1,0),2a=|PF 1|+|PF 2|=2,求解a ,b 即可得到椭圆方程.(Ⅱ)设直线l 的方程为x=ty+1,A (x 1,y 1),B (x 2,y 2),利用联立 可得(t 2+1)y 2+2ty-2=0,通过韦达定理以及向量的数量积推出解得t 2=.联立,得(t 2+2)y 2+2ty-1=0.设C (x 3,y 3),D (x 4,y 4),利用韦达定理,求解三角形的面积.本题考查椭圆的简单性质,考查直线与椭圆的位置关系的应用,考查三角形的面积计算公式,把面积比转化为长度比是解题的关键,考查了运算求解能力,转化与化归能力,属于中档题.21.【答案】解:(Ⅰ)当a =e 时,t (x )=e x -ex ,t ′(x )=e x -e ,………(1分)令t ′(x )=0,则x =1,x ,t ′(x ),t (x )的变化列表如下: x (-∞,1) 1 (1,+∞) t ′(x ) - 0 + t (x )单调递减极小值单调递增………(3分)所以t(x)极小值=t(1)=e-e=0……………(5分)(Ⅱ)设F(x)=f(x)-g(x)+ln x-e+a=e x-ax+ln x-e+a,(x≥1),F′(x)=e x-a+1x,(x≥1),设h(x)=e x-a+1x ,h′(x)=x2⋅e x−1x2,………(7分)由x≥1得,x2≥1,x2e x-1>0,h′(x)>0,h(x)在(1,+∞)单调递增,即F′(x)在(1,+∞)单调递增,F′(1)=e+1-a,①当e+1-a≥0,即a≤e+1时,x∈(1,+∞)时,F′(x)>0,F(x)在(1,+∞)单调递增,又F(1)=0,故当x≥1时,关于x的方程f(x)+ln x-e=g(x)-a有且只有一个实数解…(9分)②当e+1-a<0,即a>e+1时,由(Ⅰ)可知e x≥ex,所以F′(x)=e x+1x -a≥ex+1x-a,F′(ae)≥e•ae+ea-a=ea>0,又ae>1e=1,故∃x0∈(1,ae),F′(x0)=0,当x∈(1,x0)时,F′(x)<0,F(x)单调递减,又F(1)=0,故当x∈(1,x0]时,F(x)<0,在[1,x0)内,关于x的方程f(x)+ln x-e=g(x)-a有一个实数解1.又x∈(x0,+∞)时,F′(x)>0,F(x)单调递增,且F(a)=e a+ln a-a2+a-e>e a-a2+1,令k(x)=e x-x2+1(x≥1),s(x)=k′(x)=e x-2x,s′(x)=e x-2≥e-2>0,故k′(x)在(1,+∞)单调递增,又k′(1)>0,故x>1时,k′(x)>0,k(x)在(1,+∞)单调递增,故k(a)>k(1)>0,故F(a)>0,又a>ae>x0,由零点存在定理可知,∃x1∈(x0,a),F(x1)=0,故在(x0,a)内,关于x的方程f(x)+ln x-e=g(x)-a有一个实数解x1,又在[1,x0)内,关于x的方程f(x)+ln x-e=g(x)-a有一个实数解1.综上,a≤e+1…(12分)【解析】(Ⅰ)代入a的值,解关于导函数的不等式,求出函数的单调区间,求出函数的极小值即可;(Ⅱ)求出函数的导数,通过讨论a的范围,求出函数的单调区间,结合方程的解的个数确定a 的范围即可.本题考查了函数的单调性,极值,最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.22.【答案】解:(Ⅰ)∵{x=√3cosα+2y=√3sinα,∴x2-4x+y2+1=0所以曲线C的极坐标方程为ρ2-4ρcosθ+1=0.(Ⅱ)设直线l的极坐标方程为θ=θ1(ρ∈R,θ1∈[0,π)),其中θ1为直线l的倾斜角,代入曲线C得ρ2-4ρcosθ1+1=0,设A,B所对应的极径分别为ρ1,ρ2.ρ1+ρ2=4cosθ1,ρ1ρ2=1>0,△=16cosθ12-4>0 ∴|QA|+|QB|=|ρ1|+|ρ2|=|ρ1+ρ2|=2√3∴cosθ1=±√32满足△>0∴θ1=π6或5π6∴l的倾斜角为π6或5π6,则k=tanθ1=√33或-√33.【解析】(Ⅰ)先消去α得C的普通方程,再化成极坐标方程;(Ⅱ)设直线l的极坐标方程为θ=θ1(ρ∈R,θ1∈[0,π)),其中θ1为直线l的倾斜角,代入C的极坐标方程,利用韦达定理可求得.本题考查了参数方程化成普通方程,属基础题.23.【答案】解:(Ⅰ)因为f(x)=|x-4a|+|x|≥|x-4a-x|=4|a|,所以a2≤4|a|,解得:-4≤a≤4.故实数a的取值范围为[-4,4];(Ⅱ)由(1)知,m=4,即4x+2y+z=4,根据柯西不等式(x+y)2+y2+z2=121[(x+y)2+y2+z2]•[42+4+1]≥121[4(x+y)-2y+z]2=1621等号在x+y4=y−2=z即x=87,y=-821,z=421时取得.所以(x+y)2+y2+z2的最小值为1621.【解析】(Ⅰ)根据基本不等式的性质得到关于a的不等式,解出即可;(Ⅱ)根据柯西不等式的性质求出代数式的最小值即可.本题考查了解绝对值不等式,考查基本不等式以及柯西不等式的性质,是一道常规题.。
2024届江西师大附中数学高一第二学期期末教学质量检测试题含解析

2024届江西师大附中数学高一第二学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设()f x ,()g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,2()1(1)f x x =--,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中0k >.若在区间(]0,9上,函数()()()h x f x g x =-有8个不同的零点,则k 的取值范围是( )A .12,34⎛⎫⎪ ⎪⎝⎭B .12,34⎡⎫⎪⎢⎪⎣⎭C .10,3⎛⎤ ⎥⎝⎦D .10,3⎛⎫ ⎪⎝⎭2.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A .14B .13 C .12D .233.已知等差数列{}n a 的前n 项和为n S ,若395,81a S ==,则7a =( ) A .18B .13C .9D .74.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .1185.若(3,4)AB =,A 点的坐标为()2,1--,则B 点的坐标为( ) A .()1,3B .()5,5C .()1,5D .()5,46.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在位置为(2,0)B -,若将军从山脚下的点(2,0)A 处出发,河岸线所在直线方程为3x y +=,则“将军饮马”的最短总路程为( ) A .4B .5C .26D .327.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知::2:3:4a b c =,则ABC ∆最大角的余弦值是( ) A .14B .14- C .12D .12-8.已知,,,则 A .B .C .D .9.已知函数()cos()f x x =+ωϕ在6x π=-时取最大值,在3x π=是取最小值,则以下各式:①(0)0f =;②02f ⎛⎫= ⎪⎝⎭π;③213f ⎛⎫= ⎪⎝⎭π可能成立的个数是( ) A .0B .1C .2D .310.ABC 中,7,3,60b c B ===︒,则a =( ) A .5B .6C .43D .8二、填空题:本大题共6小题,每小题5分,共30分。
2018-2019学年黑龙江省哈师大附中高一(上)期中数学试卷(精品解析)
