13.2 (1) 画轴对称图形 课件
合集下载
(人教版) 轴对称图形 教学PPT课件1

•
10、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。
•
11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。
•
12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。洗牌,但是玩牌的是我们自己!
•
17、逆境是成长必经的过程,能勇于接受逆境的人,生命就会日渐的茁壮。
•
18、哪里有天才,我是把别人喝咖啡的功夫,都用在工作上的。——鲁迅
•
19、所谓天才,那就是假话,勤奋的工作才是实在的。——爱迪生
•
20、做一个决定,并不难,难的是付诸行动,并且坚持到底。
•
21、不要因为自己还年轻,用健康去换去金钱,等到老了,才明白金钱却换不来健康。
•
22、如果你不给自己烦恼,别人也永远不可能给你烦恼,烦恼都是自己内心制造的。
•
23、命运负责每个人身上都有惰性和消极情绪,成功的人都是懂得管理自己的情绪和克服自己的惰性,并像太阳一样照亮身边的人,激励身边的人。
•
2、你心里最崇拜谁,不必变成那个人,而是用那个人的精神和方法,去变成你自己。
•
3、你今天必须做别人不愿做的事,好让你明天可以拥有别人不能拥有的东西。
•
8、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给时间来定夺。
•
9、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡慕那些总能撞大运的人,你必须很努力,才能遇上好运气。
八年级上册数学(人教版)课件:13.第1课时 画轴对称图

8.如图所示,在直线MN上求作一点P,使∠MPA=∠NPB.
解:①作点A关于MN的对称点A′; ②连结BA′交MN于点P,连接AP,则∠MPA=∠NPB
9.如图所示,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和 △A″B″C″关于直线EF对称.
(1)画出直线EF; (2)直线MN与EF相交于点O,试探究∠BOB″与直线MN,EF所夹锐角 α的数量关系.
3.如图,分别以直线l为对称轴,所作轴对称图形错误的是( C)
4.以直线l为对称轴画出图形的另一半. 解:图略
5.仔细观察下列图案,并按规律在横线上画出合适的图形.
6.如图,小新把一张含30°角的直角三角形纸板ABC沿较短边的垂 直平分线翻折,则∠BOC的度数为_6_0_°_.
7.如图,在2×2的正方形格点图中,有一个以格点为顶点的△ABC, 请你找出格点图中所有与△ABC成轴对称也以格点为顶点的三角形,这 样的三角形共用__5__个.
Байду номын сангаас
(1)如图,连接B′B″,作线段B′B″的垂直平分线EF,则直线EF是△A′B′C′ 与△A″B″C″的对称轴
(2)连结BO,B′O,B″O,∵△ABC和△A′B′C′关于MN对称,∴∠BOM= ∠B′OM,又∵△A′B′C′和△A″B″C″关于EF对称,∴∠B′OE=∠B″OE, ∴∠BOB″=∠BOB′+∠B′OB″=2∠B′OM+2∠B′OE=2(∠B′OM+ ∠B′OE)=2∠MOE=2α,即∠BOB″=2α
第十二章 全等三角形
13.2 画轴对称图形
第1课时 画轴对称图形
1.已知对称轴l和一点A,要画出点A关于l的对称点A′,可采用以下方 法:过点A作对称轴l的___垂_,线垂足为点O,延长___A_至O ___A_′,使___O_A= _O_A_′_,则点A′就是点A关于直线l的对称点.
解:①作点A关于MN的对称点A′; ②连结BA′交MN于点P,连接AP,则∠MPA=∠NPB
9.如图所示,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和 △A″B″C″关于直线EF对称.
(1)画出直线EF; (2)直线MN与EF相交于点O,试探究∠BOB″与直线MN,EF所夹锐角 α的数量关系.
3.如图,分别以直线l为对称轴,所作轴对称图形错误的是( C)
4.以直线l为对称轴画出图形的另一半. 解:图略
5.仔细观察下列图案,并按规律在横线上画出合适的图形.
6.如图,小新把一张含30°角的直角三角形纸板ABC沿较短边的垂 直平分线翻折,则∠BOC的度数为_6_0_°_.
7.如图,在2×2的正方形格点图中,有一个以格点为顶点的△ABC, 请你找出格点图中所有与△ABC成轴对称也以格点为顶点的三角形,这 样的三角形共用__5__个.
