高中数学教案选修2-2《第2章 复习与小结》

合集下载

选修2-2数学归纳法教案

选修2-2数学归纳法教案

高中选修2-2 2.3《数学归纳法》教学设计一、教材分析数学归纳法是一种重要的数学证明方法,在高中数学内容中占有重要的地位,其中体现的数学思想方法对学生进一步学习数学、领悟数学思想至关重要.数学归纳法的证明过程中展现的推理和逻辑思维让学生体会到数学的严谨和规范.学习数学归纳法后学生对等差等比数列、数列求和、二项式定理、整除问题等问题的解决有了新的方法.首先,我们需要初步掌握了由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法,这是研究数学问题,猜想或发现数学规律的重要手段.但是,由有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为一种论证方法.因此,在不完全归纳法的基础上,必须进一步学习严谨的科学的论证方法——数学归纳法,这是促进思维从有限性发展到无限性的一个重要环节,掌握数学归纳法的证明过程是培养严密的推理能力、训练抽象思维能力、体验数学内在美的好素材.二、教学目标1.知识目标(1)了解由有限多个特殊事例得出的一般结论不一定正确,初步理解数学归纳法原理.(2)能以递推思想为指导,理解数学归纳法证明数学命题的两个步骤一个结论.(3)初步会用数学归纳法证明一些与正整数相关的简单的恒等式.2. 能力目标(1)通过对数学归纳法的学习,使学生初步掌握观察、归纳、猜想、分析能力和严密的逻辑推理能力.(2)进一步发展学生的抽象思维能力和创新能力,让学生经历知识的构建过程, 体会类比的数学思想.(3)在学习中培养学生大胆猜想,小心求证的辨证思维素质以及发现问题、提出问题的意识和数学交流的能力.3. 情感目标(1)通过对数学归纳法原理的探究,亲历知识的构建过程,领悟其中所蕴含的数学思想和辨正唯物主义观点.(2)体验探索中挫折的艰辛和成功的快乐,感悟数学的内在美,激发学生学习热情,使学生喜欢数学.(3)学生通过置疑与探究,初步形成正确的数学观,创新意识和严谨的科学精神.三、教学重点与难点1.教学重点借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些与正整数有关的简单恒等式,特别要注意递推步骤中归纳假设的运用和恒等变换的运用.2.教学难点(1 如何理解数学归纳法证题的严密性和有效性.(2)递推步骤中如何利用归纳假设,即如何利用假设证明当1=+时结论n k正确.四、教学方法本节课采用类比启发探究式教学方法,以学生及其发展为本,一切从学生出发.在教师组织启发下,通过创设问题情境,激发学习欲望.师生之间、学生之间共同探究多米诺骨牌倒下的原理,并类比多米诺骨牌倒下的原理,探究数学归纳法的原理、步骤;培养学生归纳、类比推理的能力,进而应用数学归纳法,证明一些与正整数n有关的简单数学命题;提高学生的应用能力,分析问题、解决问题的能力.既强调独立思考,又提倡团结合作;既重视教师的组织引导,又强调学生的主体性、主动性、平等性、交流性、开放性和合作性.五、教学过程(一)创设情境,提出问题情景一:明朝刘元卿编的《应谐录》中有一个笑话:财主的儿子学写字.这则笑话中财主的儿子得出“四就是四横、五就是五横……”的结论,用的就是“归纳法”,不过,这个归纳推出的结论显然是错误的.情境二:平面内三角形内角和是180︒,四边形内角和是2180︒⨯,五边形内角和是3180︒⨯,于是得出:凸n 边形内角和是()2180n ︒-⋅ .情境三:数列{}n a 的通项公式为()2255n a n n =-+可以求得12341,1,1,1a a a a ====于是猜想出数列{}n a 的通项公式为1n a =.情景四:粉笔盒中有10支白色粉笔,怎么证明它们是白色的呢?结论:情景一到情景三都是由殊事例得出的一般性结论,即不完全归纳法不一定正确.因此,它不能作为一种论证方法,情景四是完全归纳法,结论可靠但要一一核对,工作量大.提出问题:如何寻找一个科学有效的方法证明结论的正确性呢?我们本节课要 学习的数学归纳法就是解决这一问题的方法之一.(二)实验演示,探索解决问题的方法1.几何画板演示动画多米诺骨牌游戏,师生共同探讨:要让这些骨牌全部倒 下,必须具备哪些条件呢 ① 第一块骨牌必须倒下.② 两块连续的骨牌,当前一块倒下一定导致后一块倒下.可以看出,条件②事实上给出了一个递推关系:当第k 块倒下时,相邻的第1k + 块也倒下.这样,只要第1块倒下,其他所有的就能够相继倒下.无论多少块,只要①②成立,那么所有的骨牌一定可以全部倒下.演示小节:数学归纳法原理就如同多米诺骨牌一样.2. 数学归纳法原理 证明一个与正整数n 有关的命题,可按下列步骤进行:(1) (归纳奠基) 当n 取第一个值0n (*0n ∈)时命题成立; (2) (归纳递推)假设当()*0,n k k k n =∈≥时命题成立,证明当1n k =+时命题也成立.只要完成这两个步骤,就可以断定命题对从0n 开始的所有正整数n 都成立. 上述证明方法称为数学归纳法.主要有两个步骤、一个结论: 其中第一步是递推的基础,解决了特殊性;第二步是递推的依据,解决了从有限到无限的过渡.这两步缺一不可.只有第一步,属不完全归纳法;只有第二步,假设就失去了基础.(注:数学归纳法是证明与自然数有关的数学命题的重要方法.在用数学归纳法证题时注意以下三句话“递推基础不可少,归纳假设要用到,结论写明莫忘掉.”)(三)迁移应用,理解升华例1 用数学归纳法证明:如果{}n a 是一个等差数列,那么()11n a a n d =+- 对于一切*n ∈ 都成立.证明: (1)当1n = 时,左边1,a = 右边()1111,a d a =+-=结论成立(2)假设当n k = 时结论成立, 即 ()11k a a k d =+-则当1n k =+ 1k k a a d +=+()1[11]a k d =++- ∴ 当1n k =+时,结论也成立.由(1)和(2)知,等式对于任何*n ∈都成立.例2 已知数列{}n a 其通项公式为21,n a n =-试猜想该数列的前n 项和公式,n S 并用数学归纳法证明你的结论.解: (1)111S a == 212134S S a =+=+=(2) 猜想2,n S n =问题转化为证明213521.n n ++++-=证明:(1) 当1n =时,左边=1,右边=1,等式是成立的.(2) 假设当n k =时等式成立,即有则当1n k =+,有因此,当1n k =+时,等式也成立由(1)和(2)知,等式对于任何*n ∈都成立.(四)反馈练习,巩固提高课堂练习:课本第95页练习1,2(五)课堂小结:让学生归纳本节课所学内容,不足的老师补充.n k = 到1n k =+ 有什么变化 用假设凑结论1. 归纳法是一种由特殊到一般的推理方法2. 数学归纳法作为一种证明方法,它的基本思想是递推思想,证明程序为,两个步骤一个结论.3数学归纳法的科学性:基础正确,可传递.用有限的步骤证明无限的结论. (六)布置作业课本第96页习题 2.3 A组1、2.。

数学高中选修2一2教案

数学高中选修2一2教案

数学高中选修2一2教案
教学内容:一元二次方程
教学目标:
1. 掌握一元二次方程的概念和基本性质。

2. 掌握用因式分解法、配方法、公式法等解一元二次方程的方法。

3. 能够应用一元二次方程解决实际问题。

教学重点:一元二次方程的解法及应用。

教学难点:问题实际应用。

教学过程:
一、导入(5分钟)
教师引出一元二次方程的概念,让学生回顾一元一次方程的解法,引出一元二次方程。

二、讲解与示范(15分钟)
1. 讲解一元二次方程的解法:因式分解法、配方法、公式法。

2. 通过例题进行示范,让学生掌握解题方法。

三、练习与讨论(20分钟)
1. 学生个别练习,巩固解题方法。

2. 学生分组讨论解决实际问题的一元二次方程。

四、课堂小结(5分钟)
教师对一元二次方程的解法进行总结,强调应用能力的培养。

五、作业布置(5分钟)
布置相关练习题,巩固学生学习成果。

以上就是本课的教学内容,希望能够帮助学生更好地理解和掌握一元二次方程的知识。

祝学习顺利!。

最新人教版高中数学选修2-2第二章《数学归纳法》示范教案(第2课时)

最新人教版高中数学选修2-2第二章《数学归纳法》示范教案(第2课时)