2018-2019学年黑龙江省哈师大附中高一(上)期中数学试卷一.选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是正确的)1.已知全集U={x|x≥2},集合M={x|x≥3},则∁U M=()A.{x|2≤x≤3}B.{x|2≤x<3}C.{x|x≤3}D.{x|x<2}2..设集合M={x|2x>3},N={x|(x﹣1)(x+3)<0},则()A.M=N B.M⊆N C.N⊆M D.M∩N=∅3.下列函数是偶函数,且在(0,+∞)是增函数的是()A.f(x)=x2+2x B.f(x)=x﹣2C.f(x)=|x|D.f(x)=lnx4.已知函数f(x)=的定义域为R,则实数k的取值范围是()A.k≠0B.0≤k≤4C.0≤k<4D.0<k<45.已知函数f(x)为偶函数,当x∈[0,+∞)时,f(x)=x﹣1,则f(x)<0的解集是()A.(0,1)B.(﹣1,1)C.(﹣1,0)D.(﹣∞,﹣1)∪(0,1)6.若(a+1)<(3﹣2a),则a的取值范围是()A.()B.()C.()D.()7.若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内8.已知函数f(x)的定义域为(﹣1,1),则函数g(x)=f()+f(x﹣1)的定义域为()A.(1,2)B.(0,2)C.(0,1)D.(﹣1,1)9.已知a=2,b=log2,c=log23,d=log45.则()A.a>c<d>b B.b<a<c<d C.b<a<d<c D.c>a>d>b10.函数f(x)=log(x2﹣4x)的单调递增区间为()A.(﹣∞,2)B.(2,+∞)C.(﹣∞,4)D.(4,+∞)11.若方程x2﹣4|x|+3=m有四个互不相等的实数根,则m的取值范围是()A.(﹣∞,﹣1)B.(﹣1,3)C.(3,+∞)D.(﹣1.+∞)12.对于函数f(x)=(|x﹣2|+1)4,给出如下三个命题:①f(x+2)是偶函数;②f(x)在区间(﹣∞,2)上是减函数,在区间(2,+∞)上是增函数;③f(x)没有最小值.其中正确的个数为()A.1B.2C.3D.0二.填空题:(本题共4小题,每小题5分,共20分)13.函数y=的定义域为.14.函数f(x)=a+2(a>0且a≠1)的图象过定点;15.已知函数,则f(log23)=.16.已知函数f(x)=a(e x﹣e﹣x)+b+2,若f(lg3)=3,则f(lg)=.三.解答题:(本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)计算下列各式:(1)(2)﹣(﹣9.6)0﹣(3)+(1.5)﹣2;(2)log3+lg25+lg4+7.18.(12分)已知集合A={x|x2﹣x﹣2<0},B={x|x2﹣(2a+1)x+a(a+1)<0},且B⊆A,求实数a的取值范围.19.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=2,f(x+1)﹣f(x)=2x﹣1(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈[﹣1,2]时,求函数的最大值和最小值.(Ⅲ)若函数g(x)=f(x)﹣mx的两个零点分别在区间(﹣1,2)和(2,4)内,求m的取值范围.20.(12分)已知函数.(1)试判断f(x)的单调性,并证明你的结论;(2)若f(x)为定义域上的奇函数,求函数f(x)的值域.21.(12分)已知函数f(x)=log2x的定义域是[2,16].设g(x)=f(2x)﹣[f(x)]2.(1)求函数g(x)的解析式及定义域;(2)求函数g(x)的最值.22.(12分)定义在R上的函数y=f(x).对任意的a,b∈R.满足:f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2.(1)求f(0),f(﹣1)的值;(2)判断该函数的单调性,并证明;(3)求不等式f(x+1)<4的解集.2018-2019学年黑龙江省哈师大附中高一(上)期中数学试卷参考答案与试题解析一.选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是正确的)1.已知全集U={x|x≥2},集合M={x|x≥3},则∁U M=()A.{x|2≤x≤3}B.{x|2≤x<3}C.{x|x≤3}D.{x|x<2}【分析】根据补集的定义,写出∁U M.【解答】解:全集U={x|x≥2},集合M={x|x≥3},则∁U M={x|2≤x<3}.故选:B.【点评】本题考查了补集的定义与应用问题,是基础题.2..设集合M={x|2x>3},N={x|(x﹣1)(x+3)<0},则()A.M=N B.M⊆N C.N⊆M D.M∩N=∅【分析】由2x>3,得x>log23,由(x﹣1)(x+3)<0,得﹣3<x<1即M=(log23,+∞),N=(﹣3,1),得M∩N=∅.【解答】解:∵2x>3∴x>log23,即M=(log23,+∞)又∵(x﹣1)(x+3)<0,∴﹣3<x<1∴N=(﹣3,1),又∵log23>1,∴M∩N=∅故选:D.【点评】本题考查了指数不等式与二次不等式的解法,属简单题.3.下列函数是偶函数,且在(0,+∞)是增函数的是()A.f(x)=x2+2x B.f(x)=x﹣2C.f(x)=|x|D.f(x)=lnx【分析】根据题意,依次分析选项,综合即可得答案.【解答】解:根据题意,依次分析选项:对于A,f(x)=x2+2x,不是偶函数,不符合题意;对于B,f(x)=x﹣2=,是偶函数,在(0,+∞)是减函数,不符合题意;对于C,f(x)=|x|=,是偶函数,且在(0,+∞)是增函数,符合题意;对于D,f(x)=lnx,不是偶函数,不符合题意;故选:C.【点评】本题考查函数的奇偶性与单调性的判断,关键是掌握常见函数的奇偶性与单调性,属于基础题.4.已知函数f(x)=的定义域为R,则实数k的取值范围是()A.k≠0B.0≤k≤4C.0≤k<4D.0<k<4【分析】根据f(x)的定义域为R,即可得出不等式kx2+kx+1≥0的解集为R,显然k=0时满足题意,而当k≠0时,则满足,解出k的范围即可.【解答】解:∵f(x)的定义域为R;∴不等式kx2+kx+1≥0的解集为R;①k=0时,1≥0恒成立,满足题意;②k≠0时,;解得0<k≤4;综上得,0≤k≤4.故选:B.【点评】考查函数定义域的概念及求法,以及一元二次不等式ax2+bx+c≥0的解集和判别式△取值的关系.5.已知函数f(x)为偶函数,当x∈[0,+∞)时,f(x)=x﹣1,则f(x)<0的解集是()A.(0,1)B.(﹣1,1)C.(﹣1,0)D.(﹣∞,﹣1)∪(0,1)【分析】由已知得f(x)在(﹣∞,0)单调递减,且f(﹣1)=0,结合简图易得结果.【解答】解:∵f(x)为偶函数,∴f(x)图象关于y轴对称,∵当x∈[0,+∞)时,f(x)=x﹣1,∴f(x)在[0,+∞)单调递增,且f(1)=0,∴f(x)在(﹣∞,0)单调递减,且f(﹣1)=0,∴f(x)<0的解集是(﹣1,1).故选:B.【点评】本题主要考查不等式的解法,利用函数的奇偶性和单调性之间的关系是解决本题的关键,综合考查函数性质的应用.6.若(a +1)<(3﹣2a ),则a 的取值范围是( )A .()B .()C .()D .()【分析】用a =1排除A 、D ,由底数大于0,排除B .【解答】解:a =1时,2<1成立,排除A 、D又3﹣2a >0得a <,排除B , 故选:C .【点评】本题考查了其它不等式的解法,属基础题.7.若a <b <c ,则函数f (x )=(x ﹣a )(x ﹣b )+(x ﹣b )(x ﹣c )+(x ﹣c )(x ﹣a )的两个零点分别位于区间( ) A .(a ,b )和(b ,c )内 B .(﹣∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(﹣∞,a )和(c ,+∞)内【分析】由函数零点存在判定定理可知:在区间(a ,b ),(b ,c )内分别存在一个零点;又函数f (x )是二次函数,最多有两个零点,即可判断出.【解答】解:∵a <b <c ,∴f (a )=(a ﹣b )(a ﹣c )>0,f (b )=(b ﹣c )(b ﹣a )<0,f (c )=(c ﹣a )(c ﹣b )>0,由函数零点存在判定定理可知:在区间(a ,b ),(b ,c )内分别存在一个零点; 又函数f (x )是二次函数,最多有两个零点,因此函数f (x )的两个零点分别位于区间(a ,b ),(b ,c )内. 故选:A .【点评】熟练掌握函数零点存在判定定理及二次函数最多有两个零点的性质是解题的关键.8.已知函数f (x )的定义域为(﹣1,1),则函数g (x )=f ()+f (x ﹣1)的定义域为( )A .(1,2)B .(0,2)C .(0,1)D .