圆锥曲线与方程椭圆双曲线抛物线二轮复习专题练习(三)带答案人教版新高考分类汇编

合集下载

圆锥曲线与方程椭圆双曲线抛物线二轮复习专题练习(三)含答案人教版高中数学

圆锥曲线与方程椭圆双曲线抛物线二轮复习专题练习(三)含答案人教版高中数学

高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.1 .(汇编年高考湖北卷(文))已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的( )A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等2.(汇编宁夏理)已知点P 在抛物线24y x =上,那么点P 到点(21)Q -,的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A .114⎛⎫- ⎪⎝⎭,B .114⎛⎫ ⎪⎝⎭,C .(12),D .(12)-,3.(汇编全国3文)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) (A )22 (B )212- (C )22- (D )21-4.(汇编江苏)抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A .1617B .1615C .87D .05.(汇编湖北文9)若直线y x b =+与曲线234y x x =--有公共点,则b 的取值范围是( )A.[122-,122+]B.[12-,3]C.[-1,122+]D.[122-,3]6.(汇编全国卷2理数)(12)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )(A )1 (B )2 (C )3 (D )27.抛物线28y x =的焦点到双曲线221124x y -=的渐近线的距离为 ( ) A .1B .3C .33D .368.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=(A)45 (B)35 (C)35- (D )45- (汇编年高考全国卷理科10)9.若方程x 2k -4-y 2k +4=1表示双曲线,则它的焦点坐标为 ( )A .(2k,0),(-2k,0)B .(0,2k ),(0,-2k )C .(2|k |,0),(-2|k |,0)D .由k 的取值确定解析:若焦点在x 轴上,则⎩⎪⎨⎪⎧k -4>0k +4>0即k >4,且c =2k .若焦点在y 轴上,则⎩⎪⎨⎪⎧k -4<0k +4<0即k <-4,且c =-2k ,故选D.10.椭圆31222y x +=1的焦点为F 1和F 2,点P 在椭圆上.如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的( )(汇编全国理,2) A .7倍 B .5倍C .4倍D .3倍第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11.已知点P 是椭圆112222=++a y a x 与双曲线112222=--a y a x 的交点,21,F F 是椭圆焦点,则21cos PF F ∠= ▲ .12.若椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点F分成5∶3的两段,则此椭圆的离心率为________.13.已知点12,F F 分别是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过1F 且垂直于x 轴的直线与双曲线交于,A B 两点,若2ABF ∆是锐角三角形,则该双曲线离心率的取值范围是 (山东省济南市汇编年2月高三教学质量调研理科) 关键字:求离心率的取值范围;特殊法;解不等式 答案.D14.已知两条直线l 1:2x -3y +2=0和l 2:3x -2y +3=0,有一动圆(圆心和半径都动)与l 1、l 2都相交,且l 1、l 2被圆截得的弦长分别是定值26和24,则圆心的轨迹方程是________.解析:设动圆的圆心为M (x ,y ),半径为r ,点M 到直线l 1,l 2的距离分别为d 1和d 2. 由弦心距、半径、半弦长间的关系得,⎩⎨⎧2r 2-d 21=26,2r 2-d 22=24,即⎩⎪⎨⎪⎧r 2-d 21=169,r 2-d 22=144, 消去r 得动点M 满足的几何关系为d 22-d 21=25,即(3x -2y +3)213-(2x -3y +2)213=25.化简得(x +1)2-y 2=65.此即为所求的动圆圆心M 的轨迹方程.15.已知椭圆,12422=+y x A 、B 是其左右顶点,动点M 满足AB MB ⊥,连接AM 交椭圆于P ,在x 轴上有异于点A 、B 的定点Q ,以MP 为直径的圆经过直线BP 、MQ 的交点,则点Q 的坐标为 ▲16.过抛物线22(0)y p x p=>的焦点F 作直线l 与抛物线交于,P Q 两点,直线11,PP QQ 垂直于抛物线的准线,垂足分别是11,P Q ,线段,PF QF 的长度分别是,a b ,则11PQ =_______评卷人得分三、解答题17.2. 椭圆12422=+y x 的左、右焦点分别为1F 、2F ,直线l 过2F 与椭圆相交于A 、B 两点,O 为坐标原点,以AB 为直径的圆恰好过O ,求直线l 的方程.18.斜率为1的直线与抛物线22y x =交于不同两点,A B ,求线段AB 中点M 的轨迹方程. .19.在平面直角坐标系xOy 中,已知椭圆C 1:22221(0)x y a b a b+=>>的离心率e=23,且椭圆C 上的点到Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点M (m,n )使得直线l :mx+ny=1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及相对应的△OAB 的面积;若不存在,请说明理由.【汇编高考真题广东理20】(本小题满分14分)20.已知椭圆2212194x y F F +=的焦点为、,椭圆上动点P 的坐标为(,)p p x y ,且12F PF ∠为钝角,求p x 的取值范围。

高中数学高考试卷考点之椭圆双曲线抛物线和圆锥曲线的综合应用知识汇总,带参考答案共五十六页

高中数学高考试卷考点之椭圆双曲线抛物线和圆锥曲线的综合应用知识汇总,带参考答案共五十六页

数学高考试卷椭圆双曲线抛物线和圆锥曲线的综合应用,带参考答案本文收集整理了高中数学高考试卷椭圆、双曲线、抛物线和圆锥曲线的综合应用知识知识,并配上详细参考答案,内容全共五十六页。