Байду номын сангаас
(1)如图,连接B′B″,作线段B′B″的垂直平分线EF,则直线EF是△A′B′C′ 与△A″B″C″的对称轴
(2)连结BO,B′O,B″O,∵△ABC和△A′B′C′关于MN对称,∴∠BOM= ∠B′OM,又∵△A′B′C′和△A″B″C″关于EF对称,∴∠B′OE=∠B″OE, ∴∠BOB″=∠BOB′+∠B′OB″=2∠B′OM+2∠B′OE=2(∠B′OM+ ∠B′OE)=2∠MOE=2α,即∠BOB″=2α
第十二章 全等三角形
13.2 画轴对称图形
第1课时 画轴对称图形
1.已知对称轴l和一点A,要画出点A关于l的对称点A′,可采用以下方 法:过点A作对称轴l的___垂_,线垂足为点O,延长___A_至O ___A_′,使___O_A= _O_A_′_,则点A′就是点A关于直线l的对称点.
人教版画轴对称图形课件1

第3次变换后的点B的对应点的坐标为(1+2,1),即(3,1),
第n次变换后的点B的对应点的为:当n为奇数时,为(2n-3,1);
当n为偶数时,为(2n-3,-1),
∴把正方形ABCD经过连续7次这样的变换得到正方形A′B′C′D′,
则点B的对应点B′的坐标是(11,1).
人教版. 画轴对称图形课件1(PPT优秀课件 )
5 4 C3
A ′(3,5),B ′(4,1),C ′(1,3). 依次了连结A ′ B ′、B ′ C ′、 C ′ A ′、就得到△ABC关于y 轴对称的△A ′ B ′ C ′.
2
B
1
-4 -3 -2 -1-O1
-2 -3
-4
A′
C′ B′
12345 x
人教版. 画轴对称图形课件1(PPT优秀课件 )
△A'B'C',并写出A'、B'、C'的坐标.
人教版. 画轴对称图形课件1(PPT优秀课件 )
新课讲解
解:如图所示:
y
A (0,4)
B (2,4)
C' (3,1)
O
C (3,-1) x
A' (0,-4)
B' (2,-4)
人教版. 画轴对称图形课件1(PPT优秀课件 )
人教版. 画轴对称图形课件1(PPT优秀课件 )
称点.
y
(x , y)
关于 y轴 对称
( -x, y )
B(-4,2) O
C '(3,4)
B '(-4,-2)
x
C (3,-4)
知识归纳
★关于y轴对称的点的坐标的特点是:
在直角坐标系中画轴对称图形ppt课件

13.2 在直角坐标系中画轴对称图形
1
知识分析
• 本节课是在学生学习了用坐标表示平移和画轴对称 图形的基础上,研究用坐标表示轴对称,从位置关 系和数量关系的角度来刻画轴对称.把坐标思想和 图形变换的思想联系起来,是学习函数和中心对称 的基础.
2
学习掌握
• 学习目标: 1.理解在平面直角坐标系中,已知点关于x 轴或y 轴 对称的点的坐标的变化规律. 2.掌握在平面直角坐标系中作出一个图形的轴对称 图形的方法.
关于y 轴对称的点的坐标:(2,6), (-1,-2),(1,3),(4,-2),(-1,0) .
11
课堂练习
练习2 若点P(2a+b,-3a)与点P′(8,b+2) 关于x 轴对称,则a = 2 ,b= 4 ;若关于y 轴对 称,则a = 6 ,b=__-_2_0__.
12
运用变化规律作图
例 如图,四边形ABCD 的四个顶点的坐标分别为
归纳: 关于x轴对称的点的坐标的特点是:横坐标相
等,纵坐标互为相反数. 关于y轴对称的点的坐标的特点是:横坐标互
为相反数,纵坐标相等.
10
课堂练习
练习1 分别写出下列各点关于x 轴和y 轴对称的点 的坐标:(-2,6),(1,-2),(-1,3), (-4,-2),(1,0) .
解:关于x 轴对称的点的坐标:(-2, -6), (1,2),(-1, -3),(-4,2),(1,0) .
B
1
O
B′
1
A′x
15
运用变化规律作图
请在图上画出四边形ABCD 关于x 轴对称的图形. Cy
D
A B1 O1
x
16
运用变化规律作图
归纳画一个图形关于x 轴或y 轴对称的图形的方法 和步骤.