(﹣1,1)【分析】根据f (x )的定义域,可看出,要使得函数g (x )有意义,则需满足,解出x 的范围即可.【解答】解:∵f (x )的定义域为(﹣1,1);∴要使g (x )有意义,则;解得1<x<2;∴g(x)的定义域为(1,2).故选:A.【点评】考查函数定义域的概念及求法,已知f(x)定义域,求f[g(x)]定义域的方法.9.已知a=2,b=log2,c=log23,d=log45.则()A.a>c<d>b B.b<a<c<d C.b<a<d<c D.c>a>d>b【分析】直接利用对数的运算性质进行大小比较.【解答】解:∵0<a=2<20=1,b=log2<log21=0,c=log23>1,d=log45>1.且.∴b<a<d<c.故选:C.【点评】本题考查对数值的大小比较,考查对数的运算性质,是基础题.10.函数f(x)=log(x2﹣4x)的单调递增区间为()A.(﹣∞,2)B.(2,+∞)C.(﹣∞,4)D.(4,+∞)【分析】先求得函数的定义域,本提即求t=x2﹣4x在定义域内的增区间,再利用二次函数的性质得出结论.【解答】解:由函数f(x)=log(x2﹣4x),可得x2﹣4x>0,求得x<0,或x>4,故函数的定义域为{x|x<0,或x>4 },本题即求t=x2﹣4x在定义域内的增区间.再利用二次函数的性质可得t=x2﹣4x在定义域内的增区间为(4,+∞),故选:D.【点评】本题主要考查复合函数的单调性,对数函数、二次函数的性质,属于中档题.11.若方程x2﹣4|x|+3=m有四个互不相等的实数根,则m的取值范围是()A.(﹣∞,﹣1)B.(﹣1,3)C.(3,+∞)D.(﹣1.+∞)【分析】作出y=x2﹣4|x|+3的函数图象,根据图象得出m的范围.【解答】解:作出y=x2﹣4|x|+3的函数图象如图所示:∵程x2﹣4|x|+3=m有四个互不相等的实数根,∴直线y=m与y=x2﹣4|x|+3的函数图象有4个交点,∴﹣1<m<3.故选:B.【点评】本题考查了方程解的个数与函数图象的关系,属于中档题.12.对于函数f(x)=(|x﹣2|+1)4,给出如下三个命题:①f(x+2)是偶函数;②f(x)在区间(﹣∞,2)上是减函数,在区间(2,+∞)上是增函数;③f(x)没有最小值.其中正确的个数为()A.1B.2C.3D.0【分析】由奇偶性的定义可判断①;讨论x>2,x<2,求得f(x),以及导数,判断符号,即可判断②;由f(x)的单调性可判断③.【解答】解:函数f(x)=(|x﹣2|+1)4,设g(x)=f(x+2)=(|x|+1)4,g(﹣x)=g(x),可得g(x)是偶函数,故①正确;x>2时,f(x)=(x﹣1)4的导数为f′(x)=4(x﹣1)3>0;x<2时,f(x)=(3﹣x)4递,导数为f′(x)=4(x﹣3)3<0,可得f(x)在区间(﹣∞,2)上是减函数,在区间(2,+∞)上是增函数,故②正确;由②可得f(x)在x=2处取得最小值1,故③错误.故选:B.【点评】本题考查函数的奇偶性和单调性、最值的求法,考查导数的运用和奇偶性定义的应用,考查运算能力,属于基础题.二.填空题:(本题共4小题,每小题5分,共20分)13.函数y=的定义域为.【分析】函数y=有意义,可得0<5x﹣3≤1,解不等式即可得到所求定义域.【解答】解:函数y=有意义,可得,即为0<5x﹣3≤1,解得<x≤,则定义域为.故答案为:.【点评】本题考查函数的定义域的求法,注意运用对数的真数大于0,以及偶次根式被开方数非负,考查运算能力,属于基础题.14.函数f(x)=a+2(a>0且a≠1)的图象过定点(1,3);【分析】令幂指数等于零,求得x,y的值,可得函数的图象经过定点的坐标.【解答】解:对于函数f(x)=a+2(a>0且a≠1),令x2﹣2x+1=0,求得x=1,y=3,可得函数f(x)=a+2(a>0且a≠1)的图象过定点(1,3),故答案为:(1,3).【点评】本题主要考查指数函数的图象经过定点问题,属于基础题.15.已知函数,则f(log23)=.【分析】先判断出log23的范围,代入对应的解析式求解,根据解析式需要代入同一个式子三次,再把所得的值代入另一个式子求值,需要对底数进行转化,利用进行求解.【解答】解:由已知得,,且1<log23<2,∴f(log23)=f(log23+1)=f(log23+2)=f(log23+3)=f(log224)==.故答案为:.【点评】本题的考点是分段函数求值,对于多层求值按“由里到外”的顺序逐层求值,一定要注意自变量的值所在的范围,然后代入相应的解析式求解,此题利用了恒等式进行求值.16.已知函数f(x)=a(e x﹣e﹣x)+b+2,若f(lg3)=3,则f(lg)=1.【分析】f(lg3)=a(e lg3﹣e﹣lg3)+b+2=3,从而a(e lg3﹣e﹣lg3)+b=2,进而f(lg)=a(﹣)+g+3=﹣[a(e lg3﹣e﹣lg3)+b]+3,由此能求出结果.【解答】解:∵函数f(x)=a(e x﹣e﹣x)+b+2,f(lg3)=3,∴f(lg3)=a(e lg3﹣e﹣lg3)+b+2=3,∴a(e lg3﹣e﹣lg3)+b=2,∴f(lg)=a(﹣)+g+3=﹣[a(e lg3﹣e﹣lg3)+b]+3=﹣2+3=1.故答案为:1.【点评】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.三.解答题:(本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)计算下列各式:(1)(2)﹣(﹣9.6)0﹣(3)+(1.5)﹣2;(2)log3+lg25+lg4+7.【分析】(1)根据指数幂的运算性质计算即可,(2)根据对数的运算性质计算即可.【解答】解:(1)原式=﹣1﹣+=,(2)原式=﹣+lg100+2=﹣+2+2=.【点评】本题考查了指数幂和对数的运算性质,属于基础题18.(12分)已知集合A={x|x2﹣x﹣2<0},B={x|x2﹣(2a+1)x+a(a+1)<0},且B⊆A,求实数a的取值范围.【分析】先确定A、B,由B⊆A得,得﹣1≤a≤1.【解答】解:A={x|﹣1<x<2},B={x|a<x<a+1},∵B⊆A,∴,∴﹣1≤a≤1.【点评】本题考查的知识点是集合的包含关系判断及应用,集合关系中的参数问题,难度中档.19.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=2,f(x+1)﹣f(x)=2x﹣1(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈[﹣1,2]时,求函数的最大值和最小值.(Ⅲ)若函数g(x)=f(x)﹣mx的两个零点分别在区间(﹣1,2)和(2,4)内,求m的取值范围.【分析】(Ⅰ)利用f(0)=2,f(x+1)﹣f(x)=2x﹣1,直接求出a、b、c,然后求出函数的解析式.(Ⅱ)利用二次函数的对称轴与区间的关系,直接求解函数的最值.(Ⅲ)利用g(x)的两个零点分别在区间(﹣1,2)和(2,4)内,列出不等式组,即可求出M的范围.【解答】(本小题满分14分)解:(Ⅰ)由f(0)=2,得c=2,又f(x+1)﹣f(x)=2x﹣1得2ax+a+b=2x﹣1,故解得:a=1,b=﹣2,所以f(x)=x2﹣2x+2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(a,b,c各(1分),解析式1分)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)f(x)=x2﹣2x+2=(x﹣1)2+1,对称轴为x=1∈[﹣1,2],故f min(x)=f(1)=1,又f(﹣1)=5,f(2)=2,所以f max(x)=f(﹣1)=5.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)(Ⅲ)g(x)=x2﹣(2+m)x+2,若g(x)的两个零点分别在区间(﹣1,2)和(2,4)内,则满足﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)解得:.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)【点评】本题考查二次函数的解析式的求法,二次函数的性质与最值的求法,零点判定定理的应用,考查计算能力.20.