第2课时教学目标1.知识与技能目标(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.(2)进一步掌握数学归纳法的实质与步骤,掌握用数学归纳法证明等式、不等式、整除问题、几何问题等数学命题.(3)掌握证明n =k +1成立的常见变形技巧:提公因式、添项、拆项、合并项、配方等.2.过程与方法目标(1)利用“归纳—猜想—证明”模式解决问题,培养学生自觉运用数学归纳法的意识.(2)培养学生综合运用知识的能力及解题时的目标意识.(3)培养学生思维的严谨性,培养学生观察、归纳、发现的能力,并能以递推的思想作指导,理解数学归纳法的操作步骤,使学生的抽象思维和概括能力进一步提升.3.情感、态度与价值观通过对数学归纳法的学习,培养学生勇于探索、创新的个性品质,培养大胆猜想,小心求证的辩证思维素质,进一步培养学生思维的严密性.通过学生之间的交流和讨论,增强学生之间的团结合作意识,提高学生的语言交流能力.重点难点重点:(1)由“n =k ”到“n =k +1”时项的确定.(2)处理P(k +1)时“拆、分、并、补”等配凑技巧的应用.难点:(1)初步形成“观察—归纳—猜想—证明”的思维模式.(2)处理P(k +1)时“拆、分、并、补”等配凑技巧的应用.(3)运用数学归纳法时,在“归纳递推”的步骤中发现递推关系.教学过程复习巩固让学生独立完成下列练习题1.某个命题与正整数有关,如果当n =k(k ∈N )时,该命题成立,那么可推得n =k +1时,该命题也成立.现在已知当n =5时,该命题成立,那么可推导出( )A .当n =6时命题不成立B .当n =6时命题成立C .当n =4时命题不成立D .当n =4时命题成立2.某个命题与正整数有关,如果当n =k(k ∈N )时,该命题成立,那么可推得n =k +1时,该命题也成立.现在已知当n =5时,该命题不成立...,那么可推导出( ) A .当n =6时命题不成立 B .当n =6时命题成立C .当n =4时命题不成立D .当n =4时命题成立3.已知f(n)=1n +1n +1+1n +2+…+1n 2,则下列说法正确的是( ) A .f(n)中共有n 项,当n =2时,f(2)=12+13B .f(n)中共有n +1项,当n =2时,f(2)=12+13+14C .f(n)中共有n 2-n 项,当n =2时,f(2)=12+13D .f(n)中共有n 2-n +1项,当n =2时,f(2)=12+13+144.设f(n)=1n +1+1n +2+1n +3+…+12n (n ∈N ),那么f(k +1)-f(k)等于…( ) A.12k +1 B.12k +2C.12k +1+12k +2D.12k +1-12k +2活动结果:1.B 2.C 3.D 4.D设计意图练习中4个题难度不大,但题目小巧灵活,用来复习旧知,为师生共同探讨下面的例题作准备.5.用数学归纳法证明12+22+…+n 2=n (n +1)(2n +1)6(n ∈N ). 思路分析:注意数学归纳法的两步一结论,特别是归纳假设的利用.证明:(学生板演)(1)当n =1时,左边=12=1,右边=1×(1+1)×(2×1+1)6=1等式成立. (2)假设当n =k(k ∈N )时等式成立,即12+22+…+k 2=k (k +1)(2k +1)6, 那么,当n =k +1时左边=12+22+…+k 2+(k +1)2=k (k +1)(2k +1)6+(k +1)2=k (k +1)(2k +1)+6(k +1)26=(k +1)(2k 2+7k +6)6=(k +1)(k +2)(2k +3)6=(k +1)[(k +1)+1][2(k +1)+1]6=右边,即当n =k +1时等式成立. 根据(1)和(2)可知等式对任何n ∈N 都成立.点评:应用归纳假设的过程中要注意变形的目的性,否则由n =k 到n =k +1的变形不易完成.设计意图通过本题复习数学归纳法的证明步骤,体会由“n =k ”到“n =k +1”时归纳假设的应用及在证明过程中强化“目标意识”.典型示例类型一:用数学归纳法证明“等式”例1设数列{a n }满足a 1=2,a n +1=a 2n -na n +1,n ∈N *.求a 2,a 3,a 4,由此猜想a n 的一个通项公式,并证明你的结论.思路分析:在“推理与证明”一节课中已经熟悉了这种模式,由于这是一个与正整数有关的命题,可以考虑用数学归纳法证明.由于上节课刚学完数学归纳法,此题学生想到用数学归纳法证明很容易.证明:由a 1=2,得a 2=a 21-a 1+1=3,由a 2=3,得a 3=a 22-2a 2+1=4,由a 3=4,得a 4=a 23-3a 3+1=5.由此猜想a n =n +1,下面用数学归纳法证明:(1)当n =1时,a 1=1+1,猜想成立.(2)假设当n =k 时,猜想成立,即a k =k +1,那么当n =k +1时,a k +1=a 2k -ka k +1=(k+1)2-k(k +1)+1=k +2=(k +1)+1.所以,当n =k +1时,猜想也成立.由(1)(2)知,对于任意n ∈N *都有a n =n +1成立.点评:此例属于用数学归纳法证明“等式”.以数列为背景,培养学生“观察→分析→归纳→猜想→证明”这种从特殊到一般的数学思维,体会数学归纳法在数列中的应用.巩固练习是否存在常数a 、b 、c ,使得等式1×22+2×32+3×42+…+n(n +1)2=n (n +1)12(an 2+bn +c)对一切正整数成立?并证明你的结论.解:假设存在a 、b 、c 使上式对n ∈N 均成立,则当n =1,2,3时上式显然也成立,此时可得⎩⎪⎨⎪⎧ 1×22=16(a +b +c ),1×22+2×32=12(4a +2b +c ),1×22+2×32+3×42=9a +3b +c ,解此方程组可得a =3,b =11,c =10,下面用数学归纳法证明等式1×22+2×32+3×42+…+n(n +1)2=n (n +1)12(3n 2+11n +10)对一切正整数均成立.(1)当n =1时,命题显然成立.(2)假设n =k 时,命题成立.即1×22+2×32+3×42+…+k(k +1)2=k (k +1)12(3k 2+11k +10), 那么当n =k +1时,左边=1×22+2×32+3×42+…+k(k +1)2+(k +1)(k +2)2=k (k +1)12(3k 2+11k +10)+(k +1)(k +2)2=k +112[k(3k 2+11k +10)+12(k +2)2]=(k +1)(k +2)12(3k 2+17k +24)=(k +1)[(k +1)+1]12[3(k +1)2+11(k +1)+10].所以,当n =k +1时,命题也成立. 综上所述,存在常数a =3,b =11,c =10,使得等式1×22+2×32+3×42+…+n(n +1)2=n (n +1)12(an 2+bn +c)对一切正整数均成立. 类型二:用数学归纳法证明“不等式”例2(2009山东高考理20题改编)已知数列{b n }的通项公式为b n =2n ,求证:对任意的n ∈N ,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n >n +1都成立. 思路分析:没有要求用哪种方法来证明,首先要综合分析是选用分析法?综合法、反证法、还是数学归纳法来证明.此题与正整数有关可以考虑数学归纳法,当然也不能把学生试图用其他方法证明的想法一棍子打死.证明方法的选用体现了新学知识与旧知识的融合,而不能仅停留在刚学完什么方法就用什么方法证明的思维误区中,以至于在复习考试时非常被动.证明:由b n =2n ,得b n +1b n =2n +12n,所以b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n. 下面用数学归纳法证明不等式b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n >n +1成立. ①当n =1时,左边=32,右边=2,因为32>2,所以不等式成立. ②假设当n =k(k ≥1且k ∈N )时不等式成立,即b 1+1b 1·b 2+1b 2·…·b k +1b k =32·54·76·…·2k +12k >k +1成立. 则当n =k +1时,左边=b 1+1b 1·b 2+1b 2·…·b k +1b k ·b k +1+1b k +1=32·54·76·…·2k +12k ·2k +32k +2 >k +12k +32k +2=(2k +3)24(k +1)=4k 2+12k +94(k +1) >4k 2+12k +84(k +1)=4(k 2+3k +2)4(k +1)=4(k +1)(k +2)4(k +1) =k +2 =(k +1)+1. 所以当n =k +1时,不等式也成立.由①、②可得不等式b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n>n +1对任意的n ∈N 都成立.点评:本题属高考改编题,与高考题相比,删去了与数学归纳法无关的某些内容,一方面提高了课堂效率,突出了本节课的重点,同时也体现了数学归纳法在证明不等式中的应用,结合了分析法、放缩法等其他方法证明不等式.用数学归纳法证明不等式要有目标意识,考虑到n =k +1时不等式的左边为分式右边为根式,所以一般先将要证明的不等式两端都化成同一种形式(同为分式或根式),再根据目标进行合理放缩.本题证法的关键是“4k 2+12k +94(k +1)>4k 2+12k +84(k +1)”这一步的放缩. 巩固练习证明不等式1+12+13+…+1n <2n(n ∈N ). 证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即1+12+13+ (1)<2k. 那么当n =k +1时,左边=1+12+13+…+1k +1k +1<2k +1k +1=2k k +1+1k +1<k +(k +1)+1k +1=2(k +1)k +1=2k +1=右边, 这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意正整数都成立.类型三:用数学归纳法证明整除性问题例3对于n ∈N *,求证:(x +1)n +1+(x +2)2n -1可被(x 2+3x +3)整除.思路分析:此题既不是证明等式也不是证明不等式,代数式的整除性是第一次遇到,用以前学过的方法不好处理,又由于此命题与正整数有关,故考虑用数学归纳法来证明.证明:(1)当n =1时,(x +1)n +1+(x +2)2n -1=(x +1)2+(x +2)1=x 2+3x +3可被(x 2+3x+3)整除,命题成立.(2)假设n =k 时命题成立,即(x +1)k +1+(x +2)2k -1=(x 2+3x +3)·f(x).当n =k +1时,(x +1)k +2+(x +2)2k +1=(x +1)(x +1)k +1+(x +2)2(x +2)2k -1=(x +1)(x +1)k +1+(x +2)2(x +2)2k -1+(x +1)(x +2)2k -1-(x +1)(x +2)2k -1=(x +1)[(x +1)k +1+(x +2)2k -1]+[(x +2)2-(x +1)](x +2)2k -1=(x +1)(x 2+3x +3)·f(x)+(x 2+3x +3)(x +2)2k -1=(x 2+3x +3)·[(x +1)f(x)+(x +2)2k -1],∴当n =k +1时命题成立.