同学们认真完成这些练习,并对过答案,对学习高中椭圆、双曲线、抛物线和圆锥曲线的综合应用知识知识,一定有很大的帮助,希望大家喜欢这份文档。

一、椭圆知识1.(2018全国Ⅱ,12)已知F 1,F 2是椭圆C : x 2a +y 2b =1 (a >b >0)的左,右焦点,A是C 的左顶点,点P 在过A 且斜率为√36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A .23 B .12 C .13 D .141.答案:D 因为△PF 1F 2为等腰三角形,∠F 1F 2P =120°,所以PF 2=F 1F 2=2c,由AP 斜率为√36得,tan∠PAF 2=√36,∴sin∠PAF 2=√13cos∠PAF 2=√12√13,由正弦定理得PF 2AF 2=sin∠PAF 2sin∠APF 2,所以2c a+c =1√13sin(π3−∠PAF 2)1√13√32⋅√12√13−12⋅1√1325∴a =4c,e =14,选D.2.(2017•新课标Ⅲ,10)已知椭圆C : =1(a >b >0)的左、右顶点分别为A 1 , A 2 , 且以线段A 1A 2为直径的圆与直线bx ﹣ay+2ab=0相切,则C 的离心率为( )A. B. C. D.2. 答案:A 以线段A 1A 2为直径的圆与直线bx ﹣ay+2ab=0相切, ∴原点到直线的距离=a ,化为:a 2=3b 2 . ∴椭圆C 的离心率e= = = .故选A .3.(2017•浙江,)椭圆+=1的离心率是( )A. B. C. D.3. 答案:B 椭圆+=1,可得a=3,b=2,则c==,所以椭圆的离心率为: =.故选B .4.(2016·浙江,7)已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A.m >n 且e 1e 2>1B.m >n 且e 1e 2<1C.m <n 且e 1e 2>1D.m <n 且e 1e 2<14.答案: A [由题意可得:m 2-1=n 2+1,即m 2=n 2+2, 又∵m >0,n >0,故m >n . 又∵e 21·e 22=m 2-1m 2·n 2+1n 2=n 2+1n 2+2·n 2+1n 2=n 4+2n 2+1n 4+2n 2=1+1n 4+2n 2>1,∴e 1·e 2>1.] 5.(2016·全国Ⅲ,11)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A.13 B.12 C.23 D.345.A [设M (-c ,m ),则E ⎝⎛⎭⎫0,am a -c ,OE 的中点为D ,则D ⎝⎛⎭⎫0,am2(a -c ),又B ,D ,M 三点共线,所以m 2(a -c )=m a +c,a =3c ,e =13.]6.(2014·大纲全国,6)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点.若△AF 1B 的周长为43,则C 的方程为( ) A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 6.A [由椭圆的性质知|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a , ∴△AF 1B 的周长=|AF 1|+|AF 2|+|BF 1|+|BF 2|=43,∴a = 3.又e =33,∴c =1.∴b 2=a 2-c 2=2,∴椭圆的方程为x 23+y 22=1,故选A.]7.(2018浙江,17)已知点P (0,1),椭圆x24+y 2=m (m >1)上两点A ,B 满足AP⃑⃑⃑⃑⃑ =2PB ⃑⃑⃑⃑⃑ ,则当m =___________时,点B 横坐标的绝对值最大.7.5 设A(x 1,y 1),B(x 2,y 2),由AP ⃑⃑⃑⃑⃑ =2PB ⃑⃑⃑⃑⃑ 得−x 1=2x 2,1−y 1=2(y 2−1),∴−y 1=2y 2−3, 因为A ,B 在椭圆上,所以x 124+y 12=m,x 224+y 22=m, ∴4x 224+(2y 2−3)2=m,∴x 224+(y 2−32)2=m4,与x 224+y 22=m 对应相减得y 2=3+m 4,x 22=−14(m 2−10m +9)≤4,当且仅当m =5时取最大值.8.(2016·江苏,10)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.8.63 [联立方程组⎩⎨⎧x 2a 2+y 2b 2=1,y =b2,解得B 、C 两点坐标为B ⎝⎛⎭⎫-32a ,b 2,C ⎝⎛⎭⎫32a ,b2,又F (c ,0),则FB →=⎝⎛⎭⎫-32a -c ,b 2,FC →=⎝⎛⎭⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得:c 2-34a 2+b 24=0①,又因为b 2=a 2-c 2.代入①式可化简为c 2a 2=23,则椭圆离心率为e =ca=23=63. 9.(2014·辽宁,15)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.9.12 [设MN 交椭圆于点P ,连接F 1P 和F 2P (其中F 1、F 2是椭圆C 的左、右焦点),利用中位线定理可得|AN |+|BN |=2|F 1P |+2|F 2P |=2×2a =4a =12.] 10.(2014·安徽,14)设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________. 10.x 2+3y 22=1 [设点A 在点B 上方,F 1(-c ,0),F 2(c ,0),其中c =1-b 2,则可设A (c ,b 2),B (x 0,y 0),由|AF 1|=3|F 1B |,可得AF 1→=3F 1B →,故⎩⎪⎨⎪⎧-2c =3(x 0+c ),-b 2=3y 0,即⎩⎨⎧x 0=-53c ,y 0=-13b 2,代入椭圆方程可得25(1-b 2)9+19b 2=1,得b 2=23,故椭圆方程为x 2+3y 22=1.] 11.(2014·江西,15)过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________. 11.22 [设A (x 1,y 1),B (x 2,y 2),分别代入椭圆方程相减得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,根据题意有x 1+x 2=2×1=2,y 1+y 2=2×1=2,且y 1-y 2x 1-x 2=-12,所以2a 2+2b 2×⎝⎛⎭⎫-12=0,得a 2=2b 2,所以a 2=2(a 2-c 2),整理得a 2=2c 2得c a =22,所以e =22.] 12.(2018全国Ⅲ,20)已知斜率为k 的直线l 与椭圆C : x 24+y 23=1交于A ,B 两点,线段AB的中点为M(1 , m)(m >0). (1)证明:k <−12;(2)设F 为C 的右焦点,P 为C 上一点,且FP ⃑⃑⃑⃑⃑ +FA ⃑⃑⃑⃑⃑ +FB ⃑⃑⃑⃑⃑ =0.证明:|FA ⃑⃑⃑⃑⃑ |,|FP ⃑⃑⃑⃑⃑ |,|FB ⃑⃑⃑⃑⃑ |成等差数列,并求该数列的公差. 12.(1)设A(x 1,y 1),B(x 2,y 2),则x 124+y 123=1,x 224+y 223=1.两式相减,并由y 1−y2x 1−x 2=k 得x 1+x 24+y 1+y 23⋅k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =−34m .①由题设得0<m <32,故k <−12. (2)由题意得F(1,0),设P(x 3,y 3),则 (x 3−1,y 3)+(x 1−1,y 1)+(x 2−1,y 2)=(0,0).由(1)及题设得x 3=3−(x 1+x 2)=1,y 3=−(y 1+y 2)=−2m <0. 又点P 在C 上,所以m =34,从而P(1,−32),|FP ⃑⃑⃑⃑⃑ |=32. 于是|FA⃑⃑⃑⃑⃑ |=√(x 1−1)2+y 12=√(x 1−1)2+3(1−x 124)=2−x 12. 同理|FB⃑⃑⃑⃑⃑ |=2−x 22.所以|FA⃑⃑⃑⃑⃑ |+|FB ⃑⃑⃑⃑⃑ |=4−12(x 1+x 2)=3. 故2|FP⃑⃑⃑⃑⃑ |=|FA ⃑⃑⃑⃑⃑ |+|FB ⃑⃑⃑⃑⃑ |,即|FA ⃑⃑⃑⃑⃑ |,|FP ⃑⃑⃑⃑⃑ |,|FB ⃑⃑⃑⃑⃑ |成等差数列. 设该数列的公差为d ,则2|d|=||FB⃑⃑⃑⃑⃑ |−|FA ⃑⃑⃑⃑⃑ ||=12|x 1−x 2|=12√(x 1+x 2)2−4x 1x 2.② 将m =34代入①得k =−1.所以l 的方程为y =−x +74,代入C 的方程,并整理得7x 2−14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d|=3√2128. 所以该数列的公差为3√2128或−3√2128. 13.(2018天津,19)设椭圆22221x x a b+= (a >b >0)的左焦点为F ,上顶点为B . 已知椭圆的点A 的坐标为(),0b,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l : (0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若sin 4AQ AOQ PQ=∠ (O 为原点) ,求k 的值. 13.(Ⅰ)设椭圆的焦距为2c ,由已知有2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得, FB a =,AB =,由FB AB ⋅=ab =6,从而a =3,b =2.所以,椭圆的方程为22194x y +=. (Ⅱ)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2). 由已知有y 1>y 2>0,故12PQ sin AOQ y y ∠=-. 又因为2y AQ sin OAB =∠,而∠OAB =π4,故2AQ =.由4AQ sin AOQ PQ=∠,可得5y 1=9y 2. 由方程组22{ 194y kx x y =+=,,消去x,可得1y =. 易知直线AB 的方程为x +y –2=0, 由方程组{20y kx x y =+-=,,消去x ,可得221ky k =+.由5y 1=9y 2,可得5(k +1)= 两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为12或1128.14.(2017•江苏,17)如图,在平面直角坐标系xOy 中,椭圆E : =1(a >b >0)的左、右焦点分别为F 1 , F 2 , 离心率为,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1 , 过点F 2作直线PF 2的垂线l 2 . (Ⅰ)求椭圆E 的标准方程;(Ⅱ)若直线l 1 , l 2的交点Q 在椭圆E 上,求点P 的坐标.14.(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =, 228a c =,解得2,1a c ==,于是b ==因此椭圆E 的标准方程是22143x y +=. (2)由(1)知, ()11,0F -, ()21,0F . 设()00,P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时, 2l 与1l 相交于1F ,与题设不符. 当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为001y x -.因为11l PF ⊥, 22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --, 从而直线1l 的方程: ()0011x y x y +=-+, ① 直线2l 的方程: ()0011x y x y -=--. ② 由①②,解得2001,x x x y y -=-=,所以20001,x Q x y ⎛⎫-- ⎪⎝⎭.因为点Q 在椭圆上,由对称性,得20001x y y -=±,即2201x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=. 由22002201{ 143x y x y-=+=,解得00x y ==; 220022001{ 143x y x y +=+=,无解.因此点P的坐标为⎝⎭15.(2016·全国Ⅱ,20)已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围.15.解 (1)设M (x 1,y 1),则由题意知y 1>0.当t =4时,E 的方程为x 24+y 23=1,A (-2,0).由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4.