1
知识分析
• 本节课是在学生学习了用坐标表示平移和画轴对称 图形的基础上,研究用坐标表示轴对称,从位置关 系和数量关系的角度来刻画轴对称.把坐标思想和 图形变换的思想联系起来,是学习函数和中心对称 的基础.
2
学习掌握
• 学习目标: 1.理解在平面直角坐标系中,已知点关于x 轴或y 轴 对称的点的坐标的变化规律. 2.掌握在平面直角坐标系中作出一个图形的轴对称 图形的方法.
关于y 轴对称的点的坐标:(2,6), (-1,-2),(1,3),(4,-2),(-1,0) .
11
课堂练习
练习2 若点P(2a+b,-3a)与点P′(8,b+2) 关于x 轴对称,则a = 2 ,b= 4 ;若关于y 轴对 称,则a = 6 ,b=__-_2_0__.
12
运用变化规律作图
例 如图,四边形ABCD 的四个顶点的坐标分别为
归纳: 关于x轴对称的点的坐标的特点是:横坐标相
等,纵坐标互为相反数. 关于y轴对称的点的坐标的特点是:横坐标互
为相反数,纵坐标相等.
10
课堂练习
练习1 分别写出下列各点关于x 轴和y 轴对称的点 的坐标:(-2,6),(1,-2),(-1,3), (-4,-2),(1,0) .
解:关于x 轴对称的点的坐标:(-2, -6), (1,2),(-1, -3),(-4,2),(1,0) .
B
1
O
B′
1
A′x
15
运用变化规律作图
请在图上画出四边形ABCD 关于x 轴对称的图形. Cy
D
A B1 O1
x
16
运用变化规律作图
归纳画一个图形关于x 轴或y 轴对称的图形的方法 和步骤.
2022八年级数学上册 第十三章 轴对称13.2 画轴对称图形第1课时 画轴对称图形习题课件 新人教

基础题组 中档题组 拓展探究
谢谢收看
9、 人的价值,在招收诱惑的一瞬间被决定 。22.5.622.5.6F riday, May 06, 2022 10、低头要有勇气,抬头要有低气。09:35:0809:35:0809:355/6/2022 9:35:08 AM 11、人总是珍惜为得到。22.5.609:35:0809:35May-226-May-22 12、人乱于心,不宽余请。09:35:0809:35:0809:35Fri day, May 06, 2022 13、生气是拿别人做错的事来惩罚自 己。22.5.622.5.609:35:0809:35:08May 6, 2022 14、抱最大的希望,作最大的努力。2022年5月6日 星期五 上午9时 35分8秒09:35:0822.5.6 15、一个人炫耀什么,说明他内心缺 少什么 。。2022年5月 上午9时35分22.5.609:35May 6, 2022 16、业余生活要有意义,不要越轨。2022年5月6日 星期五9时35分 8秒09:35:086 May 2022 17、一个人即使已登上顶峰,也仍要 自强不 息。上 午9时35分8秒 上午9时 35分09:35:0822.5.6
第十三章 轴对称
13.2 画轴对称图形
第1课时 画轴对称图形
知识点 补全轴对称图形 1.仔细观察下列图案,并按规律在横线上画出合适的图形.
略
2.已知直线AB和△DEF,作△DEF关于直线AB的对称图形(如图所示),将
作图步骤补充完整.
(1)分别过点D,E,F作直线AB的垂线,垂足分别是___M_,__P_,__N_____; (2) 分 别 延长 DM , EP, FN 至 点G,__H_,__L____ , 使MG____ =DM____P,H ____E=P ____ , _N_L__=_F_N__; △(G3H)L顺. 次连接__G_H___,H_L_____,_L_G____,得到△DE档题组 拓展探究
人教版初中数学八年级上册精品教学课件 第13章 轴对称 13.2 第1课时 画轴对称图形

BC连..对对接应应B点点B',交连连对线线称被被轴对对于称称点轴轴O平垂(图分直略平). 分
D过.对点应B,点B'作连B线E,B互'F相与平对称行轴垂直,垂足分别为E和F,
则BE=B'F,
图①关闭图②∴△源自EO≌△B'FO.关闭
∴B BO=B'O.