由(1)(2)知对一切n ∈N *,(x +1)n +1+(x +2)2n -1可被(x 2+3x +3)整除.点评:整除问题一般要面临因式分解,所以在证明n =k +1时,要对式子进行合理的添加项使得既能提取公因式进行因式分解又能利用归纳假设,一般添加项的项是从两项中各取一个因式然后相乘得到.本题中添加的项是(x +1)(x +2)2k -1,也可以是(x +1)k +1(x +2)2.巩固练习求证:对于任意n ∈N ,3×52n -1+23n -2可被17整除.证明:(1)当n =1时,即3×5+2=15+2=17命题成立.(2)假设n =k 时命题成立,即3×52k -1+23k -2=17M ,M ∈N .则当n =k +1时,3×52k +1+23k +1=25×3×52k -1+8×23k -2=25×3×52k -1+8×23k -2+25×23k -2-25×23k -2=25(3×52k -1+23k -2)-17×23k -2=25×17M -17×23k -2=17(25M -23k -2),∴n =k +1时命题成立.由(1)(2)可知对于任意n ∈N ,3×52n -1+23n -2可被17整除.类型四:用数学归纳法证明相关问题例4平面上有n(n ∈N *,n ≥2)条直线,任意两条不平行,任意三条不共点,求证:(1)共有交点a n =12n(n -1)个; (2)构成线段或射线b n =n 2条.思路分析:用数学归纳法证明平面几何中与自然数有关的证明题的时候,关键是分析好由n =k 到n =k +1时的证明思路,而要找到证明思路就要通过分析当直线的条数由n =2增加到n =3时交点(线段或射线)增加的数目以及为什么增加,这样由特殊到一般就容易找到由n =k 到n =k +1时交点(线段或射线)增加的数目以及为什么增加,从而找到证明思路.证明:(1)①当n =2时,a 2=1,结论成立,②假设n =k 时结论成立,即a k =12k(k -1), 则当n =k +1时,第k +1条直线与前k 条有k 个交点,∴a k +1=a k +k =12k(k -1)+k =12k(k +1).∴结论成立. 由①②知,结论共有交点a n =12n(n -1)(n ≥2)个成立.(2)①n =2时,b 2=4,结论成立.②假设n =k 时结论成立,即b k =k 2,则当n =k +1时,第k +1条直线上有k 个交点,将第k +1条直线分成k +1部分,k 个交点在原k 条线上,每一点将所在线段或射线分成两部分,增加了k 部分.∴b k +1=b k +(k +1)+k =k 2+2k +1=(k +1)2.∴结论成立.由①②知,对一切n ∈N ,n ≥2,b n =n 2成立.巩固练习平面上有n(n ∈N *,n ≥2)条直线,任意两条不平行,任意三条不共点,求证:将平面分成c n =12n(n +1)+1部分. 证明:①n =2时,两条相交直线将平面分成4部分,c 2=12·2·(2+1)+1=4,结论成立. ②假设n =k 时结论成立,即c k =12k(k +1)+1, 当n =k +1时,第k +1条直线被分成k +1段,每一段将原来那一部分分成两部分,即增加了k +1部分.∴c k +1=c k +(k +1)=12k(k +1)+(k +1)+1=12(k +1)(k +2)+1, 即n =k +1时结论成立.由①②知对一切n ∈N ,n ≥2,c n =12n(n +1)+1成立. 变练演编用数学归纳法证明(n +1)(n +2)(n +3)…(n +n)=2n ·1·3·…·(2n -1)(n ∈N )时,从“n =k →n =k +1”两边需同乘以一个代数式,它是( )A .2k +2B .(2k +1)(2k +2)C.2k +2k +1D.(2k +1)(2k +2)k +1解析:当n =k 时,(k +1)(k +2)…(k +k)=2k ·1·3·…·(2k -1),当n =k +1时,(k +1+1)(k +1+2)…(k +1+k +1)=2k +1·1·3·…·[2(k +1)-1].通过对比等式左边可知,增加了两个因式(2k +1)(2k +2),减少了一个因式k +1.故答案选D.答案:D达标检测1.如果命题P(n)对于n =k(k ∈N *)时成立,则它对n =k +2也成立,若P(n)对于n =2时成立,则P(n)对所有的________都成立.①正整数 ②正偶数 ③正奇数 ④大于1的正整数2.如果命题p(n)对n =k 成立,则它对n =k +1也成立,现知p(n)对n =4不成立,则下列结论正确的是( )A .p(n)对n ∈N 成立B .p(n)对n>4且n ∈N 成立C .p(n)对n<4且n ∈N 成立D .p(n)对n ≤4且n ∈N 不成立3.利用数学归纳法证明不等式1n +1+1n +2+1n +3+…+1n +n >1324时,由k 递推到k +1不等式左边应添加的项是( )A.12(k +1)B.12k +1+12(k +1)C.12k +1-12(k +1)D.12k +1答案:1.② 2.D 3.C反考老师已知m 为正整数,用数学归纳法证明当x>-1时,(1+x)m ≥1+mx.证明:(ⅰ)当m =1时,原不等式成立;当m =2时,左边=1+2x +x 2,右边=1+2x , ∵x 2≥0,所以左边≥右边,原不等式成立;(ⅱ)假设当m =k 时,不等式成立,即(1+x)k ≥1+kx ,则当m =k +1时,∵x>-1,∴1+x>0,于是在不等式(1+x)k ≥1+kx 两边同乘以1+x 得(1+x)k ·(1+x)≥(1+kx)(1+x)=1+(k +1)x +kx 2≥1+(k +1)x ,所以(1+x)k +1≥1+(k +1)x ,即当m =k +1时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m ,不等式都成立.课堂小结1.知识收获:(1)数学归纳法的证明步骤.(2)用数学归纳法证明等式、不等式、整除等问题的主要思路.2.方法收获:目标意识,用数学归纳法证明时有一个技巧,即当n =k +1时,代入假设后再写出结论,然后往中间”凑”.3.思维收获:体会数学的严谨性,提高思维的深刻性和批判性,养成严谨缜密的思维习惯.布置作业教材习题2.3 A 组第2题,B 组第1,2题.补充练习基础练习1.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N *)的过程如下:①当n =1时,左边=1,右边=21-1=1,等式成立.②假设当n =k 时,等式成立,即1+2+22+…+2k -1=2k -1,则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1. 所以,当n =k +1时等式成立.由此可知,对任何n ∈N *,等式都成立.上述证明的错误..是__________. 2.对于n ∈N *,n ≥2,求证:1+122+132+…+1n 2<2-1n. 答案:1.没有用上归纳递推2.证明:(1)当n =2时,左边=1+14=54<32=2-12=右边,所以不等式成立. (2)假设n =k 时不等式成立,即1+122+132+…+1k 2<2-1k, 当n =k +1时,左=1+122+132+…+1k 2+1(k +1)2<2-1k +1(k +1)2<2-1k +1k (k +1)=2-(k +1)-1k (k +1)=2-1k +1, 即n =k +1时不等式成立.由(1)(2)知对一切n ∈N *,n ≥2不等式成立.拓展练习3.首项为正数的数列{a n }满足a n +1=14(a 2n +3),n ∈N *. 证明若a 1为奇数,则对一切n ≥2,a n 都是奇数.证明:已知a 1是奇数,可假设a k =2m -1,其中m 为正整数,则由递推关系得a k +1=a 2k +34=m(m -1)+1是奇数. 根据数学归纳法,对任何n ∈N ,a n 都是奇数.设计说明第1课时已经理解了数学归纳法的原理及步骤,本节课主要熟悉用数学归纳法证明各种题型,进一步加深对数学归纳法的理解,特别是证明当n =k +1时有一个技巧:即代入假设后再写出结论,然后往中间”凑”.对于教学中学生可能遇到的障碍也通过例题得到清除.常见障碍:1.由“n =k ”到“n =k +1”时项的确定(产生此障碍的原因:没弄清计数规律,这类问题,通常按“找规律,定项数”的方法来处理).2.若命题中n 为正奇数(或正偶数),在第二步假设“n =k 时命题成立”,误认为需证明“n =k +1时命题也成立”(错因:忽略相邻的正奇数相差2).3.处理P(k +1)时不善于“拆、分、并、补”等配凑技巧的应用(原因:缺乏目标意识).4.不能灵活运用其他证明不等式的方法,如比较法、分析法、综合法、放缩法(原因:对“数学归纳法”缺乏认识,忽略了应用数学归纳法证题时可以结合其他数学方法).备课资料例1:(2009陕西卷理)已知数列{x n }满足,x 1=12,x n +1=11+x n,n ∈N *. 猜想数列{x 2n }的单调性,并证明你的结论.思路分析:用数学归纳法证明一个与正整数有关的命题,关键是第二步,要注意当n =k +1时,等式两边的式子与n =k 时等式两边的式子的联系,增加了哪些项,或减少了哪些项,问题就容易解决.解:由x 1=12及x n +1=11+x n得x 2=23,x 4=58,x 6=1321. 由x 2>x 4>x 6猜想:数列{x 2n }是递减数列.下面用数学归纳法证明:(1)当n =1时,x 2>x 4,命题成立.(2)假设当n =k 时命题成立,即x 2k >x 2k +2.易知x 2k >0,那么x 2k +2-x 2k +4=11+x 2k +1-11+x 2k +3=x 2k +3-x 2k +1(1+x 2k +1)(1+x 2k +3) =x 2k -x 2k +2(1+x 2k )(1+x 2k +1)(1+x 2k +2)(1+x 2k +3)>0, 即x 2(k +1)>x 2(k +1)+2.也就是说,当n =k +1时命题也成立,结合(1)和(2)知,命题成立.例2:求证:(1+1)(1+13)…(1+12n -1)>2n +1,n ∈N *. 思路分析:与正整数有关的不等式证明可以考虑数学归纳法,关键在于由假设n =k 时不等式成立推出当n =k +1时不等式成立,在这个过程中可以应用分析法或者是放缩法.证明:(1)当n =1时,左边=1+1=2=4>3=右边,所以不等式成立.(2)假设n =k 时不等式成立,即(1+1)(1+13)…(1+12k -1)>2k +1, 当n =k +1时,左=(1+1)(1+13)…(1+12k -1)(1+12k +1)>2k +1(1+12k +1)=2k +22k +1, 欲证:左边>2(k +1)+1=右边,只需证(2k +22k +1)2-(2k +3)2=(2k +2)2-(2k +1)(2k +3)2k +1=12k +1>0. ∴2k +22k +1>2k +3.∴n =k +1时不等式成立. 由(1)(2)知对一切n ∈N *不等式成立.点评:由假设n =k 时不等式成立推出当n =k +1时不等式成立的过程中也可以应用放缩法:左边=(1+1)(1+13)…(1+12k -1)+(1+12k +1)>2k +1(1+12k +1) =2k +22k +1=(2k +2)22k +1=4k 2+8k +42k +1>4k 2+8k +32k +1=(2k +1)(2k +3)2k +1 =2k +3=2(k +1)+1=右边.(设计者:张建霞)。