因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意t >3,k >0,A (-t ,0),将直线AM 的方程y =k (x +t )代入x 2t +y 23=1得(3+tk 2)x 2+2t ·tk 2x +t 2k 2-3t =0.由x 1·(-t )=t 2k 2-3t 3+tk 2得x 1=t (3-tk 2)3+tk 2,故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk 2.由题设,直线AN 的方程为y =-1k (x +t ),故同理可得|AN |=6k t (1+k 2)3k 2+t .由2|AM |=|AN |得23+tk 2=k3k 2+t ,即(k 3-2)t =3k (2k -1),当k =32时上式不成立,因此t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0.由此得⎩⎪⎨⎪⎧k -2>0,k 3-2<0,或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2.因此k 的取值范围是(32,2).16.(2016·四川,20)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :y =-x +3与椭圆E 有且只有一个公共点T . (1)求椭圆E 的方程及点T 的坐标;(2)设O 是坐标原点,直线l ′平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P .证明:存在常数λ,使得|PT |2=λ|P A |·|PB |,并求λ的值. 16.(1)解 由已知,a =2b ,则椭圆E 的方程为x 22b 2+y 2b 2=1.由方程组⎩⎪⎨⎪⎧x 22b 2+y 2b 2=1,y =-x +3,得3x 2-12x +(18-2b 2)=0.①方程①的判别式为Δ=24(b 2-3),由Δ=0,得b 2=3,此时方程①的解为x =2,所以椭圆E 的方程为x 26+y 23=1.点T 的坐标为(2,1).(2)证明 由已知可设直线l ′的方程为y =12x +m (m ≠0),由方程组⎩⎪⎨⎪⎧y =12x +m ,y =-x +3,可得⎩⎨⎧x =2-2m3,y =1+2m 3.所以P 点坐标为⎝⎛⎭⎫2-2m 3,1+2m 3.|PT |2=89m 2. 设点A ,B 的坐标分别为A (x 1,y 1),B (x 2,y 2).由方程组⎩⎨⎧x 26+y 23=1,y =12x +m ,可得3x 2+4mx +(4m 2-12)=0.②方程②的判别式为Δ=16(9-2m 2), 由Δ>0,解得-322<m <322.由②得x 1+x 2=-4m3,x 1x 2=4m 2-123.所以|P A |=⎝⎛⎭⎫2-2m 3-x 12+⎝⎛⎭⎫1+2m 3-y 12=52⎪⎪⎪⎪2-2m 3-x 1,同理|PB |=52⎪⎪⎪⎪2-2m 3-x 2.所以|P A |·|PB |=54⎪⎪⎪⎪⎝⎛⎭⎫2-2m3-x 1⎝⎛⎭⎫2-2m 3-x 2 =54⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫2-2m 32-⎝⎛⎭⎫2-2m 3(x 1+x 2)+x 1x 2 =54⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫2-2m 32-⎝⎛⎭⎫2-2m 3⎝⎛⎭⎫-4m 3+4m 2-123=109m 2. 故存在常数λ=45,使得|PT |2=λ|P A |·|PB |.17.(2015·重庆,21)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P 、Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; (2)若|PF 1|=|PQ |,求椭圆的离心率e .17.解 (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2,因此2c =|F 1F 2|=|PF 1|2+|PF 2|2=(2+2)2+(2-2)2=23,即c =3,即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)法一 如图设点P (x 0,y 0)在椭圆上,且PF 1⊥PF 2,则x 20a 2+y 20b2=1,x 20+y 20=c 2, 求得x 0=±a c a 2-2b 2,y 0=±b 2c .由|PF 1|=|PQ |>|PF 2|得x 0>0,从而 |PF 1|2=⎝ ⎛⎭⎪⎫a a 2-2b 2c +c 2+b 4c 2=2(a 2-b 2)+2a a 2-2b 2=(a +a 2-2b 2)2. 由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a , 从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|. 又由PF 1⊥PF 2,|PF 1|=|PQ |,知|QF 1|=2|PF 1|, 因此,(2+2)|PF 1|=4a ,即(2+2)(a +a 2-2b 2)=4a , 于是(2+2)(1+2e 2-1)=4,解得e =12⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫42+2-12=6- 3. 法二 如图,由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a .从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|.又由PF 1⊥PQ ,|PF 1|=|PQ |,知|QF 1|=2|PF 1|,因此,4a -2|PF 1|=2|PF 1|,得|PF 1|=2(2-2)a ,从而|PF 2|=2a -|PF 1|=2a -2(2-2)a =2(2-1)a . 由PF 1⊥PF 2,知|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2,因此e =ca =|PF 1|2+|PF 2|22a =(2-2)2+(2-1)2=9-62=6- 3. 18.(2015·福建,18)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点(0,2),且离心率e =22.(1)求椭圆E 的方程;(2)设直线l :x =my -1(m ∈R )交椭圆E 于A ,B 两点,判断点G ⎝⎛⎭⎫-94,0与以线段AB 为直径的圆的位置关系,并说明理由.18.解 法一 (1)由已知得,⎩⎪⎨⎪⎧b =2,c a =22,a 2=b 2+c 2.解得⎩⎨⎧a =2,b=2,c = 2.所以椭圆E 的方程为x 24+y 22=1.(2)设A (x 1,y 1),B (x 2,y 2),AB 的中点为H (x 0,y 0).⎩⎪⎨⎪⎧x =my -1,x 24+y 22=1得(m 2+2)y 2-2my -3=0.所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2,从而y 0=mm 2+2.所以|GH |2=⎝⎛⎭⎫x 0+942+y 20=⎝⎛⎭⎫my 0+542+y 20=(m 2+1)y 20+52my 0+2516. |AB |24=(x 1-x 2)2+(y 1-y 2)24 =(1+m 2)(y 1-y 2)24=(1+m 2)[(y 1+y 2)2-4y 1y 2]4=(1+m 2)(y 20-y 1y 2), 故|GH |2-|AB |24=52my 0+(1+m 2)y 1y 2+2516=5m 22(m 2+2)-3(1+m 2)m 2+2+2516=17m 2+216(m 2+2)>0, 所以|GH |>|AB |2.故点G ⎝⎛⎭⎫-94,0在以AB 为直径的圆外. 法二 (1)同法一.(2)设点A (x 1,y 1),B (x 2,y 2),则GA →=⎝⎛⎭⎫x 1+94,y 1,GB →=⎝⎛⎭⎫x 2+94,y 2.由⎩⎪⎨⎪⎧x =my -1,x 24+y 22=1得(m 2+2)y 2-2my -3=0, 所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2,从而GA →·GB →=⎝⎛⎭⎫x 1+94⎝⎛⎭⎫x 2+94+y 1y 2=⎝⎛⎭⎫my 1+54⎝⎛⎭⎫my 2+54+y 1y 2 =(m 2+1)y 1y 2+54m (y 1+y 2)+2516=-3(m 2+1)m 2+2+52m2m 2+2+2516=17m 2+216(m 2+2)>0, 所以cos 〈GA →,GB →〉>0.又GA →,GB →不共线,所以∠AGB 为锐角. 故点G ⎝⎛⎭⎫-94,0在以AB 为直径的圆外. 19.(2015·陕西,20)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E 经过A ,B 两点,求椭圆E的方程.19.解 (1)过点(c ,0),(0,b )的直线方程为bx +cy -bc =0, 则原点O 到该直线的距离d =bc b 2+c 2=bc a,由d =12c ,得a =2b =2a 2-c 2,解得离心率c a =32.(2)法一 由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.① 依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10,易知,AB 与x 轴不垂直,设其方程为y =k (x +2)+1,代入①得(1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k (2k +1)1+4k 2,x 1x 2=4(2k +1)2-4b 21+4k 2,由x 1+x 2=-4,得-8k (2k +1)1+4k 2=-4,解得k =12,从而x 1x 2=8-2b 2, 于是|AB |=1+⎝⎛⎭⎫122|x 1-x 2|=52(x 1+x 2)2-4x 1x 2=10(b 2-2),由|AB |=10,得10(b 2-2)=10,解得b 2=3, 故椭圆E 的方程为x 212+y 23=1.法二 由(1)知,椭圆E 的方程为x 2+4y 2=4b 2,②依题意,点A ,B 关于圆心M (-2,1)对称,且|AB |=10,设A (x 1,y 1),B (x 2,y 2),则x 21+4y 21=4b 2,x 22+4y 22=4b 2,两式相减并结合x 1+x 2=-4,y 1+y 2=2,得-4(x 1-x 2)+8(y 1-y 2)=0, 易知AB 与x 轴不垂直,则x 1≠x 2, 所以AB 的斜率k AB =y 1-y 2x 1-x 2=12, 因此直线AB 的方程为y =12(x +2)+1,代入②得x 2+4x +8-2b 2=0,所以x 1+x 2=-4,x 1x 2=8-2b 2, 于是|AB |=1+⎝⎛⎭⎫122|x 1-x 2|=52(x 1+x 2)2-4x 1x 2=10(b 2-2).由|AB |=10,得10(b 2-2)=10,解得b 2=3, 故椭圆E 的方程为x 212+y 23=1.20.(2015·北京,19)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点P (0,1)和点A (m ,n )(m ≠0)都在椭圆C 上,直线P A 交x 轴于点M .(1)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(2)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得∠OQM =∠ONQ ?若存在,求点Q 的坐标;若不存在,说明理由.20.解 (1)由题意得⎩⎪⎨⎪⎧b =1,c a =22,a 2=b 2+c2解得a 2=2,故椭圆C 的方程为x22+y 2=1.设M (x M ,0).因为m ≠0,所以-1<n <1.直线P A 的方程为y -1=n -1m x .所以x M =m 1-n,即M ⎝⎛⎭⎫m 1-n ,0. (2)因为点B 与点A 关于x 轴对称,所以B (m ,-n ). 设N (x N ,0),则x N =m1+n.“存在点Q (0,y Q )使得∠OQM =∠ONQ ”,等价于“存在点Q (0,y Q )使得|OM ||OQ |=|OQ ||ON |”,即y Q 满足y 2Q =|x M ||x N |.因为x M =m 1-n ,x N =m 1+n ,m 22+n 2=1.所以y 2Q =|x M ||x N |=m 21-n 2=2.所以y Q =2或y Q =- 2.故在y 轴上存在点Q ,使得∠OQM =∠ONQ ,点Q 的坐标为(0,2)或(0,-2). 21.(2015·江苏,18)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点F 到左准线l 的距离为3. (1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程. 21.