最新九年级数学相似三角形单元检测试题

合集下载

浙教新版九年级上册《4.5 相似三角形的性质及其应用》2024年同步练习卷(3)+答案解析

浙教新版九年级上册《4.5 相似三角形的性质及其应用》2024年同步练习卷(3)+答案解析

浙教新版九年级上册《4.5相似三角形的性质及其应用》2024年同步练习卷(3)一、选择题:本题共4小题,每小题3分,共12分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图所示的网格由边长相同的小正方形组成,点A,B,C,D,E,F,G均在小正方形的顶点上,则的重心是()A.点GB.点DC.点ED.点F2.如图,在中,E,G分别是AB,AC上的点,,的平分线AD交EG于点F,若,则()A.B.C.D.3.如图,的两条中线AD和BE相交于点G,过点E作交AD于点F,则FG:AG是()A.1:4B.1:3C.1:2D.2:34.如图,正方形ABCD中,E为CD的中点,,交BC于点F,则与的大小关系为()A.B.C.D.无法确定二、填空题:本题共6小题,每小题3分,共18分。

5.如图,在中,点D,E分别是BC,AC的中点,AD与BE相交于点若,则EF的长是______.6.如图,AD是的高,AE是的外接圆的直径,且,,,则的直径______.7.点G是的重心,,如果,那么AB的长是______.8.如图,E,F分别为AC,BC的中点,D是EC上一点,且若,,则BE的长为______.9.如图,在等腰中,,,点E在边CB上,,点D在边AB上,,垂足为F,则AD的长为______.10.如图,点D在的边BC上,已知点E、点F分别为和的重心,如果,那么两个三角形重心之间的距离EF的长等于______.三、解答题:本题共3小题,共24分。

解答应写出文字说明,证明过程或演算步骤。

11.本小题8分已知,如图,在中,CD是斜边上的中线,交BC于点F,交AC的延长线于点∽吗?为什么?你能推出结论吗?请试一试.12.本小题8分已知:如图,在中,点D、E分别在边BC、AB上,,AD与CE相交于点F,求证:;求证:13.本小题8分如图,在中,,,动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,运动时间为t秒,连接若与相似,求t的值;连接AN,CM,若,求t的值.答案和解析1.【答案】B【解析】解:取BC的中点N,取AC的中点M,连接AN,BM,如图所示,则AN与BM的交点为D,故点D是的重心,故选:取BC的中点N,取AC的中点M,连接AN,BM,然后根据图形可知AN与BM的交点为D,即可得到点D 为的重心.本题考查三角形的重心,解答本题的关键是明确三角形的重心是三角形中线的交点.2.【答案】C【解析】解:,,,,∽,故选:根据两组对应角相等可判断∽,可得,则可得出结论.本题考查了相似三角形的判定与性质,灵活运用定理是关键.3.【答案】A【解析】【分析】本题考查的是三角形的重心的概念和性质、平行线分线段成比例定理的应用,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍,根据重心的性质得到,,根据平行线分线段成比例定理计算即可.【解答】解:的两条中线AD和BE相交于点G,点G是的重心,,,,,::4,故选:4.【答案】C【解析】解:,,,,∽,且相似比为2,,,又,∽,易证∽,求得CF的长,可得根据勾股定理即可求得AE、EF的长,即可判定∽,即可解题.本题考查了相似三角形的判定,相似三角形对应边比值相等的性质,相似三角形对应角相等的性质,本题中求证∽是解题的关键.5.【答案】3【解析】解:点D,E分别是BC,AC的中点,,且,,,,故答案为:由题意可知,DE是的中线,则,且,可得,代入BF的长,可求出EF的长,进而求出BE的长.本题主要考查三角形中位线,平行线分线段成比例等知识,熟练掌握相关知识是解题的关键.6.【答案】【解析】【分析】本题考查了圆周角定理,相似三角形的性质和判定的应用,解此题的关键是求出∽首先根据两个对应角相等可以证明三角形相似,再根据相似三角形的性质得出关于AE的比例式,计算即可.【解答】解:由圆周角定理可知,,,,∽::AC,,,,::5,,故答案为:7.【答案】6【解析】解:如图,AD为AB边上的中线,点G是的重心,,,,故答案为先根据三角形重心的性质得到,则,然后根据直角三角形斜边上的中线性质得到AB的长.本题考查了三角形的重心:重心到顶点的距离与重心到对边中点的距离之比为2:也考查了直角三角形斜边上的中线性质.8.【答案】【解析】解:,,,∽,,,,E,F分别为AC,BC的中点,,,解得:故答案为:由可得:,结合公共角,可证得∽,从而利用相似三角形的对应中线之比等于相似比即可求BE的长.本题主要考查相似三角形的判定与性质,解答的关键是明确相似三角形的对应中线的之等于相似比.9.【答案】【解析】解:过D作于H,在等腰中,,,,,,,,,,∽,,,,,,,故答案为:过D作于H,根据等腰三角形的性质得到,,求得,得到,根据相似三角形的性质即可得到结论.本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.10.【答案】【解析】解:如图,连接AE并延长交BD于G,连接AF并延长交CD于H,点E、F分别是和的重心,,,,,,,,,,∽,,,故答案为:连接AE并延长交BD于G,连接AF并延长交CD于H,根据三角形的重心的概念、相似三角形的性质解答.本题考查了三角形重心的概念和性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.11.【答案】证明:,,,,,∽;为的中线,,,又,,又是公共角,∽,,即【解析】根据题意,得,,则,易证∽;由中,CD是斜边上的中线,得,则,又,所以,又是公共角,所以∽,即可得出;本题主要考查了直角三角形和相似三角形的判定与性质,掌握直角三角形斜边上的中线等于斜边的一半,是解答本题的关键.12.【答案】证明:,,,,,,∽,,;∽,,即,,,∽,,,,【解析】根据等腰三角形的性质得到,,推出∽,根据相似三角形的性质得到,于是得到;根据相似三角形的性质得到,即,推出∽,根据相似三角形的性质得到,于是得到,等量代换即可得到结论.本题考查了相似三角形的判定和性质,等腰三角形的性质,三角形的外角的性质,证得∽是解题的关键.13.【答案】解:,,,,由题意得,,当∽时,,即,解得:;当∽时,,即,解得:,综上所述,与相似时,t的值为或;如图,过点M作于点D,,,∽,,,,,,,,,,,,,,,∽,,即,解得:【解析】根据勾股定理求出AB,分∽、∽两种情况,根据相似三角形的性质列出比例式,计算即可;过点M作于点D,分别证明∽,∽,根据相似三角形的性质列出比例式,计算即可.本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.。