最新人教版高中数学选修2-2第二章《数学归纳法》知识梳理

最新人教版高中数学选修2-2第二章《数学归纳法》知识梳理

2.3 数学归纳法1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.1.数学归纳法证明一个与正整数n 有关的命题,可按下列步骤进行:第一步,归纳奠基:证明当n 取______________时命题成立.第二步,归纳递推:假设____________时命题成立,证明当________时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫做数学归纳法.数学归纳法的第一步中n 的初始值怎样确定? 【做一做1】 用数学归纳法证明1+a +a 2+…+a n +1=1-a n +21-a(a ≠1),在验证n =1时,等式左边为( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3【做一做2】 设S k =1k +1+1k +2+1k +3+…+12k ,则S k +1为( )A .S k +12k +2B .S k +12k +1+12k +2C .S k +12k +1-12k +2D .S k +12k +2-12k +1【做一做3】 在应用数学归纳法证明凸n 边形的对角线有12n (n -3)条时,第一步验证n等于__________.2.数学归纳法的框图表示答案:1.第一个值n 0(n 0∈N *) n =k (k ≥n 0,k ∈N *) n =k +1 思考讨论提示:数学归纳法的第一步中n 的初始值应根据命题的具体情况而确定,不一定是n 0=1,如证明n 边形的内角和为(n -2)·180°时,其初始值n 0=3.【做一做1】 C 因为左边式子中a 的最高指数是n +1,所以当n =1时,a 的最高指数为2,根据左边式子的规律可得,当n =1时,左边=1+a +a 2.【做一做2】 C 因式子右边各分数的分母是连续正整数,则由S k =1k +1+1k +2+…+12k ,①得S k +1=1k +2+1k +3+…+12k +12k +1+12(k +1).②由②-①,得S k +1-S k =12k +1+12(k +1)-1k +1=12k +1-12(k +1).故S k +1=S k +12k +1-12(k +1),故选C. 【做一做3】 3 ∵三角形是边数最少的凸多边形, ∴需验证的第一个n 值为3. 2.n =n 0 n =k +1 正整数1.如何理解数学归纳法? 剖析:数学归纳法是专门证明与正整数集有关的命题的一种方法,它是一种完全归纳法,是对不完全归纳法的完善.证明分两步,其中第一步是命题成立的基础,称为“归纳奠基”;第二步解决的是延续性问题,又称“归纳递推”.运用数学归纳法证明有关命题应注意以下几点:(1)两个步骤缺一不可.(2)在第一步中,n 的初始值不一定从1取起,也不一定只取一个数(有时需取n =n 0,n 0+1等),证明应视具体情况而定.(3)第二步中,证明n =k +1时,必须使用假设,否则就会打破数学归纳法步骤间的严密逻辑关系,造成推理无效.(4)证明n =k +1成立时,要明确求证的目标形式,一般要凑出假设里给出的形式,以便使用假设,然后再去凑出当n =k +1时的结论,这样就能有效减少论证的盲目性.数学归纳法的理论根据是皮亚诺的归纳公理:任何一个正整数集A ,若①1∈A ;②由k ∈A 可推出k +1∈A ,则A 含有所有的正整数.2.运用数学归纳法要注意哪些?剖析:正确运用数学归纳法应注意以下几点: (1)验证是基础.数学归纳法的原理表明:第一个步骤是要找一个数n 0,这个n 0就是我们要证明的命题对象的最小自然数,这个自然数并不一定都是“1”,因此“找准起点,奠基要稳”是我们正确运用数学归纳法第一个要注意的问题.(2)递推是关键.数学归纳法的实质在于递推,所以从“k ”到“k +1”的过程,必须把归纳假设“n =k ”作为条件来导出“n =k +1”时的命题,在推导过程中,要把归纳假设用上一次或几次.(3)正确寻求递推关系.我们已经知道数学归纳法的第二步递推是至关重要的,那么如何寻求递推关系呢? ①在第一步验证时,不妨多计算几项,并争取正确写出来,这样对发现递推关系是有帮助的.②探求数列通项公式要善于观察式子或命题的变化规律,观察n 处在哪个位置.③在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k )中的最后一项.除此之外,多了哪些项,少了哪些项都要分析清楚.题型一 用数学归纳法证明等式 【例题1】 用数学归纳法证明:⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116…⎝⎛⎭⎫1-1n 2=n +12n(n ≥2,n ∈N *). 分析:第一步先验证等式成立的第一个值n 0;第二步在n =k 时等式成立的基础上,等式左边加上n =k +1时新增的项,整理出等式右边的项.反思:在应用数学归纳法证题时应注意以下几点:①验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定为1.②递推是关键:正确分析由n =k 到n =k +1时式子项数的变化是应用数学归纳法成功证明问题的保障.③利用假设是核心:在第(2)步证明中一定要利用归纳假设,这是数学归纳法证明的核心环节,否则这样的证明方法就不是数学归纳法.题型二 用数学归纳法证明不等式【例题2】 已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1),(1)证明:a n ≥2n -1(n ∈N *). (2)试比较11+a 1+11+a 2+…+11+a n与1的大小,并说明理由. 分析:(1)求f ′(x )→得到式子a n +1≥(a n +1)2-1→利用数学归纳法证明a n ≥2n -1(n ∈N *)(2)由a n ≥2n -1得1+a n ≥2n →11+a n ≤12n →利用放缩法证明不等式成立 反思:利用数学归纳法证明与n 有关的不等式是数学归纳法的主要应用之一,应用过程中注意:①证明不等式时,从n =k 到n =k +1的推导过程中要应用归纳假设,有时需要对目标式进行适当的放缩来实现.②与n 有关的不等式的证明有时并不一定非用数学归纳法不可,还经常用到不等式证明中的比较法、分析法、配方法、放缩法等.题型三 用数学归纳法证明几何问题【例题3】 有n 个圆,其中每两个圆相交于两点,并且每三个圆都不相交于同一点,求证:这n 个圆把平面分成f (n )=n 2-n +2部分.分析:解答本题的关键是在第二步中如何正确地应用假设.反思:用数学归纳法证明几何问题的关键是“找项”,即几何元素从k 个变成(k +1)个时,所证的几何量将增加多少,这需用到几何知识或借助于几何图形来分析,在实在分析不出来的情况下,将n =k +1和n =k 分别代入所证的式子,然后作差,即可求出增加量,然后只需稍加说明即可,这也是用数学归纳法证明几何命题的一大技巧.题型四 易错辨析【例题4】 用数学归纳法证明:1+4+7+…+(3n -2)=12n (3n -1).错解:证明:(1)当n =1时,左边=1,右边=1,左边=右边,等式成立. (2)假设当n =k (k ≥1,k ∈N *)时等式成立,即1+4+7+…+(3k -2)=12k (3k -1),则当n =k +1时,需证1+4+7+…+(3k -2)+[3(k +1)-2]=12(k +1)(3k +2)(*).