(12分)已知函数.(1)试判断f(x)的单调性,并证明你的结论;(2)若f(x)为定义域上的奇函数,求函数f(x)的值域.【分析】(1)f(x)是增函数,利用单调性的定义进行证明;(2)先求出a,再求函数f(x)的值域.【解答】解:(1)f(x)是增函数.证明如下:函数f(x)的定义域为(﹣∞,+∞),且,任取x1,x2∈(﹣∞,+∞),且x1<x2,则.∵y=2x在R上单调递增,且x1<x2,∴,∴f(x2)﹣f(x1)>0,即f(x2)>f(x1),∴f(x)在(﹣∞,+∞)上是单调增函数.(2)∵f(x)是定义域上的奇函数,∴f(﹣x)=﹣f(x),即对任意实数x恒成立,化简得,∴2a﹣2=0,即a=1.(也可利用f(0)=0求得a=1)∴,∵2x+1>1,∴,∴,∴.故函数f(x)的值域为(﹣1,1).【点评】本题考查函数的单调性与奇偶性,考查函数的值域,考查学生的计算能力,属于中档题.21.(12分)已知函数f(x)=log2x的定义域是[2,16].设g(x)=f(2x)﹣[f(x)]2.(1)求函数g(x)的解析式及定义域;(2)求函数g(x)的最值.【分析】第一步得到解析式和x的范围后注意整理;第二步换元时要注意新元的范围,为下面的函数求值域做好基础.【解答】解:(1)由题意可得g(x)=,且,进一步得:,且定义域为【2,8】,(2)令t=log2x,则t∈[1,3],h(t)=﹣t2+t+1,∵h(t)在【1,3】递减∴h(t)的值域为【h(3),h(1)】,即【﹣5,1】,∴当x=8时,g(x)有最小值﹣5,当x=2时,g(x)有最大值1.【点评】此题考查了求函数解析式的基础方法,确定定义域和换元需注意的地方,并综合考查了二次函数求最值,综合性较强,难度不大.22.(12分)定义在R上的函数y=f(x).对任意的a,b∈R.满足:f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2.(1)求f(0),f(﹣1)的值;(2)判断该函数的单调性,并证明;(3)求不等式f(x+1)<4的解集.【分析】(1)根据题意,用特殊值法分析:令a=1,b=0,则f(1)=f(0)•f(1),可得f(0)的值,令a=1,b=﹣1,则f(0)=f(1)•f(﹣1),分析可得f(﹣1)的值;(2)任取x1,x2∈(﹣∞,+∞)且x1<x2,则有x2﹣x1>0,则f(x2﹣x1)>1,进而有f(x2)=f[(x2﹣x1)+x1]=f(x2﹣x1)•f(x1)>f(x1),结合单调性的定义分析可得结论;(3)根据题意,f(2)=f(1+1)=f(1)•f(1)=4,据此分析可得f(x+1)<4⇒f(x+1)<f (2)⇒x+1<2,解可得x的取值范围,即可得答案.【解答】解:(1)根据题意,对任意的a,b∈R,满足f(a+b)=f(a)•f(b);令a=1,b=0,则f(1)=f(0)•f(1),又由f(1)>1,则f(0)=1;令a=1,b=﹣1,则f(0)=f(1)•f(﹣1),又由f(1)=2,则;(2)f(x)在(﹣∞,+∞)上单调递增;任取x1,x2∈(﹣∞,+∞)且x1<x2,则有x2﹣x1>0,则f(x2﹣x1)>1,f(x2)=f[(x2﹣x1)+x1]=f(x2﹣x1)•f(x1)>f(x1),则f(x2)﹣f(x1)>0,即函数f(x)为增函数;(3)根据题意,f(2)=f(1+1)=f(1)•f(1)=4,则f(x+1)<4⇒f(x+1)<f(2)⇒x+1<2,解可得:x<1,即不等式的解集为(﹣∞,1).【点评】本题考查抽象函数的应用,涉及函数的奇偶性与单调性的证明与综合应用,注意用赋值法分析.。
湖南省师大附中博才实验中学2018-2019学年第二学期期中考试八年级数学试题(Word无答案)
湖南省师大附中博才实验中学2018-2019学年第二学期期中考试八年级数学试题(Word 无答案)湖南师大附中博才实验中学 2018—2019 学年度第二学期期中考试试题卷·数学考试时间:120 分钟命题人:郭维 审题人:杨万银一、选择题(共 12 小题,36 分) 1.下列属于最简二次根式的是( )A .B .C .2.下列各点中,在直线 y =2x 上的点是( )A .(1,1)B .(2,1)C .(2,﹣2)D .(1,2)3. 下面给出的四边形 ABCD 中,∠A 、∠B 、∠C 、∠D 的度数之比,其中能判定四边形 ABCD 是平行四边形的条件是( )A .3:4:3:4B .3:3:4:4C .2:3:4:5D .3:4:4:3 4.将下列长度的三根木棒首尾顺次连接,能构成直角三角形的是( )A .5,12,13B .6,8,12C .1,2,35.把直线 y =x 沿 y 轴向下平移 2 个单位,所得直线的函数解析式为( )A .y =x +2B .y =x ﹣2C .y =2xD .y =2x ﹣26.下列说法正确的是()A .有一个直角的四边形是矩形B .一组对边平行的四边形是平行四边形C .对角线互相平分的四边形是正方形D .有一组邻边相等的平行四边形是菱形7.下列函数 ,其中一次函数的个数为()A .1 个B .2 个C .3 个D .4 个8.已知一次函数 y =mx +n 的图象如图所示,则 m 、n 的取值范围( )A .m >0,n <0B .m <0,n >0C .m >0,n >0D .m <0,n <09.如图,在△ABC 中,∠A =45°,∠B =30°,CD ⊥AB 于 D ,CD =2,则 AB 长为( )A .6C .+2 +2第8 题图第9 题图第 10题图10.如图,在菱形ABCD中,对角线AC,BD 交于点O,AO=3,∠ABC=60°,则菱形ABCD 的面积是()A.18 C.36 D.36第11 题图第12 题图11.某超市以每千克 0.8 元的价格从批发市场购进若干千克西瓜,在销售了部分西瓜之后,余下的每千克降价0.3 元,直至全部售完.销售金额y与售出西瓜的千克数x之间的关系如图所示,那么超市销售这批西瓜一共赚了()A.20 元B.32 元C.35 元D.36 元12.如图,直线x+与x 轴、y 轴分别交于点A、B,在坐标轴上找点P,使△ABP 为等腰三角形,则点P 的个数为()A.2 B.4 C.6 D.8二.填空题(共 6 小题)13.若函数y=5x+a﹣2 是y 关于x 的正比例函数,则a=.14.代数中x 的取值范围是.15.如图,矩形ABCD 的对角线AC 与BD 相交于点O,∠ADB=30°,AB=4,则AD=.第15 题图第16 题图第18 题图16.如图,在▱ABCD 中,AD=8,点E,F 分别是BD,CD 的中点,则EF= .17.已知(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1 y2.(填“>”“=”或“<”)18.如图,AD 是△ABC 的角平分线,DE,DF 分别是△BAD 和△ACD 的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF 是正方形;④AE+DF=AF+DE.其中正确的是(填序号).三.解答题(共6 小题)19.计算:20.一次函数y=kx+b的图象经过A(3,2),B(1,6)两点.(1)求k,b 的值;(2)判断点P(﹣1,10)是否在该函数的图象上.21.如图,点A,B,C,D 依次在同一条直线上,点E,F 分别在直线AD 的两侧,已知BE∥CF,∠A=∠D,AE=DF.(1)求证:四边形BFCE 是平行四边形.(2)若AD=10,EC=3,∠EBD=60°,当四边形BFCE 是菱形时,求AB 的长.Array 22.已知直线y= -x+5 交x 轴于A,交y 轴于B,直线y=2x﹣4 与x 轴于D,与直线AB 相交于点C.(1)求点A、B、C、D 的坐标;)求四边形BODC 的面积.(223.某商场计划购进A,B 两种新型节能台灯共100 盏,这两种台灯的进价、售价如下表所示:价格进价(元/盏)售价(元/盏)类型A 型3045B 型5070(1)若商场预计进货为3 500 元,则这两种台灯各购进多少盏?(2)若商场规定B 型台灯的进货数量不超过A 型台灯数量的3 倍,设A 型台灯x 盏,获利y 元,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?24.如图1,在正方形ABCD 中,E,F 分别是AD,CD 上两点,BE 交AF 于点G,且DE=CF.(1)写出BE 与AF 之间的关系,并证明你的结论;(2)如图2,若AB=2,点E 为AD 的中点,求AG 的长度。