数学初三相似三角形试卷

数学初三相似三角形试卷

一、选择题(每题4分,共20分)1. 下列各组图形中,能够构成相似三角形的是()A. 两个等腰三角形B. 两个等边三角形C. 两个直角三角形D. 两个锐角三角形2. 已知两个三角形ABC和DEF,若∠A=∠D,∠B=∠E,则下列说法正确的是()A. 三角形ABC与三角形DEF相似B. 三角形ABC与三角形DEF不一定相似C. 三角形ABC与三角形DEF一定不相似D. 无法判断三角形ABC与三角形DEF是否相似3. 在相似三角形中,对应边的比称为()A. 相似比B. 对应角C. 相似中心D. 相似轴4. 若一个三角形的边长分别为3、4、5,那么与这个三角形相似的三角形的边长可能是()A. 6、8、10B. 6、9、12C. 7、10、14D. 8、12、165. 在相似三角形中,若相似比为2:1,则周长比是()A. 2:1B. 1:2C. 4:1D. 1:4二、填空题(每题4分,共16分)6. 如果两个相似三角形的相似比是3:2,那么它们的面积比是_______。

7. 在相似三角形中,如果相似比是5:3,那么对应高的比是_______。

8. 若三角形ABC与三角形DEF相似,且AB=6cm,DE=4cm,那么BC与EF的比是_______。

9. 在相似三角形中,若一个三角形的周长是另一个三角形的3倍,则它们的相似比是_______。

10. 两个相似三角形的相似比为1:2,那么它们的面积比是_______。

三、解答题(每题10分,共30分)11. (10分)已知三角形ABC中,∠A=45°,∠B=90°,∠C=45°,点D、E分别在边AB、BC上,且AD=DE=EC。

求证:三角形ADE与三角形ABC相似。

12. (10分)已知两个相似三角形ABC和DEF,其中∠A=30°,∠D=45°,∠B=∠E=75°。

求证:三角形ABC与三角形DEF相似。

第4章 相似三角形 浙教版九年级数学上册单元测试卷(含解析)

第4章 相似三角形 浙教版九年级数学上册单元测试卷(含解析)