由于等式左边是一个以1为首项,公差为3,项数为k +1的等差数列的前n 项和,其和为12(k +1)(1+3k +1)=12(k +1)(3k +2),所以(*)式成立,即n =k +1时等式成立.根据(1)和(2),可知等式对一切n ∈N *都成立.错因分析:判断用数学归纳法证明数学问题是否正确,关键要看两个步骤是否齐全,特别是第二步假设是否被应用,如果没有用到假设,那就是不正确的.错解在证明当n =k +1等式成立时,没有用到假设“当n =k (k ≥1,k ∈N *)时等式成立”,故不符合数学归纳法证题的要求.答案:【例题1】 证明:(1)当n =2时,左边=1-14=34,右边=2+12×2=34,∴左边=右边.(2)假设n =k (k ≥2,k ∈N *)时结论成立,即⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19…⎝⎛⎭⎫1-1k 2=k +12k . 那么n =k +1时,利用归纳假设有:⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19…⎝⎛⎭⎫1-1k 2⎣⎡⎦⎤1-1(k +1)2=k +12k ⎣⎡⎦⎤1-1(k +1)2=k +12k ·k (k +2)(k +1)2 =k +22(k +1)=(k +1)+12(k +1).∴即n =k +1时等式也成立.综合(1)(2)知,对任意n ≥2,n ∈N *等式恒成立. 【例题2】 (1)证明:∵f ′(x )=x 2-1, ∴a n +1≥(a n +1)2-1=a 2n +2a n .①当n =1时,a 1≥1=21-1,命题成立;②假设当n =k (k ≥1,k ∈N *)时命题成立,即a k ≥2k -1; 那么当n =k +1时,a k +1≥a 2k +2a k =a k (a k +2)≥(2k -1)(2k-1+2)=22k -1≥2k +1-1.即当n =k +1时,命题成立, 综上所述,命题成立. (2)解:11+a 1+11+a 2+…+11+a n<1. ∵a n ≥2n -1,∴1+a n ≥2n .∴11+a n ≤12n . ∴11+a 1+11+a 2+…+11+a n≤12+122+…+12n =1-12n <1. 【例题3】 证明:(1)当n =1时,分为两部分,f (1)=2,命题成立; (2)假设n =k (k ≥1,k ∈N *)时,被分成f (k )=k 2-k +2部分;那么当n =k +1时,依题意,第k +1个圆与前k 个圆产生2k 个交点,第k +1个圆被截为2k 段弧,每段弧把所经过的区域分为两部分,∴平面上增加了2k 个区域.∴f (k +1)=f (k )+2k =k 2-k +2+2k =(k +1)2-(k +1)+2,即n =k +1时命题成立, 由(1)(2)知命题成立.【例题4】 正解:证明:(1)当n =1时,左边=1,右边=1,左边=右边,等式成立.(2)假设当n =k (k ≥1,k ∈N *)时等式成立,即1+4+7+…+(3k -2)=12k (3k -1),则当n =k +1时,1+4+7+…+(3k -2)+[3(k +1)-2]=12k (3k -1)+(3k +1)=12(3k 2+5k +2)=12(k +1)(3k +2)=12(k +1)[3(k +1)-1], 即当n =k +1时等式成立.根据(1)和(2),可知等式对一切n ∈N *都成立.1用数学归纳法证明3n≥n 3(n ≥3,n ∈N ),第一步应验证( ) A .n =1 B .n =2 C .n =3 D .n =42已知f (n )=11112n n n +++++ (21),则( ) A .f (n )共有n 项,当n =2时,f (2)=1123+B .f (n )共有n +1项,当n =2时,f (2)=111234++C .f (n )共有n 2-n 项,当n =2时,f (2)=1123+D .f (n )共有n 2-n +1项,当n =2时,f (2)=111234++3已知n 为正偶数,用数学归纳法证明1111234-+-+…+11n -=1112242n n n ⎛⎫++⋅⋅⋅+ ⎪++⎝⎭时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立4设平面内有n 条直线,其中任何两条直线不平行,任何三条直线不共点.若k 条直线将平面分成f (k )个部分,k +1条直线将平面分成f (k +1)个部分,则f (k +1)=f (k )+__________.5用数学归纳法证明2222111111234n n+++⋅⋅⋅+<-(n ≥2,n ∈N *).答案:1.C 由题知,n 的最小值为3,所以第一步验证n =3是否成立,选C. 2.D 由题意知f (n )最后一项的分母为n 2, 故f (2)=2111232++,排除选项A ,选项C. 又f (n )=211101()n n n n n ++++++-…, 所以f (n )的项数为n 2-n +1项.故选D.3.B 因为假设n =k (k ≥2为偶数),故下一个偶数为k +2,故选B.4.k +1 第k +1条直线与原来的k 条直线相交,有k 个交点,这k 个交点把第k +1条直线分成k +1部分(线段或射线),这k +1部分把它们所在的平面区域一分为二,故平面增加了k +1部分.5.分析:证明:(1)当n =2时,左边=21124=,右边=11122-=. 因为1142<,所以不等式成立. (2)假设n =k (k ≥2,k ∈N *)时,不等式成立, 即2222111111234k k++++<-…, 则当n =k +1时,22222211111111234(1)(1)k k k k +++++<-+++… =22222(1)1(1)111(1)(1)(1)k k k k k k k k k k k k +-+++-=-<-+++ =111k -+. 所以当n =k +1时,不等式也成立.综上所述,对任意n ≥2的正整数,不等式都成立.。

高中数学-复习课教案-新人教版选修2-2

高中数学-复习课教案-新人教版选修2-2

宁夏银川贺兰县第四中学2013-2014学年高中数学 复习课教案 新人教版选修2-23.认识数学本质,把握数学本质,增强创新意识,提高创新能力。

二、教学重点:进一步感受和体会常用的思维模式和证明方法,形成对数学的完整认识。

难点:认识数学本质,把握数学本质,增强创新意识,提高创新能力 三、教学过程: 【创设情境】一、知识结构:【探索研究】我们从逻辑上分析归纳、类比、演绎的推理形式及特点;揭示了分析法、综合法、数学归纳法和反证法的思维过程及特点。

通过学习,进一步感受和体会常用的思维模式和证明方法,形成对数学的完整认识。

【例题评析】例1:如图第n 个图形是由正n+2边形“扩展”而来,(n=1,2,3,…)。

则第n -2个图形中共有________个顶点。

推理与证明推理 证明合情推理演绎推理 直接证明间接证明 类比推理 归纳推理 分析法 综合法 反证法数学归纳变题:黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n个图案中有白色地面砖块。