解析 答案
快乐预习感知
1
2
3
4
4.以直线l为对称轴画出下图的另一半.
的一些特殊点(如线段端点)的对称点,连接这些 对称点
,
就可以得到原图形的 轴对称图形 .
快乐预习感知
3.如图,在方格纸中画出与△ABC关于直线MN对称的△A1B1C1.
解 △A1B1C1如图所示.
快乐预习感知
运用轴对称解决实际问题 【例题】
如图,P,Q分别为△ABC的边AB,AC上的两个定点,在BC上求作一 点D,使△DPQ的周长最短.
第1课时 画轴对称图形
快乐预习感知
1.由一个平面图形可以得到与它关于一条直线l对称的图形,这个
图形与原图形的 形状 、 大小 完全相同;新图形上的每一点
都是原图形上的某一点关于直线l的 对称点 ;连接任意一对对
应点的线段被 对称轴 垂直平分.
2.几何图形都可以看作由点组成,对于某些图形,只要画出图形中
快乐预习感知
1
2
3
4
2.如图,在4×4正方形网格中,已有3个小方格涂成了黑色.现在要从
其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图 形成为轴对称图形,这样的白色小方格有( )
如图,有 4 个位置使之成为轴对称图形. A.1个 B.2个 C.3个D.4个
画轴对称图形ppt课件
对称图形可以简化证明过程。
在建筑设计中的应用
01 02
建筑美学
轴对称图形在建筑设计中是一种重要的美学原则,可以使建筑物看起来 更加美观、庄重。如故宫、天坛等中国古代建筑群,以及西方的帕特农 神庙等,都运用了轴对称的设计理念。
建筑结构
在建筑结构方面,轴对称图形也有着重要的作用,特别是在桥梁和塔式 建筑中。由于轴对称结构可以分散受力,使得建筑物更加稳固。
02
画轴对称图形的方法
通过点对称作图
01 定义对称轴
确定图形的对称轴,可以是直线、曲线或任意形 状。
02 找到对称点
在已知图形中选择一个点,并找到与该点关于对 称轴对称的点。
03 连接对称点
使用直线或曲线连接两个对称点,得到与原图形 关于对称轴对称的图形。
利用轴对称性质作图
理解轴对称性质
轴对称图形具有一些特殊的性质,如对称轴两侧的图形 关于对称轴是对称的,即两侧图形相等且对应线段平行 。
02 圆
圆心为对称轴,通过圆心画任意直径,两侧图形 关于直径对称。例如,画一个圆,通过圆心画一 条直径,将圆折叠后直径两侧图形完全重合。
03 正方形、长方形
正方形或长方形沿对边中点连线折叠后两侧图形 完全重合。例如,画一个正方形或长方形,沿对 边中点连线折叠,两侧图形完全重合。
03
轴对称图形的应用
寻找更多应用轴对称图形的领域,如建筑设计、图案设计等。
发展新的绘制方法和技巧
鼓励学生们通过实践和探索,发现新的绘制方法和技巧,以更好地 理解和应用轴对称图形。
THANKS
感谢观看
02
函数图像
许多函数图像,如正弦函数、余弦函数等,都是 轴对称的。
自然界中的轴对称图形
在建筑设计中的应用
01 02
建筑美学
轴对称图形在建筑设计中是一种重要的美学原则,可以使建筑物看起来 更加美观、庄重。如故宫、天坛等中国古代建筑群,以及西方的帕特农 神庙等,都运用了轴对称的设计理念。
建筑结构
在建筑结构方面,轴对称图形也有着重要的作用,特别是在桥梁和塔式 建筑中。由于轴对称结构可以分散受力,使得建筑物更加稳固。
02
画轴对称图形的方法
通过点对称作图
01 定义对称轴
确定图形的对称轴,可以是直线、曲线或任意形 状。
02 找到对称点
在已知图形中选择一个点,并找到与该点关于对 称轴对称的点。
03 连接对称点
使用直线或曲线连接两个对称点,得到与原图形 关于对称轴对称的图形。
利用轴对称性质作图
理解轴对称性质
轴对称图形具有一些特殊的性质,如对称轴两侧的图形 关于对称轴是对称的,即两侧图形相等且对应线段平行 。
02 圆
圆心为对称轴,通过圆心画任意直径,两侧图形 关于直径对称。例如,画一个圆,通过圆心画一 条直径,将圆折叠后直径两侧图形完全重合。
03 正方形、长方形
正方形或长方形沿对边中点连线折叠后两侧图形 完全重合。例如,画一个正方形或长方形,沿对 边中点连线折叠,两侧图形完全重合。
03
轴对称图形的应用
寻找更多应用轴对称图形的领域,如建筑设计、图案设计等。
发展新的绘制方法和技巧
鼓励学生们通过实践和探索,发现新的绘制方法和技巧,以更好地 理解和应用轴对称图形。
THANKS
感谢观看
02
函数图像
许多函数图像,如正弦函数、余弦函数等,都是 轴对称的。
自然界中的轴对称图形
人教版八年级数学上册《画轴对称图形》轴对称PPT精品课件
画点B、C的对称点F、G,然后顺次连接E、F、G得△
EFG,则△ EFG就是所求.