解 (1)由题意,得c a =22且c +a 2c=3,解得a =2,c =1,则b =1,所以椭圆的标准方程为x 22+y 2=1.(2)当AB ⊥x 轴时,AB =2,又CP =3,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2), 将AB 的方程代入椭圆方程,得(1+2k 2)x 2-4k 2x +2(k 2-1)=0, 则x 1,2=2k 2±2(1+k 2)1+2k 2,C 的坐标为⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2,且 AB =(x 2-x 1)2+(y 2-y 1)2=(1+k 2)(x 2-x 1)2=22(1+k 2)1+2k 2.若k =0,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意. 从而k ≠0,故直线PC 的方程为y +k 1+2k 2=-1k ⎝⎛⎭⎫x -2k 21+2k 2,则P 点的坐标为⎝ ⎛⎭⎪⎫-2,5k 2+2k (1+2k 2),从而PC =2(3k 2+1)1+k 2|k |(1+2k 2).因为PC =2AB ,所以2(3k 2+1)1+k 2|k |(1+2k 2)=42(1+k 2)1+2k 2,解得k =±1.此时直线AB 的方程为y =x -1或y =-x +1.二、双曲线知识1.(2018浙江,2)双曲线x 23−y 2=1的焦点坐标是( ) A .(−√2,0),(√2,0) B .(−2,0),(2,0) C .(0,−√2),(0,√2) D .(0,−2),(0,2)1.B 因为双曲线方程为x 23−y 2=1,所以焦点坐标可设为(±c,0),因为c 2=a 2+b 2=3+1=4,c =2,所以焦点坐标为(±2,0),选B. 2.(2018全国Ⅰ,11)已知双曲线C :x 23−y 2=1,O 为坐标原点,F 为C 的右焦点,过F的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |=( ) A .32 B .3 C .2√3 D .42.B 根据题意,可知其渐近线的斜率为±√33,且右焦点为F(2,0),从而得到∠FON =30°,所以直线MN 的倾斜角为60°或120°,根据双曲线的对称性,设其倾斜角为60°,可以得出直线MN 的方程为y =√3(x −2),分别与两条渐近线y =√33x 和y =−√33x 联立,求得M(3,√3),N(32,−√32),所以|MN |=2)√2)=3,故选B.3.(2018全国Ⅱ,5)双曲线x 2a 2−y 2b 2=1 (a >0, b >0)的离心率为√3,则其渐近线方程为( )A .y =±√2xB .y =±√3xC .y =±√22x D .y =±√32x 3.A ∵e =ca =√3,∴b 2a 2=c 2−a 2a 2=e 2−1=3−1=2,∴ba =√2,因为渐近线方程为y =±ba x ,所以渐近线方程为y =±√2x ,选A. 4.(2018全国Ⅲ,11)设F 1,F 2是双曲线C:x 2a 2−y 2b 2=1()的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=√6|OP |,则C 的离心率为( ) A .√5 B .√3 C .2 D .√24.B 由题可知|PF 2|=b,|OF 2|=c ,∴|PO |=a ,在Rt △POF 2中,cos∠PF 2O =|PF 2||OF 2|=bc, ∵在△PF 1F 2中,cos∠PF 2O =|PF 2|2+|F 1F 2|2−|PF 1|22|PF 2||F 1F 2|=bc ,∴b 2+4c 2−(√6a)22b∙2c=bc ⇒c 2=3a 2,∴e =√3.故选C.5.(2018天津,7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为( )A .221412x y -= B .221124x y -= C .22139x y -= D .22193x y -=5.C 设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b-=可得:2b y a =±,不妨设: 22,,,b b Ac B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为: 0bx ay -=,据此可得:21bc b d c -==,22bc b d c +==,则12226bcd d b c+===,则23,9b b ==,双曲线的离心率:2c e a ====,据此可得: 23a =,则双曲线的方程为22139x y -=. 本题选择C 选项.6.(2017•新课标Ⅱ,9)若双曲线C : ﹣ =1(a >0,b >0)的一条渐近线被圆(x ﹣2)2+y 2=4所截得的弦长为2,则C 的离心率为( )A.2B.C.D.6. A 双曲线C : ﹣=1(a >0,b >0)的一条渐近线不妨为:bx+ay=0,圆(x ﹣2)2+y 2=4的圆心(2,0),半径为:2,双曲线C : ﹣=1(a >0,b >0)的一条渐近线被圆(x ﹣2)2+y 2=4所截得的弦长为2,可得圆心到直线的距离为: = ,解得:,可得e 2=4,即e=2.故选A .7.(2017•新课标Ⅲ,5)已知双曲线C :﹣ =1 (a >0,b >0)的一条渐近线方程为y= x ,且与椭圆 + =1有公共焦点,则C 的方程为( )A.﹣ =1B.﹣ =1C.﹣=1 D.﹣=17. B 椭圆 +=1的焦点坐标(±3,0),则双曲线的焦点坐标为(±3,0),可得c=3,双曲线C :﹣ =1 (a >0,b >0)的一条渐近线方程为y=x ,可得 ,即 ,可得 = ,解得a=2,b= ,所求的双曲线方程为: ﹣ =1.故选B .8.(2017·天津,5)已知双曲线 ﹣ =1(a >0,b >0)的左焦点为F ,离心率为 .若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( ) A.=1 B.=1 C.=1 D.=18. B 设双曲线的左焦点F (﹣c ,0),离心率e= =,c=a ,则双曲线为等轴双曲线,即a=b , 双曲线的渐近线方程为y=±x=±x ,则经过F 和P (0,4)两点的直线的斜率k= =,则=1,c=4,则a=b=2,∴双曲线的标准方程:;故选B .9.(2016·全国Ⅰ,5)已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A.(-1,3)B.(-1,3)C.(0,3)D.(0,3)9.A [∵方程x 2m 2+n -y 23m 2-n =1表示双曲线,∴(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2,由双曲线性质,知c 2=(m 2+n )+(3m 2-n )=4m 2(其中c 是半焦距),∴焦距2c =2×2|m |=4,解得|m |=1,∴-1<n <3,故选A.]10.(2016·全国Ⅱ,11)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A.2B.32C.3D.210.A [离心率e =F 1F 2MF 2-MF 1,由正弦定理得e =F 1F 2MF 2-MF 1=sin Msin F 1-sin F 2=2231-13= 2.故选A.]11.(2015·福建,3)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A.11B.9C.5D.311.B [由双曲线定义||PF 2|-|PF 1||=2a ,∵|PF 1|=3,∴P 在左支上,∵a =3,∴|PF 2|-|PF 1|=6,∴|PF 2|=9,故选B.]12.(2015·安徽,4)下列双曲线中,焦点在y 轴上且渐近线方程为y =±2x 的是( ) A.x 2-y 24=1 B.x 24-y 2=1 C.y 24-x 2=1 D.y 2-x 24=112.C [由双曲线性质知A 、B 项双曲线焦点在x 轴上,不合题意;C 、D 项双曲线焦点均在y 轴上,但D 项渐近线为y =±12x ,只有C 符合,故选C.]13.(2015·广东,7)已知双曲线C :x 2a 2-y 2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为( )A.x 24-y 23=1B.x 216-y 29=1C.x 29-y 216=1D.x 23-y 24=1 13.B [因为所求双曲线的右焦点为F 2(5,0)且离心率为e =c a =54,所以c =5,a =4,b 2=c 2-a 2=9,所以所求双曲线方程为x 216-y 29=1,故选B.] 14.(2015·四川,5)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |=( ) A.433B.2 3C.6D.4 314.D [焦点F (2,0),过F 与x 轴垂直的直线为x =2,渐近线方程为x 2-y 23=0,将x =2代入渐近线方程得y 2=12,y =±23,∴|AB |=23-(-23)=4 3.选D.]15.(2015·新课标全国Ⅱ,11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A. 5 B.2 C. 3 D. 2 15.D [如图,设双曲线E 的方程为x 2a 2-y 2b 2=1(a >0,b >0),则|AB |=2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0),∵△ABM 为等腰三角形,且∠ABM =120°,∴|BM |=|AB |=2a ,∠MBN =60°,∴y 1=|MN |=|BM |sin ∠MBN =2a sin 60°=3a ,x 1=|OB |+|BN |=a +2a cos 60°=2a .将点M (x 1,y 1)的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e =ca =a 2+b 2a 2=2,选D.] 16.(2015·新课标全国Ⅰ,5)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( ) A.⎝⎛⎭⎫-33,33 B.⎝⎛⎭⎫-36,36 C.⎝⎛⎭⎫-223,223 D.⎝⎛⎭⎫-233,233 16.A [由题意知M 在双曲线C :x 22-y 2=1上,又在x 2+y 2=3内部,由⎩⎪⎨⎪⎧x 22-y 2=1,x 2+y 2=3,得y =±33,所以-33<y 0<33.] 17.(2014·天津,5)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y 225=1 17.A [由题意可知,双曲线的其中一条渐近线y =b a x 与直线y =2x +10平行,所以ba =2且左焦点为(-5,0),所以a 2+b 2=c 2=25,解得a 2=5,b 2=20,故双曲线方程为x 25-y 220=1.选A.]18.(2014·广东,4)若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A.离心率相等B.实半轴长相等C.虚半轴长相等D.焦距相等18.D [由0<k <9,易知两曲线均为双曲线且焦点都在x 轴上,由25+9-k =25-k +9,得两双曲线的焦距相等,选D.]19.(2014·新课标全国Ⅰ,4)已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A. 3 B.3 C.3m D.3m19.A [∵双曲线的方程为x 23m -y 23=1,∴焦点F 到一条渐近线的距离为 3.]20.(2014·重庆,8)设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为( )A.43B.53C.94D.3 20.B [由双曲线的定义得||PF 1|-|PF 2||=2a ,又|PF 1|+|PF 2|=3b ,所以(|PF 1|+|PF 2|)2-(|PF 1|-|PF 2|)2=9b 2-4a 2,即4|PF 1|·|PF 2|=9b 2-4a 2,又4|PF 1|·|PF 2|=9ab ,因此9b 2-4a 2=9ab ,即9⎝⎛⎭⎫b a 2-9b a -4=0,则⎝⎛⎭⎫3b a +1⎝⎛⎭⎫3b a -4=0,解得b a =43⎝⎛⎭⎫b a =-13舍去,则双曲线的离心率e =1+⎝⎛⎭⎫b a 2=53.]21.(2014·山东,10)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( ) A.x ±2y =0 B.2x ±y =0 C.x ±2y =0 D.2x ±y =021.A [椭圆C 1的离心率为a 2-b 2a ,双曲线C 2的离心率为a 2+b 2a ,所以a 2-b 2a ·a 2+b 2a =32,所以a 4-b 4=34a 4,即a 4=4b 4,所以a =2b ,所以双曲线C 2的渐近线方程是y =±12x ,即x ±2y =0.]22.