例2:长方形的对角线与过同一个顶点的两边所成的角为,αβ,则22cos sinαβ+=1,将长方形与长方体进行类比,可猜测的结论为:_______________________;变题2:数列}{na的前n项和记为Sn,已知).3,2,1(2,111Λ=+==+nSnnaann证明:(Ⅰ)数列}{nSn是等比数列;(Ⅱ).41n na S=+例3:设f(x)=ax2+bx+c(a≠0),若函数f(x+1)与函数f(x)的图象关于y轴对称,求证:第1个第2个第3个1()2f x +为偶函数。

例4:设Sn=1+111 (23)+++n (n>1,n ∈N),求证:212n nS >+ (2,n n N ≥∈) 评析:数学归纳法证明不等式时,经常用到“放缩”的技巧。

变题:是否存在a 、b 、c 使得等式1·22+2·32+…+n(n+1)2=12)1(+n n (an2+bn+c) 对于一切正整数n 都成立?证明你的结论。

高中数学(北师大版)选修2-2教案:第2章 典型例题:导数与切线方程

高中数学(北师大版)选修2-2教案:第2章 典型例题:导数与切线方程

导数与切线方程函数()y f x =在点0x 处的导数的几何意义,就是曲线()y f x =在点()()00,P x f x 处的切线的斜率,因此求曲线在某点处的切线方程,可以先求出函数在该点的导数,即曲线在该点的切线的斜率,再用直线的点斜式,写出直线的方程。

例、已知函数()316f x x x =+-.⑴求曲线()y f x =在点()2,6-处的切线的方程;⑵直线L 为曲线()y f x =的切线,且经过原点,求直线L 的方程及切点坐标;⑶如果曲线()y f x =的某一切线与直线134y x =-+垂直,求切点坐标与切线方程。

解析:⑴∵()()321631f x x x x ''=+-=+∴在点()2,6-处的切线的斜率为()2232113k f '==⨯+=,∴切线的方程为:()()1326y x =-+-,即136y x =-。

⑵法一、设切点为()00,x y ,则直线L 的斜率为()20031f x x '=+∴直线L 的方程为()()2200003116y x x x x x =+-++-又∵直线L 过点()0,0,∴()()22000003116x x x x =+-++-整理得,308x =-,∴02x =-,∴()()30221626y =-+--=-,∴13k = ∴直线L 的方程为13y x =,切点坐标为()2,26--。

法2、设直线L 的方程为y kx =,切点为()00,x y ,则3000000160y x x k x x -+-==- 又∵()30031k f x x '==+,∴3300001631x x x x +-=+,解得02x =-, ∴()()30221626y =-+--=-,13k =∴直线L 的方程为13y x =,切点坐标为()2,26--。

⑶∵切线与直线134y x =-+垂直,∴斜率4k = ∴设切点为()00,x y ,则()200314f x x '=+=,∴01x =±∴00114x y =⎧⎨=-⎩或00118x y =-⎧⎨=-⎩,∴切线方程为()4114y x =--或()4118y x =+- ∴即414y x =-或418y x =-点评:根据条件列方程或方程组是解决该问题的主要方法,灵活运用0x x =处的导数就是该点处的切线的斜率是解决有关问题的关键,由导数的几何意义可知,点()()00,x f x 处的切线方程()()()000y f x x x f x '=-+。

人教版高中数学选修2-2第二章推理与证明复习小结优质课件


现命题等,著名哲学家康德说:“每当理智缺乏可靠论证思
路时,类比法往往能指明前进的方向.”
工具
人教A版数学选修2-2 第二章 推理与证明
栏目导引
特别提醒: (1) 归纳推理是由部分到整体,个体到一般
的推理,其结论正确与否,有待于严格证明.
(2) 进行类比推理时,要合理确定类比对象,不能乱 比,要对两类对象的共同特点进行对比.
[ 思维点击 ] 归纳猜想 ――→ fn推理与证明
栏目导引
1 [规范解答] 因为 an= 2, n+1 f(n)=(1-a1)(1-a2)„(1-an) 1 3 所以 f(1)=1-a1=1-4=4,
1 1- f(2)=(1-a1)(1-a2)=f(1)· 9
推理与证明章末小结
工具
人教A版数学选修2-2 第二章 推理与证明
栏目导引
一、合情推理和演绎推理
1.归纳和类比是常用的合情推理,都是根据已有的事
实,经过观察、分析、比较、联想,再进行归纳类比,然后 提出猜想的推理.从推理形式上看,归纳是由部分到整体, 个别到一般的推理,类比是由特殊到特殊的推理,演绎推理 是由一般到特殊的推理.
推出结论的线索不够清晰; (2) 如果从正面证明,需要分成多种情形进行分类讨 论,而从反面进行证明,只要研究一种或很少的几种情形.
工具
人教A版数学选修2-2 第二章 推理与证明
栏目导引
三、数学归纳法
数学归纳法是推理逻辑,它的第一步称为归纳奠基,是
论证的基础保证,即通过验证落实传递的起点,这个基础必 须真实可靠;它的第二步称为归纳递推,是命题具有后继传 递性的保证,两步合在一起为完全归纳步骤,这两步缺一不 可,第二步中证明“当n =k +1 时结论正确”的过程中,必