方法二:也可以利用全等知识进行作图,即先出A、C
的对称点E、G,然后分别以E、G为圆心,AB、CB为
半径作弧,两弧交于点F,则△ EFG就是所求.
知识拓展
二、确定对称点:四边形ABCD和四边形EFGH关于直线MN对称,连
知识梳理
例2:(2)画出△ ABC关于y轴对称的△ A2B2C2;
(3)是否存在点E,使△ ACE和△ ACB全等?若存在,直接写
出所有点E的坐标。
【结论】轴对称变换的作图的步骤是:①
求特殊点的坐标;②描点;③连线.
知识梳理
例3:在平面直角坐标系中,已知点
A( − 3,1),B( −
1,0),C( − 2, − 1),请在下图中画出△ ABC,并画出与
分别为何值.
(1)A、B关于x轴对称;
(2)A、B关于y轴对称。
知识梳理
例2:(1)根据关于x轴对称点的坐标特点横坐标不变、纵坐标互为
相反数可得
2m + n = 1
=1
,解得
− = −2
= −1
(2)根据关于y轴对称点的坐标特点纵坐标不变、横坐标互为
2m + n = −1
= −1
又∵点P(m,n),关于y轴的对称点的坐标为(1,b)
∴m=-1,n=b.
∴m=-1,n=2,故m+n=1.
知识梳理
例4:若点A(m + 2,3)与点B( − 4,n + 5)关于y轴对称,则
m+n= 0 .
+2=4
=2
根据
;解得
;故m + n = 0
EFG,则△ EFG就是所求.
方法二:也可以利用全等知识进行作图,即先出A、C
的对称点E、G,然后分别以E、G为圆心,AB、CB为
半径作弧,两弧交于点F,则△ EFG就是所求.
知识拓展
二、确定对称点:四边形ABCD和四边形EFGH关于直线MN对称,连
知识梳理
例2:(2)画出△ ABC关于y轴对称的△ A2B2C2;
(3)是否存在点E,使△ ACE和△ ACB全等?若存在,直接写
出所有点E的坐标。
【结论】轴对称变换的作图的步骤是:①
求特殊点的坐标;②描点;③连线.
知识梳理
例3:在平面直角坐标系中,已知点
A( − 3,1),B( −
1,0),C( − 2, − 1),请在下图中画出△ ABC,并画出与
分别为何值.
(1)A、B关于x轴对称;
(2)A、B关于y轴对称。
知识梳理
例2:(1)根据关于x轴对称点的坐标特点横坐标不变、纵坐标互为
相反数可得
2m + n = 1
=1
,解得
− = −2
= −1
(2)根据关于y轴对称点的坐标特点纵坐标不变、横坐标互为
2m + n = −1
= −1
又∵点P(m,n),关于y轴的对称点的坐标为(1,b)
∴m=-1,n=b.
∴m=-1,n=2,故m+n=1.
知识梳理
例4:若点A(m + 2,3)与点B( − 4,n + 5)关于y轴对称,则
m+n= 0 .
+2=4
=2
根据
;解得
;故m + n = 0
13.2画轴对称图 课件 人教版数学八年级上册
感悟新知
知识点 3 平面直角坐标系中的轴对称
知3-讲
1. 关于坐标轴对称的点的坐标规律 (1) 点(x,y)关于x 轴对称的点的坐标是(x,-y),其特点是
横坐标相同,纵坐标互为相反数; (2) 点(x,y)关于y 轴对称的点的坐标是(-x,y),其特点是
纵坐标相同,横坐标互为相反数.