(2014·大纲全国,9)已知双曲线C 的离心率为2,焦点为F 1、F 2,点A 在C 上.若|F 1A |=2|F 2A |,则cos ∠AF 2F 1=( ) A.14 B.13 C.24 D.2322.A [由双曲线的定义知|AF 1|-|AF 2|=2a ,又|AF 1|=2|AF 2|,∴|AF 1|=4a ,|AF 2|=2a . ∵e =ca =2,∴c =2a ,∴|F 1F 2|=4a .∴cos ∠AF 2F 1=|AF 2|2+|F 1F 2|2-|AF 1|22|AF 2|·|F 1F 2|=(2a )2+(4a )2-(4a )22×2a ×4a=14,故选A.]23.(2018江苏,8)在平面直角坐标系xOy 中,若双曲线x 2a −y 2b =1(a >0,b >0)的右焦点F(c,0)到一条渐近线的距离为√32c ,则其离心率的值是________.23.2 因为双曲线的焦点F(c,0)到渐近线y =±ba x,即bx ±ay =0的距离为√a 2+b2=bc c=b,所以b =√32c ,因此a 2=c 2−b 2=c 2−34c 2=14c 2, a =12c,e =2.24.(2017•山东,14)在平面直角坐标系xOy 中,双曲线=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为________.24. y=± x 把x 2=2py (p >0)代入双曲线=1(a >0,b >0),可得:a 2y2﹣2pb 2y+a 2b 2=0,∴y A +y B =,∵|AF|+|BF|=4|OF|,∴y A +y B +2× =4× ,∴ =p ,∴ = .∴该双曲线的渐近线方程为:y=± x .故答案为:y=± x .25.(2017•北京,9)若双曲线x 2﹣=1的离心率为 ,则实数m=________.25.2 双曲线x 2﹣=1(m >0)的离心率为 ,可得: ,解得m=2.故答案为:2.26.(2017•江苏,8)在平面直角坐标系xOy 中,双曲线﹣y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 , 则四边形F 1PF 2Q 的面积是________. 26.2双曲线﹣y 2=1的右准线:x=,双曲线渐近线方程为:y= x ,所以P ( , ),Q ( ,﹣ ),F 1(﹣2,0).F 2(2,0).则四边形F 1PF 2Q 的面积是: =2.故答案为:2.27.(2016·山东,13)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.27.2 [由已知得|AB |=2b 2a ,|BC |=2c ,∴2×2b 2a =3×2c ,又∵b 2=c 2-a 2,整理得:2c 2-3ac -2a 2=0,两边同除以a 2得2⎝⎛⎭⎫c a 2-3c a-2=0,即2e 2-3e -2=0,解得e =2或e =-1(舍去).] 28.(2015·浙江,9)双曲线x 22-y 2=1的焦距是______,渐近线方程是______.28.23 y =±22x [由双曲线方程得a 2=2,b 2=1,∴c 2=3,∴焦距为23,渐近线方程为y =±22x .]29.(2015·北京,10)已知双曲线x 2a 2-y 2=1(a >0)的一条渐近线为3x +y =0,则a =________.29.33 [双曲线渐近线方程为y =±b a x ,∴b a =3,又b =1,∴a =33.] 30.(2015·湖南,13)设F 是双曲线C :x 2a 2-y 2b 2=1的一个焦点,若C 上存在点P ,使线段PF的中点恰为其虚轴的一个端点,则C 的离心率为________.30.5 [不妨设F (c ,0),则由条件知P (-c ,±2b ),代入x 2a 2-y 2b 2=1得c 2a 2=5,∴e = 5.]31.(2015·江苏,12)在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________. 31.22[双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线的距离d =|1-0|12+12=22.由点P 到直线x -y +1=0的距离大于c 恒成立,得c ≤22,故c 的最大值为22.] 32.(2014·浙江,16)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m,0)满足|P A |=|PB |,则该双曲线的离心率是________. 32.52 [联立直线方程与双曲线渐近线方程y =±bax 可解得交点为 ⎝⎛⎭⎫am 3b -a ,bm 3b -a ,⎝ ⎛⎭⎪⎫-am 3b +a ,bm 3b +a ,而k AB =13,由|P A |=|PB |,可得AB 的中点与点P 连线的斜率为-3,即bm 3b -a +bm3b +a2-0am3b -a +-am 3b +a2-m=-3,化简得4b 2=a 2,所以e =52.]33.(2014·江西,20)如图,已知双曲线C :x 2a 2-y 2=1(a >0)的右焦点为F ,点A ,B 分别在C的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点). (1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0x a 2-y 0y =1与直线AF 相交于点M ,与直线x =32相交于点N .证明:当点P 在C 上移动时,|MF ||NF |恒为定值,并求此定值.33.(1)解 设F (c ,0),因为b =1,所以c =a 2+1,直线OB 的方程为y =-1a x ,直线BF 的方程为y =1a (x -c ),解得B ⎝⎛⎭⎫c 2,-c 2a . 又直线OA 的方程为y =1a x ,则A ⎝⎛⎭⎫c ,c a ,k AB =c a -⎝⎛⎭⎫-c 2a c -c 2=3a.又因为AB ⊥OB ,所以3a ·⎝⎛⎭⎫-1a =-1,解得a 2=3,故双曲线C 的方程为x 23-y 2=1.(2)证明 由(1)知a =3,则直线l 的方程为x 0x3-y 0y =1(y 0≠0),即y =x 0x -33y 0.因为直线AF 的方程为x =2,所以直线l 与AF 的交点为M ⎝⎛⎭⎫2,2x 0-33y 0;直线l 与直线x =32的交点为N ⎝ ⎛⎭⎪⎫32,32x 0-33y 0. 则|MF |2|NF |2=(2x 0-3)2(3y 0)214+⎝⎛⎭⎫32x 0-32(3y 0)2=(2x 0-3)29y 204+94(x 0-2)2=43·(2x 0-3)23y 20+3(x 0-2)2, 因为P (x 0,y 0)是C 上一点,则x 203-y 20=1,代入上式得 |MF |2|NF |2=43·(2x 0-3)2x 20-3+3(x 0-2)2=43·(2x 0-3)24x 20-12x 0+9=43, 所求定值为|MF ||NF |=23=233.三、抛物线1.(2018全国Ⅰ,8)设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM ⃑⃑⃑⃑⃑⃑ ⋅FN ⃑⃑⃑⃑⃑ =( ) A .5 B .6 C .7 D .81.D 根据题意,过点(–2,0)且斜率为23的直线方程为y =23(x +2),与抛物线方程联立{y =23(x +2)y 2=4x ,消元整理得:y 2−6y +8=0,解得M(1,2),N(4,4),又F(1,0),所以FM ⃑⃑⃑⃑⃑⃑ =(0,2),FN ⃑⃑⃑⃑⃑ =(3,4),从而可以求得FM⃑⃑⃑⃑⃑⃑ ⋅FN ⃑⃑⃑⃑⃑ =0×3+2×4=8,故选D. 2.(2016·全国Ⅰ,10)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( ) A.2 B.4 C.6 D.82.B [不妨设抛物线C :y 2=2px (p >0),则圆的方程可设为x 2+y 2=r 2(r >0),如图,又可设A (x 0,22),D ⎝⎛⎭⎫-p2,5,点A (x 0,22)在抛物线y 2=2px 上,∴8=2px 0,① 点A (x 0,22)在圆x 2+y 2=r 2上,∴x 20+8=r 2,② 点D ⎝⎛⎭⎫-p 2,5在圆x 2+y 2=r 2上,∴5+⎝⎛⎭⎫p22=r 2,③ 联立①②③,解得p =4,即C 的焦点到准线的距离为p =4,故选B.]3.(2015·天津,6)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线过点(2,3) ,且双曲线的一个焦点在抛物线y 2=47x 的准线上,则双曲线的方程为( ) A.x 221-y 228=1 B.x 228-y 221=1 C.x 23-y 24=1 D.x 24-y 23=1 3.D [双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b a x ,又渐近线过点(2,3),所以2ba =3,即2b =3a ,①抛物线y 2=47x 的准线方程为x =-7,由已知,得a 2+b 2=7,即a 2+b 2=7②, 联立①②解得a 2=4,b 2=3,所求双曲线的方程为x 24-y 23=1,选D.] 4.(2015·浙江,5)如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+14.A [由图象知S △BCF S △ACF =|BC ||AC |=x B x A ,由抛物线的性质知|BF |=x B +1,|AF |=x A +1,∴x B =|BF |-1,x A =|AF |-1,∴S △BCF S △ACF =|BF |-1|AF |-1.故选A.]5.(2018全国Ⅲ,16)已知点M(−1 , 1)和抛物线C : y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.5.2 设A (x 1,y 1),B(x 2,y 2),则{y 12=4x 1y 22=4x2,所以y 12−y 22=4x 1−4x 2,所以k =y 1−y 2x 1−x 2=4y 1+y 2.取AB 中点M′(x 0,y 0),分别过点A,B 作准线x =−1的垂线,垂足分别为A ′,B′,因为∠AMB =90°,∴|MM ′|=12|AB |=12(|AF |+|BF |)=12(|AA ′|+|BB′|),因为M’为AB 中点,所以MM’平行于x 轴,因为M(-1,1),所以y 0=1,则y 1+y 2=2即k =2.6.(2017•新课标Ⅱ,16)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN|=________.6. 6 抛物线C :y 2=8x 的焦点F (2,0),M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,可知M 的横坐标为:1,则M 的纵坐标为: ,|FN|=2|FM|=2 =6.故答案为:6.7.(2016·浙江,9)若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是________. 7.9 [抛物线y 2=4x 的焦点F (1,0).准线为x =-1,由M 到焦点的距离为10,可知M 到准线x =-1的距离也为10,故M 的横坐标满足x M +1=10,解得x M =9,所以点M 到y 轴的距离为9.] 8.(2015·陕西,14)若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =________.8.22 [由于双曲线x 2-y 2=1的焦点为(±2,0),故应有p2=2,p =2 2.]9.(2014·湖南,15)如图,正方形ABCD 和正方形DEFG 的边长分别为a , b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则b a =________.9.1+2 [由正方形的定义可知BC =CD ,结合抛物线的定义得点D 为抛物线的焦点,所以|AD |=p =a ,D ⎝⎛⎭⎫p 2,0,F ⎝⎛⎭⎫p2+b ,b ,将点F 的坐标代入抛物线的方程得b 2=2p⎝⎛⎭⎫p 2+b =a 2+2ab ,变形得⎝⎛⎭⎫b a 2-2b a -1=0,解得b a =1+2或b a=1-2(舍去),所以ba =1+ 2.]10.(2014·上海,3)若抛物线y 2=2px的焦点与椭圆x 29+y 25=1的右焦点重合,则该抛物线的准线方程为______________. 10.x =-2[∵c 2=9-5=4,∴c =2.∴椭圆x 29+y 25=1的右焦点为(2,0),∴p2=2,即p =4. ∴抛物线的准线方程为x =-2.]。