高中数学教案——极限 小结与复习 第二课时

课 题:小结与复习(二)教学目的:1.进一步巩固求极限的基本方法,数学归纳法.2.利用函数极限存在,解题.3.利用函数的连续性,解一些题目 教学重点:求解数列或函数的极限.教学难点:极限的求解.数学归纳法的应用.授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析:极限是描述数列和函数在无限过程中的变化趋势的重要概念.并且与我们下一章要学习的导数有密切的关系.学习极限概念要注意体会对象的变化规律,数列或函数有极限,意味着它们在变化中无限趋近于一个常数,所以我们要以运动的眼光来看待事物,要把握运动状态中的不变量.本节课,先本看一个用数学归纳法来证明的一个例子,虽然极限是本章的主要内容,但数学归纳法这种方法也要掌握,特别是一些与n 有关的题目,用数学归纳法证明会很方便,接着再来看一些关于极限的一些题目,进一步巩固一下求极限的一些方法. 教学过程:一、讲解范例:例1 已知数列,)13)(23(1,,1071,741,411+-⨯⨯⨯n n … (1)计算S 1,S 2,S 3,S 4.(2)猜想S n 的表达式,并证明.(3)∞→n lim S n . 解:(1)S 1=41411=⨯. S 2=722817741411=+=⨯+⨯ S 3=10370120107172=+=⨯+S 4=13413013913101103=+=⨯+. (2 )解:通项是以3n -2,3n +1两数乘积为分母的,而我们看到,在表示上面四个结果的分数中,分子可用项数n 表示,分母可用3n +1表示,于是可猜想.S n =13)13)(23(11071741411+=+-++⨯+⨯+⨯n n n n 证明方法一:用数学归纳法证明如下: 1° 当n =1时,S 1=113141411+⨯==⨯等式成立. 2° 假设当n =k 时等式成立.即 S k =13+k k . 当n =k +1时.)43)(13(143)43)(13(1)43()43)(13(113)43)(13(1)43)(13(1)13)(23(141121++++=++++=++++=+++=++++-++⨯=+k k k k k k k k k k k k k k S k k k k S k k 1)1(31431)43)(13()1)(13(+++=++=++++=k k k k k k k k ∴当n =k +1时,等式也成立.∴S n =13+n n (n ∈N *) 证明方法二:)131231(31)13)(23(1+--=+-n n n n ∴)13)(23(11071741411+-++⨯+⨯+⨯=n n S n1313331)1311(31)131231101717141411(31)131231(31)10171(31)7141(31)411(31+=+⋅=+-=+--++-+-+-=+--++-+-+-=n n n n n n n n n ∴S n =13+n n (3)解: 3131lim 13lim lim =+=+=∞→∞→∞→nn n S n n n n 例2 已知下列极限,求a 与b . (1)0)11(lim 2=--++∞→b ax x x x (2)0)1(lim 2=--+-∞→b ax x x x (3)11lim 2=-++∞→x b a x x 分析:此题属于已知x 趋向于x 0(或无穷大)时,函数的极限存在且等于某个常数,求函数关系式的类型.上边三个小题都不能简单地将x =x 0直接代入函数的解析式中,因为(1)(2)中的x 不趋于确定的常数,(3)虽然趋于1,但将x =1代入函数关系式中,分母为零.因此,解决此类问题的关键,是先要确定用哪种方法求极限,再将函数的解析式进行适当的变形,然后根据所给的条件进行分析,进而确定a ,b 的值.解:(1)1)1()()1(lim )11(lim 22+-++--=--++∞→∞→x b x b a x a b ax x x x x x x b b a x a x 111)()1(lim +-++--=∞→1° 如果1-a ≠0, ∵01lim ,01lim =-=∞→∞→xb x x x ∴xx bb a x a x 111)()1(lim +-++--∞→不存在. 2° 如果 1-a =0, ∵010)(111)()1(lim +++-=+-++--∞→b a x x b b a x a x =-(a +b )=0 即a +b =0∴⎩⎨⎧-==⇒⎩⎨⎧=+=-11001b a b a a 解:(2))1(lim 2b ax x x x --+-∞→01111)21()1(lim 1)1()21()1(lim 1)(1lim 11)(1(lim 2222222222222=+++--++--=+++--++--=+++-+-+-=+++-+++---+-=∞→∞→∞→∞→xb a x x x b ab x a bax x x b x ab x a bax x x b ax x x bax x x b ax x x b ax x x x x x x 要使极限存在1-a 2=0.∴01)21(1111)21()1(lim 222=++-=+++--++--∞→a ab x b a x x x b ab x a x 即1+2ab =0,a +1≠0. ∴⎪⎩⎪⎨⎧-==⇒⎪⎩⎪⎨⎧≠+=+=-21101021012b a a ab a 解:(3)))(1())((lim 1lim 2121b a x x b a x b a x x b a x x x -+--+++=-++→→ ))(1)(1(lim ))(1(lim 21221b a x x x ba xb a x x b a x x x -+-+-+=-+--+=→→当x →1时))(1)(1(2b a x x x b a x -+-+-+极限存在,则分子、分母必有公因式x -1. ∴a -b 2=-1 ∴原式=1)1(21))(1(1lim1=-+=-++→b a b a x x x ∴⎪⎪⎩⎪⎪⎨⎧-=-=⇒⎪⎩⎪⎨⎧=-+-=-4116151)1(2112b a b a b a 说明:第一题是分子分母同除以x 的较低的幂,第二题是分子有理化,和第一题的方法相结合,第三题是因式分解法和分子有理化法相结合.我们以前求极限的一种方法是分子、分母同除x 的最高次幂,但像第一题,因为分子的次数低于分母的次数,如果分子除以x 2,则分子极限为0,不符合,所以通分后,应除以分子分母中x 的较低次幂.并且x 的次数比分子x 的最高次幂大的项的系数应该等于0,这样极限才存在.例3 f (x )=⎩⎨⎧>+≤-232 3222x a x x x 求a ,使2lim →x f (x )存在. 解:要使2lim →x f (x )存在,则-→2lim x f (x )与+→2lim x f (x )要存在且相等. -→2lim x f (x )= -→2lim x (2x 2-3)=2·22-3=5. +→2lim x f (x )= +→2lim x (3x 2+a )=3·22+a =12+a . ∴5=12+a .∴a =-7例4设函数f (x )=⎪⎪⎩⎪⎪⎨⎧<-+=>+)0( )11()0( )0( 12x x xb x a x x ,在x =0处连续,求a ,b 的值.分析:要使f (x )在x =0处连续,就要使f (x )在x =0处的左、右极限存在,并且相等,等于f (x )在x =0处的值a .解:-→0lim x f (x )=xb x -→0lim ·(x +1-1) 211lim )11()11(lim )11()11)(11(lim 000b x b x x x b x x x x b x x x =++=++-+=++++-+=---→→→ +→0lim x f (x )=+→0lim x (2x +1)=2·0+1=1 ∴⎩⎨⎧==⇒⎪⎩⎪⎨⎧==2112b a a a b 说明:这类连续的题目,也关键是求在一点处的左、右极限存在并都等于在这点的函数值,与函数在这点的极限存在的方法是相同的二、课堂练习:1. ])21()31[(lim 320+-+→xx x x解:])21()31[(lim 320+-+→xx x x 2320(13)(12)lim x x x x →+-+=22320169(16128)lim x x x x x x x→++-+++= 2320038lim lim(38)3x x x x x x→→--==--=- 2.36221)1(lim +++∞→n n n n 解:36221)1(lim +++∞→n n n n22n =2n =lim n =202 4.1++== 3.xx m nx sin sin lim 0→ (m ,n 为自然数) 解:m m n n nx m m m n n nx m n x x x x x x x xx x x x x x )sin (sin lim sin sin lim sin sin lim 000-→→→=⋅⋅=m n x m x m n x n n x x x x x x x -→→-→→==0000lim )sin (lim lim sin lim 当n -m >0时,即n >mm n x x -→0lim =0 当n -m =0时,即n =m m n x x -→0l i m =1 当n -m <0时,即n <m n m x x-→)1(lim 0不存在.∴当n >m 时,x x m n x sin sin lim 0→=0;当n =m 时,xx m nx sin sin lim 0→=1; 当n <m 时,xx m nx sin sin lim 0→不存在. 4.xmx nx 11lim 0-+→ (m ,n ∈N *,n 正奇数) 解:方法一:xmx nx 11lim 0-+→120n n x --→=0n x →=0x →=11)1()1(lim 210+++++++=--→n n n n n x mx mx mx m n m m n =+++=个111 因为这里的m ,n 是确定数,不是无限数,所以在分母上,可以用函数极限的四则运算法则. 方法二:设n mx +1=y ,则x =m1 (y n -1) 当x →0时,y →1. ∴)1(1lim 11lim 10--=-+→→n y nx y my x mx 121(1)lim (1)(1)n n y m y y y y --→-=-+++ 121lim 1n n y my y --→=+++ 111n m m n ==+++个5.数列{a n }满足∞→n lim [(2n -1)a n ]=2.求∞→n lim (na n ) 解:∞→n lim (na n )= ∞→n lim [(2n -1)a n ·12-n n ]=∞→n lim [(2n -1)a n ]·∞→n lim 12-n n =2·1212121lim =⋅=-∞→n n . 6.求下列极限:)4cot(2tan lim4ππ-→x x x解:原式=)4cos(2cos )4sin(2sin lim 4πππ--→x x x x x 4sin 2sin()4lim cos[2()]cos()424x x x x x πππππ→-=-+-. 4sin 2sin()4limsin 2()cos()44x x x x x ππππ→⋅-=--⋅-24sin 2lim 2cos ()4x x x ππ→=--11212==--⋅ 三、小结 :这节课还是主要学习求极限的方法,知道了极限求函数的解析式,或者知道了函数在点或区间上的连续性,求函数的解析式等 四、课后作业:五、板书设计(略) 六、课后记:。

高中数学选修22《第2章复习计划及小结》

学习目标:1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的根本模式,并能运用它们进行一些简单推理.3.了解直接证明的根本方法:分析法、综合法和数学归纳法;了解分析法、综合法和数学归纳法的思考过程、特点.4.了解本章知识结构,进一步感受和体会常用的思维模式和证明方法,形成对数学的完整认识.学习重点:了解本章知识结构,进一步感受和体会常用的思维模式和证明方法,形成对数学的完整认识.教学难点:认识数学本质,把握数学本质,灵活选择并运用所学知识解决问题.[来源:]活动方案:活动一知识回忆问题情境本章知识结构:基知关:〔1〕合情推理包括〔2〕推理、推理.称推理;它是一种由到〔3〕,由到的推理.称比推理;它是一种由到的推理.〔4〕推理的一般步是:①〔5〕比推理的一般步是:①,②,②..〔6〕从一般性的原理出,推出某个特殊情况下的,我称种推理,它是一种到的推理.〔7〕和是直接明的两种根本方法.〔8〕反法明的一般步:①,②,③;④.〔9〕数学法的根本思想数学法明命的步:①;,②,③.活二、数学运用例1〔1〕考察以下一不等式:23+53>22·5+2·52,24+54>23·5+2·53,25+55>23·52+22·53,⋯.将上述不等式在左右两端仍两和的情况下加以推广,使以上的不等式成推广不等式的特例,推广的不等式可以是〔2〕在平面上,假设两个正三角形的的比1∶2,它的面比.1∶4,似地,在空内,假设两个正四面体的棱的比1∶2,它的体比.〔3〕假设数列{an}是等差数列,于bn=1(a1+a2+⋯+an),数列{bn}也n是等差数列.比上述性,假设数列{cn}是各都正数的等比数列,于dn>0,dn=,数列{dn}也是等比数列.明〔1〕是从个情况到一般情况的合情推理;〔2〕是从平面到空的比推理;〔3〕是从等差数列到等比数列的比推理.例2 假设△ABC的三个内角A,B,C成等差数列,分用合法和分析法明:c+a=1.a+b b+c明分析法和合法是两种常用的直接明方法.分析法的特点是果索因,合法的特点是由因果,分析法常用来探解思路,合法常用来写解程.例3a,b,c∈(0,1),求:(1-a)b,(1-b)c,(1-c)a不能同大于1.4明反法属于“接明法〞,是从反面的角度思考的明方法.用反法明命“假设pq〞,可能会出以下三种情况:〔1〕出非p真,即与原命的条件矛盾;〔2〕出q真,即与假“非q真〞矛盾;〔3〕出一个恒假命.使用反法明,准确地作出反〔即否认〕,是正确运用反法的前提.当遇到否认性、惟一性、无限性、至多、至少等型,常用反法.例4数列{an},an≥0,a1=0,an+12+an+1-1=an2(n∈N*)Sn=a1+a2+⋯+an.Tn=1+1++1+++++a1+1(1a1)(1a2)(1a1)(1a2)(1a n)求:当n∈N*,〔1〕a n<a n+1;〔2〕S n>n-2;〔3〕T n<3.[来源:学科网]活三、学生引学生从知、方法、收三个方面行小,明确推理、推理的概念及彼此的关系.数学本,把握数学本,增新意,提高新能力.学不是一朝一夕的事情,需要平累,需要平的勤学苦。