三角恒等变换之给值求角
A. 20
B. 40
C. 50
D. 70
【来源】2020 届湖南师大附中高三下学期统一模拟考试数学(理)试题
【答案】B 【分析】
直接利用三角函数关系式的恒等变换和角公式的应用求出结果.
【详解】
试卷第 6页,总 8页
解:由 cos 1 3 tan10 1 可得 cos 3 sin10 cos10 1 , cos10
因为 cos cos 3 sin sin ,所以 cos 3 ,
2
2
所以
2k , k Z
13
,又
3
2
,
6
12 4 6
所以 13 , 3 满足要求,
12
4
故选:A.
【点睛】
本题考查两角差的余弦公式的简单运用,难度较易.注意公式:
cos cos cos sin sin .
水平.
5.已知、 0, ,tan 与 tan 是方程 x2 3 3x 4 0 的两个根,则
()
A.
3
B. 2 3
C. 4 3
D.
或
4
33
【来源】湖北省部分重点中学 2020-2021 学年高三上学期期末联考数学试题
【答案】C 【分析】
先求出 tan + tan 和 tan tan 的值,确定 tan 、tan 的符号,进而可以缩小α、β
即 cos
2sin 40 cos10
1,
所以 cos
cos10 2sin 40
sin 80 2sin 40
2sin 40 cos 40 2sin 40
cos 40 ,
又 为锐角,故 40 ,
故选:B.
【点睛】
高一上学期期末考试数学试卷含答案(共3套)
2018-2019学年上学期高一期末考试试卷数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2018·五省联考]已知全集U =R ,则下列能正确表示集合{}0,1,2M =和{}220N x x x +==关系的韦恩(Venn )图是( )A .B .C .D .2.[2018·三明期中]已知函数()lg ,011,0x x f x x x >⎧=⎨+≤⎩,则()()1f f -=( )A .2-B .0C .1D .1-3.[2018·重庆八中]下列函数中,既是偶函数,又在(),0-∞内单调递增的为( ) A .22y x x =+B .2x y =C .22x x y -=-D .12log 1y x =-4.[2018·大庆实验中学]已知函数()32x f x a x=--的一个零点在区间()1,3内,则实数a 的取值范围是( )A .51,2⎛⎫- ⎪⎝⎭B .5,72⎛⎫⎪⎝⎭C .()1,7-D .()1,-+∞5.[2018·金山中学]某三棱锥的三视图如图所示,则该三棱锥的各个面中,最大的面积是( )A .B .2C .1D 6.[2018·黄山八校联考]若m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( )A .若αβ⊥,m β⊥,则//m αB .若//m α,n m ⊥,则n α⊥C .若//m α,//n α,m β⊂,n β⊂,则//αβD .若//m β,m α⊂,n αβ=,则//m n7.[2018·宿州期中]已知直线1:30l mx y -+=与211:22l y x =-+垂直,则m =( )A .12-B .12C .2-D .28.[2018·合肥九中]直线l 过点()0,2,被圆22:4690C x y x y +--+=截得的弦长为线l 的方程是( ) A .423y x =+ B .123y x =-+C .2y =D .423y x =+或2y =9.[2018·南宁模拟]如图,棱长为a 的正方体1111ABCD A B C D -中,M 为BC 中点,这直线1D M 与平面ABCD 所成角的正切值为( )A .2B .5C .5D .1210.[2018·东城期末]已知圆22:4C x y +=,直线():l x y m m +=∈R ,设圆C 上到直线l 的距离为1的点的个数为S ,当0m ≤<S 的可能取值共有( ) A .2种B .3种C .4种D .5种11.[2018·云天化中学]如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E 、F ,且12EF =.则下列结论中正确的个数.....为( )①AC BE ⊥; ②EF ∥平面ABCD ;③三棱锥A BEF -的体积为定值; ④AEF △的面积与BEF △的面积相等. A .1 B .2C .3D .412.[2018·湛江调研]点A 、B 、C 、D 在同一个球的球面上,AB BC AC ===,若四面体ABCD ,则这个球的表面积为( ) A .169π16B .289π16C .25π16D .8π第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.[2018·华东师大附中]已知()214f x x +=-,则()f x 的解析式为__________.14.[2018·嘉兴三中]已知点()2,1A ,()2,3B -,()0,1C ,则ABC △中,BC 边上中线所在的直线方程为________.15.[2018·赣州期中]设某几何体的三视图如图所示,则该几何体的表面积是__________.主视图 左视图 俯视图16.[2018·嘉兴一中]若函数()224422f x x ax a a =-+-+在区间[]0,2上有两个零点, 则实数a 的取值范围是_______.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)[2018·安庆期中]设全集{}1,2,3,4,5,6U =,A ,B 都是U 的子集,{}1,2A =,(){}4,6UA B =ð,(1)写出所有符合题意的集合B ;(2)计算:341lg2lg 3lg5log 2log 94-+-⋅.18.(12分)[2018宜昌期中·]设a 是实数,()2221x x a a f x ⋅+-=+,(1)证明:()f x 是增函数;(2)试确定a 的值,使()f x 为奇函数.19.(12分)[2018·华安一中]已知点()2,3A ,()4,1B ,ABC △是以AB 为底边的等腰 三角形,点C 在直线:220l x y -+=上.(1)求AB 边上的高CE 所在直线的方程;(结果写成直线方程的一般式) (2)求ABC △的面积.20.(12分)[2018·定远月考]如图,一个圆锥的底面半径为1,高为3,在圆锥中有一个半径为x的内接圆柱.(1)试用x表示圆柱的高;(2)当x为何值时,圆柱的侧面积最大,最大侧面积是多少?21.(12分)[2018·泸化中学]如图,四棱锥P ABCD -中,底面ABCD 是矩形,22AB AD ==,PD ⊥底面ABCD ,E ,F 分别为棱AB ,PC 的中点.(1)求证:EF ∥平面PAD ; (2)求证:平面PDE ⊥平面PEC .22.(12分)[2018·陕西四校联考]如图,直三棱柱111ABC A B C -的所有棱长都是2,D ,E 分别是AC ,1CC 的中点.(1)求证:AE ⊥平面1A BD ; (2)求三棱锥11B A BD -的体积.2018-2019学年上学期高一期末考试数学 答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A【解析】N 为220x x +=的解集,解220x x +=可得,0x =或2-, 则{}2,0N =-,{}0M N =≠∅,由选项中的Venn 图可得选项A 符合题意,故选A .2.【答案】C【解析】由题意得()111110f -=-+=,∴()()()110lg101f f f -===.故选C . 3.【答案】D【解析】根据奇偶性的定义知A 即不是奇函数也不是偶函数,C 是奇函数,B 、D 是偶函数,在(),0-∞上B 是减函数,D 是增函数.故选D . 4.【答案】C【解析】函数()32x f x a x=--是增函数,且一个零点在区间()1,3内,根据零点存在定理得到()()1030f f <>⎧⎪⎨⎪⎩解得a 的范围是()1,7-.