圆锥曲线与方程椭圆双曲线抛物线二轮复习专题练习(一)附答案人教版高中数学

圆锥曲线与方程椭圆双曲线抛物线二轮复习专题练习(一)附答案人教版高中数学

高中数学专题复习
《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.1 .(汇编年高考课标Ⅱ卷(文))设椭圆22
22:1(0)x y C a b a b
+=>>的左、右焦点分别为12,,F F P 是C 上的点21212,30PF F F PF F ⊥∠=︒,则C 的离心率为 ( )
A .
B .
C .
D .
2.(汇编年高考重庆文)设11229(,),(4,),(,)5
A x y
B
C x y 是右焦点为F 的椭圆221259x y +=上三个不同的点,则“,,AF BF CF 成等差数列”是 “128x x +=”的( A )
(A )充要条件 (B )必要不充分条件
(C )充分不必要条件 (D )既非充分也非必要。

「精选」人教版最新高中数学高考总复习抛物线习题及详解及参考答案-精选文档

「精选」人教版最新高中数学高考总复习抛物线习题及详解及参考答案-精选文档

高中数学高考总复习抛物线习题(附参考答案)一、选择题1.(2010·湖北黄冈)若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为( )A .-2B .2C .-4D .4[答案] D[解析] 椭圆中,a 2=6,b 2=2,∴c =a 2-b 2=2, ∴右焦点(2,0),由题意知p2=2,∴p =4.2.已知点M 是抛物线y 2=2px (p >0)上的一点,F 为抛物线的焦点,若以|MF |为直径作圆,则这个圆与y 轴的关系是( )A .相交B .相切C .相离D .以上三种情形都有可能[答案] B[解析] 如图,由MF 的中点A 作准线l 的垂线AE ,交直线l 于点E ,交y 轴于点B ;由点M 作准线l 的垂线MD ,垂足为D ,交y 轴于点C ,则MD =MF ,ON =OF , ∴AB =OF +CM 2=ON +CM2=DM 2=MF 2, ∴这个圆与y 轴相切.3.(2010·山东文)已知抛物线y 2=2px (p >0),过焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2[答案] B[解析] 设A (x 1,y 1),B (x 2,y 2),则线段AB 的中点(x 1+x 22,y 1+y 22),∴y 1+y 22=2,∵A 、B 在抛物线y 2=2px 上,∴⎩⎪⎨⎪⎧y 12=2px 1 ①y 22=2px 2 ② ①-②得y 12-y 22=2p (x 1-x 2),∴k AB =y 1-y 2x 1-x 2=2p y 1+y 2=p 2,∵k AB =1,∴,p =2∴抛物线方程为y 2=4x ,∴准线方程为:x =-1,故选B.4.双曲线x 29-y 24=1的渐近线上一点A 到双曲线的右焦点F 的距离等于2,抛物线y 2=2px (p >0)过点A ,则该抛物线的方程为( )A .y 2=9xB .y 2=4xC .y 2=41313xD .y 2=21313x[答案] C[解析] ∵双曲线x 29-y 24=1的渐近线方程为y =±23x ,F 点坐标为(13,0),设A 点坐标为(x ,y ),则y =±23x ,由|AF |=2⇒(x -13)2+⎝⎛⎭⎫23x 2=2⇒x =913,y =±613,代入y 2=2px 得p =21313,所以抛物线方程为y 2=41313x ,所以选C.5.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A.172B .3 C. 5D.92[答案] A[解析] 记抛物线y 2=2x 的焦点为F ⎝⎛⎭⎫12,0,准线是l ,由抛物线的定义知点P 到焦点F 的距离等于它到准线l 的距离,因此要求点P 到点(0,2)的距离与点P 到抛物线的准线的距离之和的最小值,可以转化为求点P 到点(0,2)的距离与点P 到焦点F 的距离之和的最小值,结合图形不难得知相应的最小值就等于焦点F 与点(0,2)的距离,因此所求的最小值等于⎝⎛⎭⎫122+22=172,选A. 6.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△AOF (其中O 为坐标原点)的面积之比为,则点A 的坐标为( )A .(2,22)B .(2,-22)C .(2,±2)D .(2,±22)[答案] D[解析] 如图,由题意可得,|OF |=1,由抛物线定义得,|AF |=|AM |,∵△AMF 与△AOF (其中O 为坐标原点)的面积之比为3∶1,∴S △AMFS △AOF =12×|AF |×|AM |×sin ∠MAF 12×|OF |×|AF |×sin (π-∠MAF )=3, ∴|AM |=3,设A ⎝⎛⎭⎫y 024,y 0,∴y024+1=3, 解得y 0=±22,∴y 024=2,∴点A 的坐标是(2,±22),故选D.7.(2010·河北许昌调研)过点P (-3,1)且方向向量为a =(2,-5)的光线经直线y =-2反射后通过抛物线y 2=mx ,(m ≠0)的焦点,则抛物线的方程为( )A .y 2=-2xB .y 2=-32xC .y 2=4xD .y 2=-4x[答案] D[解析] 设过P (-3,1),方向向量为a =(2,-5)的直线上任一点Q (x ,y ),则PQ →∥a ,∴x +32=y -1-5,∴5x +2y +13=0,此直线关于直线y =-2对称的直线方程为5x +2(-4-y )+13=0,即5x -2y +5=0,此直线过抛物线y 2=mx 的焦点F ⎝⎛⎭⎫m 4,0,∴m =-4,故选D.8.已知mn ≠0,则方程是mx 2+ny 2=1与mx +ny 2=0在同一坐标系内的图形可能是()[答案] A[解析] 若mn >0,则mx 2+ny 2=1应为椭圆,y 2=-mn x 应开口向左,故排除C 、D ;∴mn <0,此时抛物线y 2=-mnx 应开口向右,排除B ,选A.9.(2010·山东聊城模考)已知A 、B 为抛物线C :y 2=4x 上的不同两点,F 为抛物线C 的焦点,若F A →=-4FB →,则直线AB 的斜率为( )A .±23B .±32C .±34D .±43[答案] D[解析] ∵F A →=-4FB →,∴|F A →|=4|FB →|,设|BF |=t ,则|AF |=4t ,∴|BM |=|AA 1|-|BB 1|=|AF |-|BF |=3t ,又|AB |=|AF |+|BF |=5t ,∴|AM |=4t ,∴tan ∠ABM =43,由对称性可知,这样的直线AB 有两条,其斜率为±43.10.已知抛物线C 的方程为x 2=12y ,过点A (0,-4)和点B (t,0)的直线与抛物线C 没有公共点,则实数t 的取值范围是( )A .(-∞,-1)∪(1,+∞) B.⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞ C .(-∞,-22)∪(22,+∞) D .(-∞,-22)∪(2,+∞) [答案] B[解析] 由题意知方程组⎩⎨⎧x 2=12y ①x t +y-4=1 ②无实数解由②得y =4xt -4,代入①整理得,2x 2-4x t +4=0,∴Δ=16t 2-32<0,∴t >22或t <-22,故选B. [点评] 可用数形结合法求解,设过点A (0,-4)与抛物线x 2=12y 相切的直线与抛物线切点为M (x 0,y 0),则切线方程为y -y 0=4x 0(x -x 0), ∵过A 点,∴-4-2x 02=4x 0(0-x 0), ∴x 0=±2,∴y 0=4,∴切线方程为y -4=±42x -8, 令y =0得x =±22,即t =±22,由图形易知直线与抛物线无公共点时,t <-22或t >22. 二、填空题11.已知点A (2,0)、B (4,0),动点P 在抛物线y 2=-4x 上运动,则AP →·BP →取得最小值时的点P 的坐标是______.[答案] (0,0)[解析] 设P ⎝⎛⎭⎫-y 24,y ,则AP →=⎝⎛⎭⎫-y 24-2,y ,BP →=⎝⎛⎭⎫-y 24-4,y ,AP →·BP →=⎝⎛⎭⎫-y24-2⎝⎛⎭⎫-y 24-4+y 2=y 416+52y 2+8≥8,当且仅当y =0时取等号,此时点P 的坐标为(0,0).12.(文)(2010·泰安市模拟)如图,过抛物线y 2=2px (p >0)的焦点F 作倾斜角为60°的直线l ,交抛物线于A 、B 两点,且|F A |=3,则抛物线的方程是________.[答案] y 2=3x[解析] 设抛物线准线为l ,作AA 1⊥l ,BB 1⊥l ,FQ ⊥l ,垂足分别为A 1、B 1、Q ,作BM ⊥AA 1垂足为M ,BM 交FQ 于N ,则由条件易知∠ABM =30°,设|BF |=t ,则|NF |=t 2,|MA |=t +32,∵|AM |=|QN |,∴3-t +32=p -t 2,∴p =32,∴抛物线方程为y 2=3x .(理)(2010·泰安质检)如图,过抛物线y 2=2px (p >0)的焦点的直线l 依次交抛物线及其准线于点A 、B 、C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程是________.[答案] y 2=3x[解析] 解法1:过A 、B 作准线垂线,垂足分别为A 1,B 1,则|AA 1|=3,|BB 1|=|BF |,∵|BC |=2|BF |,∴|BC |=2|BB 1|,∴|AC |=2|AA 1|=2|AF |=6,∴|CF |=3,∴p =12|CF |=32,∴抛物线方程为y 2=3x .解法2:由抛物线定义,|BF |等于B 到准线的距离,由|BC |=2|BF |得∠BCB 1=30°,又|AF |=3,从而A ⎝⎛⎭⎫p 2+32,332在抛物线上,代入抛物线方程y 2=2px ,解得p =32.点评:还可以由|BC |=2|BF |得出∠BCB 1=30°,从而求得A 点的横坐标为|OF |+12|AF |=p2+32或3-p 2,∴p 2+32=3-p 2,∴p =32. 13.已知F 为抛物线C :y 2=4x 的焦点,过F 且斜率为1的直线交C 于A 、B 两点.设|F A |>|FB |,则|F A |与|FB |的比值等于________.[答案] 3+2 2[解析] 分别由A 和B 向准线作垂线,垂足分别为A 1,B 1,则由条件知, ⎩⎪⎨⎪⎧|AA 1|+|BB 1|=|AB |,|AA 1|-|BB 1|=22|AB |,解得⎩⎪⎨⎪⎧|AA 1|=2+24|AB ||BB 1|=2-24|AB |,∴|AA 1||BB 1|=3+22,即|F A ||FB |=3+2 2. 14.(文)若点(3,1)是抛物线y 2=2px 的一条弦的中点,且这条弦所在直线的斜率为2,则p =________.[答案] 2[解析] 设弦两端点P 1(x 1,y 1),P 2(x 2,y 2),则⎩⎪⎨⎪⎧y 12=2px 1y 22=2px 2,两式相减得,y 1-y 2x 1-x 2=2p y 1+y 2=2,∵y 1+y 2=2,∴p =2.(理)(2010·衡水市模考)设抛物线x 2=12y 的焦点为F ,经过点P (2,1)的直线l 与抛物线相交于A 、B 两点,又知点P 恰为AB 的中点,则|AF |+|BF |=________.[答案] 8[解析] 过A 、B 、P 作准线的垂线AA 1、BB 1与PP 1,垂足A 1、B 1、P 1,则|AF |+|BF |=|AA 1|+|BB 1|=2|PP 1|=2[1-(-3)]=8.三、解答题15.(文)若椭圆C 1:x 24+y 2b 2=1(0<b <2)的离心率等于32,抛物线C 2:x 2=2py (p >0)的焦点在椭圆C 1的顶点上.(1)求抛物线C 2的方程;(2)若过M (-1,0)的直线l 与抛物线C 2交于E 、F 两点,又过E 、F 作抛物线C 2的切线l 1、l 2,当l 1⊥l 2时,求直线l 的方程.[解析] (1)已知椭圆的长半轴长为a =2,半焦距c =4-b 2, 由离心率e =c a =4-b 22=32得,b 2=1.∴椭圆的上顶点为(0,1),即抛物线的焦点为(0,1), ∴p =2,抛物线的方程为x 2=4y .(2)由题知直线l 的斜率存在且不为零,则可设直线l 的方程为y =k (x +1),E (x 1,y 1),F (x 2,y 2),∵y =14x 2,∴y ′=12x ,∴切线l 1,l 2的斜率分别为12x 1,12x 2,当l 1⊥l 2时,12x 1·12x 2=-1,即x 1·x 2=-4,由⎩⎪⎨⎪⎧y =k (x +1)x 2=4y 得:x 2-4kx -4k =0, 由Δ=(-4k )2-4×(-4k )>0,解得k <-1或k >0. 又x 1·x 2=-4k =-4,得k =1. ∴直线l 的方程为x -y +1=0.(理)在△ABC 中,CA →⊥CB →,OA →=(0,-2),点M 在y 轴上且AM →=12(AB →+CD →),点C在x 轴上移动.(1)求B 点的轨迹E 的方程;(2)过点F ⎝⎛⎭⎫0,-14的直线l 交轨迹E 于H 、E 两点,(H 在F 、G 之间),若FH →=12HG →,求直线l 的方程.[解析] (1)设B (x ,y ),C (x 0,0),M (0,y 0),x 0≠0, ∵CA →⊥CB →,∴∠ACB =π2,∴2x 0·y 0-x 0=-1,于是x 02=2y 0① M 在y 轴上且AM →=12(AB →+AC →),所以M 是BC 的中点,可得 ⎩⎨⎧x 0+x 2=0y +02=y,∴⎩⎪⎨⎪⎧x 0=-x ②y 0=y2③ 把②③代入①,得y =x 2(x ≠0),所以,点B 的轨迹E 的方程为y =x 2(x ≠0). (2)点F ⎝⎛⎭⎫0,-14,设满足条件的直线l 方程为: y =kx -14,H (x 1,y 1),G (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -14y =x 2消去y 得,x 2-kx +14=0.Δ=k 2-1>0⇒k 2>1,∵FH →=12HG →,即⎝⎛⎭⎫x 1,y 1+14=12(x 2-x 1,y 2-y 1), ∴x 1=12x 2-12x 1⇒3x 1=x 2.∵x 1+x 2=k ,x 1x 2=14,∴k =±233,故满足条件的直线有两条,方程为:8x +43y +3=0和8x -43y -3=0. 16.(文)已知P (x ,y )为平面上的动点且x ≥0,若P 到y 轴的距离比到点(1,0)的距离小1.(1)求点P 的轨迹C 的方程;(2)设过点M (m,0)的直线交曲线C 于A 、B 两点,问是否存在这样的实数m ,使得以线段AB 为直径的圆恒过原点.[解析] (1)由题意得:(x -1)2+y 2-x =1,化简得:y 2=4x (x ≥0). ∴点P 的轨迹方程为y 2=4x (x ≥0).(2)设直线AB 为y =k (x -m ),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -m )y 2=4x,得ky 2-4y -4km =0, ∴y 1+y 2=4k ,y 1·y 2=-4m .∴x 1·x 2=m 2,∵以线段AB 为直径的圆恒过原点, ∴OA ⊥OB ,∴x 1·x 2+y 1·y 2=0.即m 2-4m =0⇒m =0或4.当k 不存在时,m =0或4. ∴存在m =0或4,使得以线段AB 为直径的圆恒过原点.[点评] (1)点P 到定点F (1,0)的距离比到y 轴的距离大1,即点P 到定点F (1,0)的距离与到定直线l :x =-1的距离相等.∴P 点轨迹是以F 为焦点,l 为准线的抛物线,∴p =2,∴方程为y 2=4x .(理)已知抛物线y 2=4x ,过点(0,-2)的直线交抛物线于A 、B 两点,O 为坐标原点. (1)若OA →·OB →=4,求直线AB 的方程.(2)若线段AB 的垂直平分线交x 轴于点(n,0),求n 的取值范围.[解析] (1)设直线AB 的方程为y =kx -2 (k ≠0),代入y 2=4x 中得,k 2x 2-(4k +4)x +4=0①设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k +4k 2,x 1x 2=4k 2.y 1y 2=(kx 1-2)·(kx 2-2)=k 2x 1x 2-2k (x 1+x 2)+4=-8k.∵OA →·OB →=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=4k 2-8k =4,∴k 2+2k -1=0,解得k =-1±2.又由方程①的判别式Δ=(4k +4)2-16k 2=32k +16>0得k >-12,∴k =-1+2,∴直线AB 的方程为(2-1)x -y -2=0.(2)设线段AB 的中点的坐标为(x 0,y 0),则由(1)知x 0=x 1+x 22=2k +2k 2,y 0=kx 0-2=2k, ∴线段AB 的垂直平分线的方程是 y -2k =-1k ⎝⎛⎭⎫x -2k +2k 2. 令y =0,得n =2+2k +2k 2=2k 2+2k +2=2⎝⎛⎭⎫1k +122+32.又由k >-12且k ≠0得1k <-2,或1k>0,∴n >2⎝⎛⎭⎫0+122+32=2.∴n 的取值范围为(2,+∞). 17.(文)(2010·全国Ⅰ)已知抛物线C :y 2=4x 的焦点为F ,过点K (-1,0)的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(1)证明:点F 在直线BD 上;(2)设F A →·FB →=89,求△BDK 的内切圆M 的方程.[解析] 设A (x 1,y 1),B (x 2,y 2),D (x 1,-y 1),l 的方程为x =my -1(m ≠0) (1)将x =my -1(m ≠0)代入y 2=4x 并整理得 y 2-4my +4=0,从而y 1+y 2=4m ,y 1y 2=4① 直线BD 的方程为y -y 2=y 2+y 1x 2-x 1(x -x 2)即y -y 2=4y 2-y 1⎝⎛⎭⎫x -y 224 令y =0,得x =y 1y 24=1,所以点F (1,0)在直线BD 上.(2)由(1)知,x 1+x 2=(my 1-1)+(my 2-1)=4m 2-2, x 1x 2=(my 1-1)(my 2-1)=1因为F A →=(x 1-1,y 1),FB →=(x 2-1,y 2),F A →·FB →=(x 1-1,y 1)·(x 2-1,y 2)=x 1x 2-(x 1+x 2)+1+4=8-4m 2,故8-4m 2=89,解得m =±43,精选文档 可编辑修改11 直线l 的方程为3x +4y +3=0,3x -4y +3=0.从而y 2-y 1=±(4m )2-4×4=±437, 故4y 2-y 1=±37因而直线BD 的方程为3x +7y -3=0,3x -7y -3=0.因为KF 为∠BKD 的角平分线,故可设圆心M (t,0),(-1<t <1),M (t,0)到直线l 及BD 的距离分别为3|t +1|5,3|t -1|4, 由3|t +1|5=3|t -1|4得t =19或t =9(舍去),故圆M 的半径为r =3|t +1|5=23, 所以圆M 的方程为⎝⎛⎭⎫x -192+y 2=49. (理)(2010·揭阳市模考)已知点C (1,0),点A 、B 是⊙O :x 2+y 2=9上任意两个不同的点,且满足AC →·BC →=0,设P 为弦AB 的中点.(1)求点P 的轨迹T 的方程;(2)试探究在轨迹T 上是否存在这样的点:它到直线x =-1的距离恰好等于到点C 的距离?若存在,求出这样的点的坐标;若不存在,说明理由.[解析] (1)法一:连结CP ,由AC →·BC →=0知,AC ⊥BC ,∴|CP |=|AP |=|BP |=12|AB |, 由垂径定理知|OP |2+|AP |2=|OA |2,即|OP |2+|CP |2=9,设点P (x ,y ),有(x 2+y 2)+[(x -1)2+y 2]=9,化简得,x 2-x +y 2=4.精选文档 可编辑修改12法二:设A (x 1,y 1),B (x 2,y 2),P (x ,y ),根据题意知,x 12+y 12=9,x 22+y 22=9,2x =x 1+x 2,2y =y 1+y 2,∴4x 2=x 12+2x 1x 2+x 22,4y 2=y 12+2y 1y 2+y 22故4x 2+4y 2=(x 12+y 12)+(2x 1x 2+2y 1y 2)+(x 22+y 22)=18+2(x 1x 2+y 1y 2)①又∵AC →·BC →=0,∴(1-x 1,-y 1)·(1-x 2,-y 2)=0∴(1-x 1)×(1-x 2)+y 1y 2=0,故x 1x 2+y 1y 2=(x 1+x 2)-1=2x -1,代入①式得,4x 2+4y 2=18+2(2x -1),化简得,x 2-x +y 2=4.(2)根据抛物线的定义,到直线x =-1的距离等于到点C (1,0)的距离的点都在抛物线y 2=2px 上,其中p 2=1,∴p =2,故抛物线方程为y 2=4x , 由方程组⎩⎪⎨⎪⎧y 2=4x x 2-x +y 2=4得,x 2+3x -4=0, 解得x 1=1,x 2=-4,由于x ≥0,故取x =1,此时y =±2,故满足条件的点存在,其坐标为(1,-2)和(1,2).。