高中数学选修2-2复习教案2

第4周教学反思:上周的教学内容是选修2-3最后一章《计数原理》.本章的内容较少,但是比较难,本章与前面学习的内容没有任何的联系,主要考查学生的理解能力,从测试的情况来看很不理想。

必须加强对学生的巩固和练习。

教案--选修2-2复习-第5周高中数学选修2-2知识点总结教学目标:1.重点理解导数相关概念及其几何意义; 2.掌握选修2-2的知识点 3.利用选修2-2知识解决简单问题教学重点:利用导数研究与函数有关的简单问题,掌握推理证明的证明方法,会计算与复数有关的简单问题。

教学难点:用所学知识点解决常见问题。

授课类型:复习课 课时安排:4课时第一章、导数1.函数的平均变化率为=∆∆=∆∆x fx y xx f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,平均变化率 可正,可负,可零。

注2:函数的平均变化率可以看作是物体运动的平均速度。

2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim0000.3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。

4导数的背景(1)切线的斜率;(2)瞬时速度; 5、常见的函数导数6、常见的导数和定积分运算公式:若()f x ,()g x 均可导(可积),则有:.用导数求函数单调区间的步骤:①求函数f(x)的导数'()f x②令'()f x>0,解不等式,得x的范围就是递增区间.③令'()f x<0,解不等式,得x的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学目标:
1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.
2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.
3.了解直接证明的基本方法:分析法、综合法和数学归纳法;了解分析法、综合法和数学归纳法的思考过程、特点.
4.了解本章知识结构,进一步感受和体会常用的思维模式和证明方法,形成对数学的完整认识.
教学重点:
了解本章知识结构,进一步感受和体会常用的思维模式和证明方法,形成对数学的完整认识.
教学难点:
认识数学本质,把握数学本质,灵活选择并运用所学知识解决问题.
教学过程:
一、知识回顾
本章知识结构:
基础知识过关:
(1)合情推理包括 推理、 推理.
(2) 称为归纳推理;它是一种由 到 ,由 到 的推理.
(3) 称为类比推理;它是一种由 到 的推理.
(4)归纳推理的一般步骤是:① ,② .
(5)类比推理的一般步骤是:① ,② .
(6)从一般性的原理出发,推出某个特殊情况下的结论,我们称这种推理为 ,它是一种 到 的推理.
(7) 和 是直接证明的两种基本方法.
(8)反证法证明问题的一般步骤:① ,② ,
③ ;④ .
(9)数学归纳法的基本思想 ;
数学归纳法证明命题的步骤:① ,② ,
③ .
二、数学运用
例1 (1)考察下列一组不等式:23+53>22·5+2·52,24+54>23·5+2·53,25+55>23·52+22·53,….将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式可以是 .
(2)在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间内,若两个正四面体的棱长的比为1∶2,则它们的体积比为 .
(3)若数列{a n }是等差数列,对于b n =1n
(a 1+a 2 +…+a n ),则数列{b n }也是等差数列.类比上述性质,若数列{c n }是各项都为正数的等比数列,对于d n >0,则d n = 时,数列{d n }也是等比数列.
解 (1)(0)m n m n m n n m a b a b a b a b a b m n *N +++>+,>,≠,,∈;
(2)体积比为1∶8;
(3)n *N ∈.
说明 (1)是从个别情况到一般情况的合情推理;
(2)是从平面到空间的类比推理;
(3)是从等差数列到等比数列的类比推理.
例2 若△ABC 的三个内角A ,B ,C 成等差数列,分别用综合法和分析法证明:1c a a b b c
+=++. 证明 (分析法)要证1c a a b b c
+=++, 只需证()()()()c b c a a b a b b c +++=++,
即证222c a ac b +=+,
∵△ABC 的三个内角A ,B ,C 成等差数列,∴C =60°,
由余弦定理得2222cos60b a c ac =+-,即222c a ac b +=+,
故原命题成立.
(综合法)∵△ABC 的三个内角A ,B ,C 成等差数列,∴C =60°,
由余弦定理得2222cos60b a c ac =+-,即222c a ac b +=+,
或()()()()c b c a a b a b b c +++=++,
两边同除以()()a b b c ++得1c a a b b c
+=++. 说明 分析法和综合法是两种常用的直接证明方法.分析法的特点是执果索因,综合法的特点是由因导果,分析法常用来探寻解题思路,综合法常用来书写解题过程.
例3 已知a ,b ,c ∈(0,1),求证:(1-a )b ,(1-b )c ,(1-c )a 不能同时大于
41. 分析 “不能同时大于4
1”包含多种情形,不易直接证明,可考虑反证法. 证明:假设(1-a )b ,(1-b )c ,(1-c )a 同时大于14
, 即 (1-a )b >14,(1-b )c >14,(1-c )a >14
, ∵a ,b ,c ∈(0,1),
∴三式同向相乘得(1-a )b (1-b )c (1-c )a >164
, 又211(1)()24a a a a -+-≤=,
同理1(1)4b c -≤,1(1)4
c a -≤, ∴(1-a )b (1-b )c (1-c )a >164
,这与假设矛盾,故原命题得证. 说明 反证法属于“间接证明法”,是从反面的角度思考问题的证明方法.用反证法证明命题“若p 则q ”时,可能会出现以下三种情况:
(1)导出非p 为真,即与原命题的条件矛盾;
(2)导出q 为真,即与假设“非q 为真”矛盾;
(3)导出一个恒假命题.
使用反证法证明问题时,准确地作出反设(即否定结论),是正确运用反证法的前提.当遇到否定性、惟一性、无限性、至多、至少等类型问题时,常用反证法.
例4 已知数列{a n },a n ≥0,a 1=0,a n +12+a n +1-1= a n 2(n ∈N *)
记S n =a 1+a 2+…+a n .T n 112121111(1)(1)(1)(1)(1)
n a a a a a a ⋅⋅⋅⋅⋅⋅=+++++++++. 求证:当n ∈N *时,(1)a n <a n +1 ;(2)S n >n -2 ;(3)T n <3.
解 (1)证明:用数学归纳法证明.
① n =1时,因为a 2是方程x 2+x -1=0的正根,所以a 1<a 2.
② 设当n =k (k ∈N *)时,a k <a k +1,
因为a k +12-a k 2=(a k +22+a k +2-1)-(a k +12+a k +1-1)
=(a k +1-a k +1) (a k +1+a k +1+1),
所以a k +1<a k +2.
即当n =k +1时,a n <a n +1也成立.
根据①和②,可知a n <a n +1对任何n ∈N *都成立.
(2)证明:由a k +12+a k +1-1=a k 2,k =1,2,…,n -1(n ≥2),
得a n 2+(a 2+a 3+…+a n )-(n -1)=a 12.
因为a 1=0,所以S n =n -1-a n 2.
由a n <a n +1及a n +1=1+a n 2-2a n +12<1,得a n <1,
所以S n >n -2.
(3)证明:由a k +12+a k +1=1+a k 2≥2 a k ,得
11112k k k
a a a ++≤+( k =2,3,…,n -1,n ≥3) 所以2234221(1)(1)(1)2()
n n n a a a a a a -⋅⋅⋅≤++++( a ≥3), 于是
2234221(1)(1)(1)2()n n n a a a a a a -⋅⋅⋅≤++++=22n n a -<212n -( n ≥3), 故当n ≥3时,21111322
n n T ⋅⋅⋅-<++++<, 又因为T 1<T 2<T 3,
所以T n <3.
三、学生总结
引导学生从知识、方法、收获三个方面进行小结,明确推理、归纳推理的概念及彼此间的关系.认识数学本质,把握数学本质,增强创新意识,提高创新能力.
四、课后作业
教材第102—103页复习题第3题,第4题,第5题,第9题,第12题,第13题.。

相关文档
最新文档