故答案为C .5.【答案】A【解析】画出直观图如下图所示,计算各面的面积为1122ABC S ==△,12112ABD BCD S S ==⨯⨯=△△,12ACD S ==△,A .6.【答案】D【解析】对于A ,若αβ⊥,m β⊥,则//m α或m α⊂,故A 错误; 对于B ,若//m α,n m ⊥,则n α⊥或n α⊂或n 与α相交,故B 错误; 对于C ,若//m α,//n α,m β⊂,n β⊂,则//αβ或α、β相交,故C 错误; 对于D ,若//m β,m α⊂,n αβ=,由线面平行的性质定理,可得//m n ,故D 正确,故选D . 7.【答案】D【解析】很明显直线的斜率存在,直线方程即3y mx =+,1122y x =-+,由直线垂直的充分必要条件可得:112m -⨯=-,解得2m =.本题选择D 选项.8.【答案】D【解析】因为直线l 被圆22:4690C x y x y +--+=,()()22234x y -+-=截得的弦长为1=,设直线l 的方程为2y kx =+,(斜率不存在时不满足题1=,0k ∴=或43k =,即直线l 的方程是423y x =+或2y =,故选D . 9.【答案】C【解析】连接DM ,因为几何体是正方体,所以1D MD ∠就是直线1D M 与平面ABCD所成角,11tan 5DD D MD DM ∠===,故选C . 10.【答案】B【解析】因为圆C 上到直线l [)0,3,1=时,圆C 上到直线l 的距离为1的点的个数为3;()1,3时,圆C 上到直线l 的距离为1的点的个数为2;[)0,1时,圆C 上到直线l 的距离为1的点的个数为4;因此S 的可能取值共有3种,故选B . 11.【答案】C【解析】连结BD ,则AC ⊥平面11BB D D ,11BD B D ∥.AC BE ∴⊥,EF ∥平面ABCD ,从而①②正确,又BEF △面积为定值,A 到平面11BB D D 距离为定值,所以三棱锥A BEF -的体积为定值,从而③正确,因为A 到11B D 的距离不等于1BB .所以AEF △的面积与BEF △的面积不相等,④错误. 故选C . 12.【答案】B【解析】根据题意知,ABC △是一个等边三角形,其面积为4,外接圆的半径为1,小圆的圆心为Q ,由于底面积ABC S △不变,高最大时体积最大,所以DQ 与面ABC 垂直时体积最大,最大值为13ABC S DQ ⨯=△4DQ =,设球心为O ,半径为R ,则在直角AQO △中,222OA AQ OQ =+,即()22214R R =+-,∴178R =, 则这个球的表面积为217289π4π816S ⎛⎫== ⎪⎝⎭,故选B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】()223f x x x =--【解析】因为()214f x x +=-,∴令1x t +=,则1x t =-,()()()2211423f x f t t t t ∴+==--=--,∴函数()f x 的解析式为()223f x x x =--,故答案为()223f x x x =--.14.【答案】350x y +-=【解析】设BC 中点为(),D x y ,已知()2,3B -,()0,1C ,则()1,2D -, 因为()121213AD k -==---,所以BC 边上中线所在的直线方程为350x y +-=.15.【答案】36【解析】由几何体的三视图可知,该几何体是一个长、宽、高分别为4,2,2的长方体截去一个三棱锥1D ACD -后剩下的部分(如图所示).∵1AD C △的三边长分别分,1162AD C S =⨯=△.故该几何体的表面积111422242424222636222S =⨯+⨯+⨯+⨯⨯+⨯⨯+⨯⨯+=.16.【答案】(1,5【解析】由题意,要使函数()224422f x x ax a a =-+-+在区间[]0,2上有两个零点,只要()()002002202f f a a f ≥≥<<⎛⎧⎪⎪⎪⎨⎫< ⎪⎝⎭⎪⎪⎪⎩,即2222010180022220a a a a a a -+≥-+≥<⎧⎪⎪⎪<⎨-+<⎪⎪⎪⎩,解得(1,5a ∈,故答案为(1,5. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1){}4,6,{}1,4,6,{}2,4,6,{}1,2,4,6;(2)2. 【解析】(1)集合B 为{}4,6,{}1,4,6,{}2,4,6,{}1,2,4,6.(2)341lg2lg 3lg5log 2log 94-+-⋅232lg 2lg 23lg 5log 2log 3-=-+-⋅lg22lg23lg51=++-()3lg2lg51=+-3lg101=-312=-=.18.【答案】(1)见解析;(2)1.【解析】(1)证明:设1x 、2x ∈R 且12x x <,()()()()()121212122222*********x x x x x x f x f x a a -⎛⎫⎛⎫-=---= ⎪ ⎪++++⎝⎭⎝⎭, 又由2x y =在R 上为增函数,则120x >,220x >, 由12x x <,可得12220x x -<,则()()120f x f x -<,故()f x 为增函数,与a 的值无关,即对于任意a ,()f x 在R 为增函数. (2)若()f x 为奇函数,且其定义域为R ,必有有()()f x f x -=-,即222121x x a a -⎛⎫-=-- ⎪++⎝⎭,变形可得()2212221x xa +==+, 解可得,1a =,即当1a =时,()f x 为奇函数.19.【答案】(1)10x y --=;(2)2.【解析】(1)由题意可知,E 为AB 的中点,13142AB k -==--, ∴()3,2E ,且11CE ABk k =-=,∴CE 所在直线方程为23y x -=-,即10x y --=. (2)由22010x y x y -+=--=⎧⎨⎩,得43x y =⎧⎨⎩=,∴()4,3C ,∴2AC BC ==,AB =,∴AC BC ⊥,∴122ABC S AC BC =⋅=△. 20.【答案】(1)33h x =-;(2)当12x =时,它的侧面积最大为3π2.【解析】(1)设所求的圆柱的底面半径为x ,它的轴截面如图,1BO =,3PO =,圆柱的高为h ,由图,得313x h-=,即33h x =-. (2)∵()()22π2π336πS hx x x x x =-=-=圆柱侧,当12x =时,圆柱的侧面积取得最大值为3π2. ∴当圆柱的底面半径为12时,它的侧面积最大为3π2.21.【答案】(1)见解析;(2)见解析.【解析】(1)证明:如图,取PD 的中点G ,连接AG ,FG . 因为F ,G 分别是PC ,PD 的中点,所以GF DC ∥,且12GF DC =. 又E 是AB 的中点,所以AE DC ∥,且12AE DC =, 所以GF AE ∥,且GF AE =,所以四边形AEFG 是平行四边形,故EF AG ∥.又AG ⊂平面PAD ,EF ⊄平面PAD ,所以EF ∥平面PAD .(2)因为PD ⊥底面ABCD ,CE ⊂底面ABCD ,所以CE PD ⊥. 因为四边形ABCD 是矩形,且2AB AD =,所以AD AE =,BC BE =,所以45AED BEC ∠=∠=︒,DE CE ⊥.又PD DE D =,PD ⊂平面PDE ,DE ⊂平面PDE ,所以CE ⊥平面PDE , 又CE ⊂平面PEC ,所以平面PDE ⊥平面PEC .22.【答案】(1)见解析;(2 【解析】(1)∵AB BC CA ==,D 是AC 的中点,∴BD AC ⊥,∵直三棱柱111ABC A B C -中1AA ⊥平面ABC ,∴平面11AA C C ⊥平面ABC , ∴BD ⊥平面11AAC C ,∴BD AE ⊥.又∵在正方形11AAC C 中,D ,E 分别是AC ,1CC 的中点,∴1A D AE ⊥. 又1A DBD D =,∴AE ⊥平面1A BD .(2)连结1AB 交1A B 于O ,∵O 为1AB 的中点,∴点1B 到平面1A BD 的距离等于点A 到平面1A BD 的距离.