圆锥曲线与方程椭圆双曲线抛物线强化训练专题练习(三)附答案新高考高中数学

圆锥曲线与方程椭圆双曲线抛物线强化训练专题练习(三)附答案新高考高中数学

高中数学专题复习
《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.1 .(汇编年普通高等学校招生统一考试天津数学(理)试题(含答案))已知双曲线22
221(0,0)x y a b a b
-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 的面积为3, 则p =
( ) A .1 B .32 C .2 D .3
2.2 .(汇编年高考湖北卷(理))已知04π
θ<<,则双曲线22
122:1cos sin x y C θθ-=与22
2222:1sin sin tan y x C θθθ-=的 ( )
A .实轴长相等
B .虚轴长相等
C .焦距相等
D .离心率相等 3.(汇编山东理)设椭圆C 1的离心率为13
5,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )。

圆锥曲线与方程椭圆双曲线抛物线二轮复习专题练习(三)附答案人教版高中数学新高考指导

圆锥曲线与方程椭圆双曲线抛物线二轮复习专题练习(三)附答案人教版高中数学新高考指导

高中数学专题复习
《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.1 .(汇编年高考广东卷(文))已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于2
1,则C 的方程是 ( ) A .14
322=+y x B .1342
2=+y x C .12422=+y x D .13422=+y x 2.(汇编年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k =
( ) A .12 B .22 C .2 D .2
3.2 .(汇编年高考新课标1(理))已知双曲线C :22
221x y a b -=(0,0a b >>)的离心率。

圆锥曲线与方程椭圆双曲线抛物线二轮复习专题练习(二)附答案新教材高中数学

高中数学专题复习
《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.(汇编安徽理)过抛物线2
4y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =;则AOB ∆的面积为 ( ) A .22 B .2 C .322 D .22
2.(汇编江西理)P 是双曲线22
x y 1916
-=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN|的最大值为( )
A . 6
B .7
C .8
D .9 3.(汇编全国卷2文数)(12)已知椭圆C :22221x y a b +=(a>b>0)的离心率为32,过。

数学高考二轮专题15 椭圆、双曲线和抛物线(解析版)