感悟新知
知3-讲
感悟新知
(1)若点A,B 关于x 轴对称,求a,b 的值; 解:∵点A,B 关于x 轴对称,
2a+b=2b-1,
∴
解得
5+a-a+b= 0 .
a=-3, b=-5,
故a,b 的值分别为-3,-5.
知3-练
感悟新知
(2)若点A,B 关于y 轴对称,求(4a+4b)2025 的值.
解:∵点A,B 关于y 轴对称,
感悟新知
2. 步骤:画轴对称图形的方法可简单归纳为
知2-讲
“一找二画三连”.
特别提醒 1. 常 见 的 特 殊 点 , 除 线 段 的
找 —在原图形上找特殊点; 端点外,还有线与线的交
点等.
画 —画出各个特殊点关于对 2.不在对称轴上的点的对称
称轴的对称点;
点在对称轴的另一侧,在 对称轴上的点的对称点是
解题秘方:由轴对称变换的性 质找出所求线段和角与已知线 段和角的关系.
感悟新知
知1-练
解:∵△ ABC 和△ A′B ′C ′关于直线l 成 轴对称,∴△ ABC ≌△ A′B′C′. ∴∠B ′= ∠B=135 °,AC=A ′C ′=3 0 cm, A ′B ′=AB=20 cm.
感悟新知
知1-练
第十三章 轴对称
13.2 画轴对称图
感悟新知
初中数学教学课件: 作轴对称图形(人教版八年级上) 公开课一等奖课件
A
C
B ′
泵站应修在管道的C处,可使所用的输气管线最短.
归纳 实际上是通过轴对称变换,把A,B在直线同
侧的问题转化为在直线的两侧的问题,从而可利
用“两点之间线段最短”加以解决.
2. 八年级某班同学做游戏,在活动区域边放了一些球,则
小明按怎样的路线跑,去捡哪个位置的球,才能最快拿到
球跑到目的地A处. 路线:小明——P——A
前
言
高考状元是一个特殊的群体,在许多 人的眼中,他们就如浩瀚宇宙里璀璨夺目 的星星那样遥不可及。但实际上他们和我 们每一个同学都一样平凡而普通,但他们 有是不平凡不普通的,他们的不平凡之处 就是在学习方面有一些独到的个性,又有 着一些共性,而这些对在校的同学尤其是 将参加高考的同学都有一定的借鉴意义。
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校:
北京大学光华管理学院
北京市理科状元杨蕙心
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出 解决办法。
段A′B′?
作法: 1、过点A作直线L的垂线,垂足为点O, 在垂线上截OA′=OA,
A
A′
B 点A′就是点A关于直线L的对称点; 2、类似地,作出点B关于直线L的对称点B′;
3、连接A′B′.
B′
∴线段A′B′即为所求.
2.如图,已知△ABC和直线l,怎样作出与△ABC关于
直线l对称的图形呢? B C A O A′ l
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合作创新 请发挥小组的每一位成员的聪明才智, 运用作轴对称图形的方法,为本组共同设 计一幅精美图案。
共同小结
本节课你的最大收获是什么?还有疑惑吗? 说出来,和大家交流交流
轴对称图形是美丽的,我赞美她。或许是因 为她体现了对称、代表着和谐、蕴含着永 恒。让我们去发现、去感受她那无穷的美 ,并用我们智慧的双手去描绘、去创造那 无尽的美吧。我坚信:未来的世界有了我 们、有了你们一定会变得更加美丽无限、 更加绚丽多彩!
新图形上的每一点都是原图形上的某一点关于直 线 l 的对称点; (3)对应点所连线段与对称轴有什么关系? 连接任意一对对应点的线段被对称轴垂直平分.
共同探究
画轴对称图形
(2)能否根据其中的一部分画出整个图案?
共同探究
画轴对称图形
在一张半透明纸张的左边部分,画出左脚印,如 何由此得到相应的右脚印?
八年级
上册
13.2 画轴对称图形 (第1课时)
1
课件说明
• 本节课内容属于“图形的变化”领域,画轴对称图 形是继平移变换之后的又一种图形变换,是利用轴 对称变换设计图案的基础.它是研究几何问题、发 现几何结论的有效工具.