∴1111111121332B A BD A A BD B AA D AA D V V V S BD ---===⨯⨯=⨯⨯⨯=△.2018—2019学年第一学期高一期末考试数学试题【满分150分,考试时间120分钟】一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}13<<-=x x A ,{}1,0,1,2,3---=B ,则=⋂B A ( ) A .{}1,0,1,2-- B .{}0,1,2,3--- C .{}0,1,2-- D .{}1,2,3---2.为了解高一年级1200学生的视力情况,采用系统抽样的方法,从中抽取容量为60的样本,则分段间隔为( )A .10B .20C .40D .60 3.用秦九韶算法计算多项式187654)(2345+++++=x x x x x x f 当4.0=x 的值时,需要做乘法和加法的次数分别是( )A .5,5B .4,5C .4,4D .5,4 4.如图所示的程序框图中,输出S 的值是( )A .80B .100C .120D .1405.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是( )A .至多有一次中靶B .两次都中靶C .只有一次中靶D .两次都不中靶 6.已知4log ,2,21.331.3===--c b a ,则,,a b c 的大小关系是( )A .a b c <<B .a c b <<C .b c a <<D .c b a <<7.已知函数)(x f 为奇函数,且0≥x 时,m x x f x++=2)(,则=-)1(f ( ) A .21-B .21C .2-D .2 8.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是( ) A .14 B .8π C .12 D .4π9.已知某射击运动员每次击中目标的概率都是0.7,现采用随机模拟的方法估计该运动员射击4次,至少击中2次的概率:先由计算器算出0~9之间取整数值的随机数,指定0,1,2表示没有击中目标,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:5727 0293 7140 9857 0347 4373 8636 9647 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 6710 4281据此估计,该射击运动员射击4次至少击中2次的概率为( )A .0.8B .0.85C .0.9D .0.95 10.设奇函数()f x 在),0(+∞上为单调递减函数,且0)2(=f ,则不等式05)(2)(3≤--xx f x f 的解集为( )A .]2,0()0,2[⋃-B .),2[]0,2[+∞⋃-C .),2[]2,(+∞⋃--∞D .]2,0(]2,(⋃--∞ 11.已知函数()()2,log x a f x ag x x -== (0a >且1a ≠),若()()440f g -<,则()(),f x g x 在同一坐标系内的图象大致是( )A .B .C .D .12.已知定义在R 上的函数)(x f 满足)()(x f x f =-,且当0≥x 时,⎪⎩⎪⎨⎧≥-<≤+-=1,2210,1)(2x x x x f x,若对任意的]1,[+∈m m x ,不等式)()1(m x f x f +≤-恒成立,则实数m 的最大值是( ) A .1- B .21-C .31-D .31二、填空题:本大题共4小题,每小题5分,共20分. 13.将十进制数38化为二进制数为 .14.已知函数⎩⎨⎧>≤=0,log 0,3)(3x x x x f x ,若21)(=a f ,则实数=a .15.运行如图所示的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素a ,则函数ax y =, ),0(+∞∈x 是增函数的概率为.16.已知函数22log (1),131910,322x x f x x x x ⎧-<≤⎪⎨-+>⎪⎩()=若方程m x f =)(有4个不同的实根1x ,2x ,3x ,4x ,且1234x x x x <<<,则=++))(11(4321x x x x . 三、解答题:本大题共70分17.(本题满分10分)甲、乙两名技工在相同的条件下生产某种零件,连续6天中,他们日加工的合格零件数的统计数据的茎叶图,如右图所示 (1)写出甲、乙的中位数和众数;(2)计算甲、乙的平均数与方差,并依此说明甲、乙两名技工哪名更为优秀.18.(本题满分12分) 某地区某农产品近几年的产量统计如表:(1)根据表中数据,建立y 关于t 的线性回归方程+=a t b y ; (2)根据线性回归方程预测2019年该地区该农产品的年产量.附:∑==∧---∑=ni ii i ni t ty ytt b 121)())((,t b y a ∧∧-=.参考数据:8.2))((61=--∑=i i iy y t t19.(本题满分12分)某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[90,100),[100,110),…,[140,150)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在[120,130)内的频率,补全这个频率分布直方图,并据此估计本次考试的平均分;(2)用分层抽样的方法,在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2个,求至多有1人在分数段[120,130)内的概率.20.(本题满分12分)已知函数()()()2f x x x a =-+.(1)若()f x 的图象关于直线1x =对称,求a 的值; (2)若()f x 在区间[]0,1上的最小值是2,求a 的值.21.(本题满分12分)已知)(x f 是定义在R 上的奇函数,且当0>x 时,xx f 31)(-=.(1)求函数)(x f 的解析式;(2)当]8,2[∈x 时,不等式0)log 5()(log 222≥-+x a f x f 恒成立,求实数a 的取值范围.22.(12分)已知)(x f 满足)1(log )21()1(log )2()()(244x m x m x f x f +-+--=-+(1)讨论)(x f 的奇偶性;(2)当)(x f 为奇函数时,若方程221)2(ax f x +=-在0>x 时有实根,求实数a 的取值范围.2018—2019学年第一学期高一期末考试数学试题答案1.C2.B3.A4.C5.D6.D7.C8.B9.D 10.A 11.B 12.C 13.)2(10011014. 32log 3或- 15.5316. 9 17. 解:(1)甲的中位数为2020202+=,众数为20;乙的中位数为192019.52+=,众数为23. (2)181920202122206x +++++==甲,()()()()()()2222222182019202020202021202220563S -+-+-+-+-+-==甲, 171819202323206x +++++==乙,()()()()()()22222221720182019202020232023201663S -+-+-+-+-+-==乙, 由于x x =甲乙,且22S S <甲乙,所以甲更为优秀.18.解(1)由题意可知:5.3=t ,7=y ,()5.175.25.15.0)5.0()5.1(5.2)(222222261=+++-+-+-=-∑=i i t t ,16.05.178.2)())((26161==---=∴∑∑==∧i ii i it ty y t tb ,所以44.65.316.07=⨯-=-=∧∧t b y a ∴y 关于t 的线性回归方程为44.616.0+=∧t y .(2)由(1)可得,当年份为2019年时,年份代码8=t ,此时72.744.6816.0=+⨯=∧y ,所以,可预测2019年该地区该农产品的年产量约为7.72万吨.19.解(1)分数在[120,130)内的频率为1-(0.1+0.15+0.15+0.25+0.05)=0.3.03.0=组距频率(直方图略)(2)平均分为:95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121.