专题15 椭圆、双曲线和抛物线【考向解读】1.以选择题、填空题形式考查圆锥曲线的方程、几何性质特别是离心率.2.以解答题形式考查直线与圆锥曲线的位置关系弦长、中点等.【命题热点突破一】 圆锥曲线的定义与标准方程 1.圆锥曲线的定义(1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|); (2)双曲线:||PF 1|-|PF 2||=2a (2a <|F 1F 2|);(3)抛物线:|PF |=|PM |,点F 不在直线l 上,PM ⊥l 于M . 2.求解圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a 2,b 2,p 的值.例1 已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A 【变式探究】(1)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 (2)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线过点(2,3),且双曲线的一个焦点在抛物线y 2=47x 的准线上,则双曲线的方程为( )A.x 221-y 228=1B.x 228-y 221=1 C.x 23-y 24=1 D.x 24-y 23=1 【答案】 (1)A (2)D【命题热点突破二】 圆锥曲线的几何性质 1.椭圆、双曲线中,a ,b ,c 之间的关系 (1)在椭圆中:a 2=b 2+c 2,离心率为e =ca =1-b a2;(2)在双曲线中:c 2=a 2+b 2,离心率为e =ca =1+b a2.2.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±bax .注意离心率e 与渐近线的斜率的关系.例2、已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34【答案】A【变式探究】 (1)椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.(2)已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1、F 2,过F 1作圆x 2+y 2=a 2的切线分别交双曲线的左、右两支于点B 、C ,且|BC |=|CF 2|,则双曲线的渐近线方程为( )A .y =±3xB .y =±22xC .y =±(3+1)xD .y =±(3-1)x 【答案】 (1)3-1 (2)C【解析】(1)直线y =3(x +c )过点F 1(-c,0),且倾斜角为60°,所以∠MF 1F 2=60°,从而∠MF 2F 1=30°,所以MF 1⊥MF 2.在Rt △MF 1F 2中,|MF 1|=c ,|MF 2|=3c ,所以该椭圆的离心率e =2c 2a =2c c +3c=3-1.(2)由题意作出示意图,易得直线BC 的斜率为ab ,cos ∠CF 1F 2=bc,又由双曲线的定义及|BC |=|CF 2|可得|CF 1|-|CF 2|=|BF 1|=2a , |BF 2|-|BF 1|=2a ⇒|BF 2|=4a ,故cos ∠CF 1F 2=b c =4a 2+4c 2-16a 22×2a ×2c ⇒b 2-2ab -2a 2=0⇒(b a )2-2(b a )-2=0⇒ba =1+3,故双曲线的渐近线方程为y =±(3+1)x .【变式探究】(1)设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点,若在直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆的离心率的取值范围是( )A.⎝⎛⎦⎤0,22 B.⎝⎛⎦⎤0,33 C.⎣⎡⎭⎫22,1D.⎣⎡⎭⎫33,1(2)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于B ,C两点,过B ,C 分别作AC ,AB 的垂线,两垂线交于点D ,若D 到直线BC 的距离小于a +a 2+b 2,则该双曲线的渐近线斜率的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-2,0)∪(0,2)D .(-∞,-2)∪(2,+∞) 【答案】 (1)D (2)A【命题热点突破三】 直线与圆锥曲线判断直线与圆锥曲线公共点的个数或求交点问题有两种常用方法(1)代数法:即联立直线与圆锥曲线方程可得到一个关于x ,y 的方程组,消去y (或x )得一元方程,此方程根的个数即为交点个数,方程组的解即为交点坐标;(2)几何法:即画出直线与圆锥曲线的图象,根据图象判断公共点个数. 例3(1)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |等于( )A.433B .2 3C .6D .4 3(2)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 【答案】 (1)D (2)D 【高考题型解读】1. 已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) (A )()1,3- (B)(- (C )()0,3 (D)( 【答案】A2.设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px => 上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为( )(A(B )23(C(D )1 【答案】C【解析】设()()22,2,,P pt pt M x y (不妨设0t >),则212,2.,23p FP pt pt FM FP ⎛⎫=-= ⎪⎝⎭u u u r u u u u r u u u r Q()222max 22,,21123633,,122212,,233OM OM p p p p p x t x t t k t k pt pt t t t y y t ⎧⎧-=-=+⎪⎪⎪⎪∴∴∴====∴⎨⎨+⎪⎪+==⎪⎪⎩⎩当且仅当时取等号,,故选C.3.已知12,F F 是双曲线2222:1x y E a b -=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( )(A(B )32(C(D )2【答案】A4.已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A【解析】由题意知2211m n -=+,即222m n =+,由于m >1,n >0,可得m >n ,又22212222222111111()(1)(1)(1)(1)2m n e e m n m n n n -+=⋅=-+=-++=42422112n n n n++>+ ,故121e e >.故选A .5.若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是_______. 【答案】9【解析】1109M M x x +=⇒=6.以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB|=,|DE|=则C 的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8 【答案】B7.已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34【答案】A【解析】由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得||()FM k a c =-,||OE k a =.设OE 的中点为N ,则OBN FBM △∽△,则1||||2||||OE OB FM BF =,即2(c)k a a k a a c=-+,整理,得13c a =,所以椭圆C 的离心率13e =,故选A .8.已知双曲线2224=1x y b -(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为( )(A )22443=1y x -(B )22344=1y x -(C )2224=1x y b -(D )2224=11x y -【答案】D9.如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b +=>>0 的右焦点,直线2by = 与椭圆交于,B C 两点,且90BFC ∠=o ,则该椭圆的离心率是 ▲ .【答案】63【解析】由题意得33(,),C(,),22b b B ,因此2222236()()0322b c c a e -+=⇒=⇒ 10.设抛物线222x pt y pt⎧=⎨=⎩,(t 为参数,p >0)的焦点为F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设C (72p ,0),AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE 的面积为32则p 的值为_________. 6【解析】抛物线的普通方程为22y px =,(,0)2p F ,7322pCF p p =-=, 又2CF AF =,则32AF p =,由抛物线的定义得32AB p =,所以A x p =,则||2A y ,由//CF AB 得EF CF EA AB =,即2EF CFEA AF==,所以262CEF CEA S S ==V V 92ACF AEC CFE S S S =+=V V V 所以132922p ⨯=6p =11.已知双曲线E :22221x y a b-= (a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______.【答案】2【解析】假设点A 在第一象限,点B 在第二象限,则2b A(c,)a ,2b B(c,)a -,所以22b |AB |a=,|BC |2c =,由2AB 3BC =,222c a b =+得离心率e 2=或1e 2=-(舍去),所以E 的离心率为2. 12.双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =_______________.【答案】2【解析】∵OABC 是正方形,∴45AOB ∠=︒,即直线OA 方程为y x =,此为双曲线的渐近线,因此a b =,又由题意OB =,∴222a a +=,2a =.故填:2.13.在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是________▲________.【答案】14.平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>> 的离心率是2,抛物线E :22x y =的焦点F 是C 的一个顶点. (I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .(i )求证:点M 在定直线上;【答案】(Ⅰ)1422=+y x ;(Ⅱ)(i )见解析;【解析】(Ⅱ)(Ⅰ)设)0)(2,(2>m m m P ,由y x 22=可得y'x =, 所以直线l 的斜率为m ,因此直线l 的方程为)(22m x m m y -=-,即22m mx y -=. 设),(),,(),,(002211y x D y x B y x A ,联立方程222241m y mx x y ⎧=-⎪⎨⎪+=⎩得014)14(4322=-+-+m x m x m ,由0∆>,得520+<<m 且1442321+=+m m x x , 因此142223210+=+=m m x x x , 将其代入22m mx y -=得)14(2220+-=m m y ,因为m x y 4100-=,所以直线OD 方程为x my 41-=. 联立方程⎪⎩⎪⎨⎧=-=m x x m y 41,得点M 的纵坐标为M 14y =-,即点M 在定直线41-=y 上. 15.已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ)14449; 【解析】(Ⅰ)设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -. 由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =. 因此AMN △的面积AMN S △11212144227749=⨯⨯⨯=.16.双曲线2221(0)y x b b-=>的左、右焦点分别为12F F 、,直线l 过2F 且与双曲线交于A B 、两点。

圆锥曲线与方程椭圆双曲线抛物线二轮复习专题练习(二)含答案人教版新高考分类汇编

高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编年高考山东卷(文))抛物线)0(21:21>=p x py C 的焦点与双曲线222:13x C y -=的右焦点的连线交1C 于第一象限的点M,若1C 在点M 处的切线平行于2C 的一条渐近线,则p =( )A .163 B .83 C .332 D .334 2.(汇编全国2文)(9)已知双曲线22221x y a b -=的一条渐近线方程为43y x =,则双曲线的离心率为( )(A )53 (B )43 (C )54 (D )323.1 .(汇编大纲理)已知12,F F 为双曲线22:2C x y -=的左右焦点,点P 在C上,12||2||PF PF =,则12cos F PF ∠= ( )A .14B .35 C .34D .45答案C 【解析】4.(汇编辽宁文)曲线221(6)106x y m m m +=<--与曲线221(59)59x y n n n+=<<--的( ) A.离心率相等 B.焦距相等 C.焦点相同 D.准线相同5.(汇编全国I 理(汇编)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则P 到x 轴的距离为( )A .32B .62C .3D .66.(汇编江苏卷)抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) ( A )1617 ( B ) 1615 ( C ) 87 ( D ) 0 7.(汇编山东理)13.已知两点,45,4,45,1⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛N M 给出下列曲线方程:①0124=-+y x ②322=+y x ③1222=+y x ④1222=-y x 在曲线上存在点P 满足|MP |=|NP |的所有曲线方程是 ( ) (A) ①③ (B) ②④ (C) ①②③ (D) ②③8.(汇编年高考上海)过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( ) A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在9.(汇编湖北理)已知椭圆191622=+y x 的左、右焦点分别为F 1、F 2,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为 ( ) A .59 B .3 C .779 D .4910.已知椭圆222253n y m x +和双曲线222232ny m x -=1有公共的焦点,那么双曲线的渐近线方程是( )A .x =±y 215B .y =±x 215 C .x =±y 43D .y =±x 43(汇编北京文,10)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11.若17222=-y x ,点),(y x P 到点)0,3(-的距离为23,则点P 到点)0,3(的距离为12. 双曲线08222=+-y x 的焦点坐标为13.若关于y x ,的方程11122=--+k y k x 表示的曲线为焦点在x 轴上的双曲线,则k 的取值范围为 ▲14.已知,A B 是抛物线22(0)y px p =>上两点,O 为坐标原点。

圆锥曲线与方程椭圆双曲线抛物线二轮复习专题练习(三)附答案新高考高中数学

高中数学专题复习
《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.1 .(汇编年高考北京卷(理))直线l 过抛物线C : x 2
=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于
( ) A .43 B .2 C .83 D .1623
2.(汇编天津理)设椭圆22
221(1)1
x y m m m +=>-上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 到右准线的距离为( )
A .6
B .2
C .12
D .277
3.(汇编全国1文8)设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学专题复习
《圆锥曲线与方程椭圆双曲线抛物线》单元过关
检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.(汇编山东理)在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为( )
(A)2 (B)
22 (C) 21 (D)42 2.(汇编辽宁文数)(7)设抛物线28y x =的焦点为F ,准线为l ,P 为抛物线上一点,PA l ⊥,A 为垂足,如果直线AF 斜率为3-,那么PF =( )A .43 B . 8 C . 83 D . 16
3.(汇编广东文7)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )
A.54
B.53
C. 52
D. 51。

相关文档
最新文档