课件说明
• 学习目标: 1.理解图形轴对称变换的性质. 2.能按要求画出一个平面图形关于某直线对称的图 形. • 学习重点: 画轴对称图形.
画轴对称图形
如何验证画出的图形与△ABC 关于直线l 对称?
B C A O A′ B′
l
C′
看是不是翻折1800重合
共同探究
画轴对称图形
已知一个几何图形和一条直线,说一说画一个与该 图形关于这条直线对称的图 Nhomakorabea的一般方法.
找准特征点,向轴作垂线; 点与垂足距,心中需牢记; 延长该垂线,在上取其距; 得到对称点,标点要仔细; 顺次连各点,对称图形显。 方法只五步,找作延取连; 记住该步骤,画图梦自圆。
P
l
?
P/
共同探究
画轴对称图形
1、已知对称轴 和一个点 A,如何画出点A关于 l 的对称点 A/? l
画法:
(1)过点A作直线 l 的垂线,垂足为点O; (2)延长垂线OA于A/ ,使OA/=OA; A
l
O
A/
(3)点A/就是点A关于 直线 l 的对称点.
共同探究
画轴对称图形
2、 如何画线段AB关于直线 l 的对称线段A/B/? 画法: (1)过点A作直线 l 的垂线,垂足为点O; l (2)延长垂线OA于A/ ,使OA/=OA; O / A A (3)点A/就是点A关于 直线 l 的对称点. (4)同理可得点B的对 B/ 称点B/. B (5)连接A/B/,则A/B/ 为所求线段。
画法:
(1)如图,过点A 画直线l 的垂 A 线,垂足为点O,在垂线上截 O OA′=OA,点A′就是点A 关于 / A 直线l 的对称点; (2)同理,分别画点B、C 关 于直线l 的对称点B′C′; (3)顺次连接A/B/、B/C/、 C/A/各点,则△A/B/C/为所求。 B/
C
l
C/
共同探究
共同探究
画轴对称图形
3、例1 如图,已知△ABC 和直线l,画出与△ABC 关于直线l 对称的图形.
(1)三角形关于直线l 的对称图 形是什么形状? (2)三角形的轴对称图形可以由 哪几个点确定? (3)如何作一个已知点关于直线 l 的对称点? B C A l
共同探究
画轴对称图形
3、例1 如图,已知△ABC 和直线l,画出与△ABC 关于直线l 对称的图形. B
布置作业
教科书习题13.2第1题.
读数如下图 ,则电子表的实际读数是
_________________。
合作探究 练习2 将军饮马问题
古希腊一位将军要从A地出发到河边去饮马 ,然后再回到驻地B.问怎样选择饮马地点,才 能使路程最短? 画法: B (1)作点A关于直线 l 的 A 对称点 A/;
l
C A/
(2)连结A/B,交 l 于点 C; ∴ 点C就是所求的点.
自主学习
练习1
形.
如图,把下列图形补成关于直线l 对称的图
l
l
自主学习
练习2 图中给出了一个图案的一半,其中的虚线 是这个图案的对称轴.试画出这些图案的另一 半?
A B´ B A´ A
A B
B B´
B´
D´ D E
E´
C´ C
C´
C C´
C
合作学习
练习1 如图,把下列图形补成关于直线m对称的图形.
共同欣赏
共同回顾
归纳轴对称的性质
(1)这些图案有什么共同特点?
共同回顾
归纳轴对称的性质
(1)成轴对称的图形的形状、大小和原图形有什么 关系?
由一个平面图形沿着一条直线l 翻折1800可以 得到它关于该直线l 对称的图形,这个图形与原图 形的形状、大小完全相同; (2)成轴对称图形的点与原图形上的点有什么关系?
m
A/
A C
C/
B
B/
合作学习
练习2 如图,把下列图形补成关于直线m对称的图形.
B
m
B/
A C D
A/
D/
C/
合作学习
练习3 用纸片剪一个三角形,分别沿它一边的中 线、高、角平分线对折,看看哪些部分能够重合,哪些 部分不能重合.
沿中线折叠
沿高折叠
沿角一部分线折叠
合作探究 练习1 小强从镜子中看到的电子表的