(3)由题意,[110,120)分数段的人数为:60×0.15=9人,[120,130)分数段的人数为:60×0.3=18人. ∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,抽样比929186=+=k∴需在[110,120)分数段内抽取2992=⨯人,并分别记为m ,n ;在[120,130)分数段内抽取41892=⨯人并分别记为a ,b ,c ,d ; 设“从样本中任取2人,至多有1人在分数段[120,130)内”为事件A ,则基本事件有:(m ,n ),(m ,a ),(m ,b ),(m ,c ),(m ,d ),(n ,a ),(n ,b ), (n ,c ),(n ,d ),(a ,b ),(a ,c ),(a ,d ),(b ,c ),(b ,d ),(c ,d )共15种. 事件A 包含的基本事件有:(m ,n ),(m ,a ),(m ,b ),(m ,c ),(m ,d ),(n ,a ), (n ,b ),(n ,c ),(n ,d )共9种.∴53159)(==A P 20.(1)法一 因为()()()()2222f x x x a x a x a =-+=+--, 所以, ()f x 的图象的对称轴为直线22a x -=.由212a-=,解得0a =, 法二 因为函数()f x 的图象关于1x =对称,所以()()02f f =成立,即20a -=,解得0a =. (2)函数()f x 的图象的对称轴为直线22ax -=. ①当2012a-<<,即02a <<时, 因为()f x 在区间20,2a -⎛⎫ ⎪⎝⎭上单调递减,在区间2,12a -⎛⎫⎪⎝⎭上单调递增, 所以()f x 在区间[]0,1上的最小值为22222a a f -+⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭, 令2222a +⎛⎫-= ⎪⎝⎭,此方程无解;②当21122a a-=-≥,即0a ≤时,因为()f x 在区间[]0,1上单调递减,所以在区间[]0,1上的最小值为()()11f a =-+, 令()12a -+=,解得3a =-.③当022≤-a,即2≥a 时,因为()f x 在区间[]0,1上单调递增,所以在区间[]0,1上的最小值为a f 20-=)(, 令22=a -,解得1-=a ,不成立.综上, 3a =-.21(1)⎪⎩⎪⎨⎧≥-<-=-0,310,13)(x x x f xx(2)当0≥x 时,xx f 31)(-=,则)(x f 在),0[+∞上单调递减,又)(x f 为R 上的奇函数,)(x f ∴在R 上单调递减,若0)log 5()(log 222≥-+x a f x f 在]8,2[∈x 上恒成立则)log ()(log )log 5(22222x f x f x a f -=-≥-,x x a 222log log 5-≤-∴在]8,2[∈x 上恒成立设t x =2log ,则]3,1[∈t ,此时关于t 的一元二次不等式052≤+-at t 在]3,1[∈t 时恒成立; 设5)(2+-=at t t f ,由⎩⎨⎧≤≤0)3(0)1(f f 得6≥a ,所以a 的取值范围为),6[+∞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁省师大附中2018-2019学年高一数学下学期期末
考试试题
考试时间:120分钟 满分:150分
第I卷 (选择题, 共60分)
一.选择题(本题共12道小题每题5分共60分)
1.计算:sin 20°cos 10°-cos 160°·sin 10°= ( )
A.23 B. 23 C. 21 D. 21
2.设Sn为等比数列{an}的前n项和,已知3S3=a4-2,3S2=a3-2,则公比
q=( )
A.3 B.4 C.5 D.6
3.利用数学归纳法证明
“*1221321,nnnnnnnN”时,从
“nk”变到“1nk””时,左边应増乘的因式是 ( )
A.21k B.211kk C. 2122kk
D.221k
4.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本
一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根
金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截
下1尺,重2斤,问依次每一尺各重多少斤?”根据上题的已知条件,若金箠
由粗到细是均匀变化的,问第二尺与第四尺的重量之和为 ( )
A.6斤 B.9斤 C.9.5斤 D.12斤
5.若sin(π-α)=-2sin2,则sin α·cos α的值等于
( )
A.52 B. 51 C. 52或52 D. 52
6.在△ABC中,∠A=60°,a=6,b=2,则△ABC解的情况是 ( )
A.无解 B.有唯一解 C.有两解 D.不能确定
7.在边长为1的等边△ABC中,设BC→=a,CA→=b,AB→=c,则
accbba
=( )
A.-32 B.0 C.32 D.3
8.已知锐角θ满足sin3262,则cos65的值为( )
A.91 B. 954 C. 91 D. 954
9.在数列{an}中,a2=8,a5=2,且2an+1-an+2=an(n∈N*),则|a1|+|a2|+…+|a10|的
值是( )
A.-10 B.10 C.50 D.70
10.在△ABC中,a,b,c分别为角A,B,C的对边,若a=2bcos C,则此三角形
一定是 ( )
A.等腰直角三角形 B.直角三角形
C.等腰三角形 D.等腰三角形或直角三角形
11.已知sin α=552,sin(β-α)= 1010,α,β均为锐角,则角β等
于 ( )
A.125 B.3 C. 4 D. 6
12.已知函数f(x)=sin(2x+),其中为实数,若f(x)≤|f(6)|对x∈R
恒成立,且f(2)>f(π),则f(x)的单调递增区间是( )
(A)[kπ-3,kπ+6](k∈Z) (B)[kπ,kπ+2](k∈Z)
(C)[kπ+6,kπ+32](k∈Z) (D)[kπ-2,kπ](k∈Z)
第Ⅱ卷(非选择题, 共90分)
二.填空题(每题5分共20分)
13.已知cos4α-sin4α=32且α∈2,0,则cos32=
________.
14.已知点A(0,1),B(-2,3),C(-1,2),D(1,5),则向量AC→在BD→方向
上的投影为________.
15.在数列{an}中,若an+1+(-1)nan=2n-1,则数列{an}的前12项和等于
________.
16.在△ABC中,三个内角A,B,C的对边分别为a,b,c,若21bcos A=sin B,
且a=23,b+c=6,则△ABC的面积为________.
三.解答题
17.(本题满分10分)在△ABC中,a,b,c分别是角A,B,C的对边,
且2bcos C=2a+c.
(1)求B;
(2)若b=2,a+c=5,求△ABC的面积.
18.本题满分12分)已知|a|=4,|b|=3,(2a-3b)·(2a+b)=
61.
(1)求a与b的夹角θ;
(2)求|a+b|;
(3)若AB→=a,BC→=b,求△ABC的面积.
19. (本题满分12分)已知向量a=23,sinx,b=(cos x,-1).
(1)当a∥b时,求2cos2x-sin 2x的值.
(2)求f(x)=( a+b)·b在0,2上的值域.
20. (本题满分12分)已知数列{an}的前n项和为Sn,an≠0,a1=1,且
2anan+1=4Sn-3(n∈N*).
(1)求a2的值并证明:an+2-an=2.
(2)求数列{an}的通项公式.
21. (本题满分12分)已知在正项等比数列{an}中,a1与a3分别是方程
x2-5x+4=0的两根.
(1)求数列{an}的通项公式.
(2)若数列{bn}是递增数列,其前n项和为Sn,且bn=log2an+1,求数列
n
S
1
的前n项和Tn.
22.(本题满分12分)在数列}b{},a{nn中,a1=2,b1=4,且
1nnnaba,,成等差数列,11nnnbab
,,
成等比数列(n*N)
(Ⅰ)求a2,a3,a4及b2,b3,b4,由此归纳出}b{},a{nn的通项公式,并
证明你的结论;
(Ⅱ)证明:
.125ba1ba1ba1ba122nn332211