第4章相似三角形单元测试卷一.选择题(共10小题,满分30分)1.《九章算术》中记载了一种测量古井水面以上部分深度的办法,如图所示,在井口A处立一垂直于井口的木杆AB,从木杆的顶端B观测井水水岸D,视线BD与井口的直径CA 交于点E,若测得AB=1米,AC=1.6米,AE=0.4米,则水面以上深度CD为( )A.4米B.3米C.3.2米D.3.4米2.设=,则的值为( )A.B.C.D.3.已知△ABC∽△DEF,=,若BC=2,则EF=( )A.4B.6C.8D.164.两个相似多边形的周长之比为1:4,则它们的面积之比为( )A.1:2B.1:4C.1:8D.1:165.如图,AD∥BE∥CF,若AB=2,AC=5,EF=4,则DE的长度是( )A.6B.C.D.6.已知在△ABC中,∠A=78°,AB=4,AC=6,下列阴影部分的三角形与原△ABC不相似的是( )A.B.C.D.7.甲、乙两地相距60千米,在比例尺1:1000000的地图上,图上距离应是( )厘米.A.6000000B.600C.60D.68.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“美学”.如图,的值接近黄金比,则黄金比(参考数据:2.12=4.41,2.22=4.84,2.32=5.29,2.42=5.76)( )A.在0.1到0.3之间B.在0.3到0.5之间C.在0.5到0.7之间D.在0.7到0.9之间9.在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,AD=3,BD=2,则CD的长为( )A.2B.3C.D.10.如图,在△ABC中,∠BAC=90°,AH⊥BC,M是AC中点,CN=2BN,BM交AN于O,BM交AH于I,若S△ABC=48,则下面结论正确的是( )①∠CAH=∠ABC;②S△ABO=12;③AO=3NO;④=2.A.①②③B.②③④C.①②④D.①②③④二.填空题(共10小题,满分30分)11.已知四边形ABCD∽四边形A′B′C′D′,BC=3,CD=2.4,B′C′=2,则C′D ′= .12.如图,△ADE∽△ACB,已知∠A=40°,∠ADE=∠B,则∠C= °.13.如图,在△ABC中,DE∥BC,G为BC上一点,连接AG交DE于点F,已知AF=2,AG=6,EC=5,则AC= .14.已知a=4,c=13,则a,c的比例中项是 .15.如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且=,则= .16.如图,在第一象限内作与x轴的正半轴成60°的射线OC,在射线OC上截取OA=2,过点A作AB⊥x轴于点B,在坐标轴上取一点P(不与点B重合),使得以P,O,A为顶点的三角形与△AOB相似,则所有符合条件的点P的坐标为 .17.如图,以点O为位似中心,把△ABC放大2倍得到△A'B'C'',①AB∥A'B';②△ABC∽△A'B'C';③AO:AA'=1:2;④点C、O、C'三点在同一直线上.则以上四种说法正确的是 .18.如图,△ABC的顶点在1×3的正方形网格的格点上,在图中画出一个与△ABC相似但不全等的△DEF(△DEF的顶点在格点上),则△DEF的三边长分别是 .19.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,BD=3,CD=12,则AD的长为 .20.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是,著名的“断臂维纳斯”便是如此,这个数我们把它叫做黄金分割数.若介于整数n 和n+1之间,则n的值是 .三.解答题(共7小题,满分90分)21.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3),双曲线y=﹣(x>0)的图象经过的中点D,且与AB交于点E,连接DE(1)求△BDE的面积(2)若点F是OC边上一点,且△FBC∽△DEB,求点F坐标.22.如图,四边形ABCD∽四边形EFGH,求角α、β的大小和EF的长度x.23.如图,C是线段AB上的一点,AC:CB=2:1.(1)图中以点A,B,C中任意两点为端点的线段共有 条.(2)若AC=4,求AB的长.24.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标.25.如图,AB∥EF∥CD,E为AD与BC的交点,F在BD上,求证:+=.26.小颍想利用标杆和皮尺测量自己小区大门口前遮雨玻璃水平宽度AB,他在楼门前水平地面上选择一条直线CH,AB∥CH,在CH上距离C点8米的D处竖立标杆DE,DE⊥CH,他沿着DH方向走了2米到点N处,发现他的视线从M处通过标杆的顶端E正好落在遮雨玻璃的B点处,继续沿原方向再走2米到点Q处,发现他的视线从P处通过标杆的顶端E正好落在遮雨玻璃的A点处,求遮雨玻璃的水平宽度AB.27.如图,AC、BD交于点E,BC=CD,且BD平分∠ABC.(1)求证:△AEB∽△CED;(2)若BC=9,EC=3,AE=2,求AB的长.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:由题意知:AB∥CD,∴△ABE∽△CDE,∴,∴,∴解得CD=3,∴水面以上深度CD为3米.故选:B.2.解:∵=,∴x=y,∴====.故选:C.3.解:∵△ABC∽△DEF,∴,∵=,BC=2,∴,∴EF=4,故选:A.4.解:相似多边形的周长的比是1:4,周长的比等于相似比,因而相似比是1:4,面积的比是相似比的平方,因而它们的面积比为1:16;故选:D.5.解:∵AD∥BE∥CF,∴=,即=,解得:DE=,故选:D.6.解:A、由有两组角对应相等的两个三角形相似,可证阴影部分的三角形与原△ABC相似,故选项A不符合题意;B、不能证明阴影部分的三角形与原△ABC相似,故选项B符合题意;C、由有两组角对应相等的两个三角形相似,可证阴影部分的三角形与原△ABC相似,故选项C不符合题意;D、由两组对应边的比相等且夹角对应相等的两个三角形相似,故选项D不符合题意;故选:B.7.解:60千米=6000000厘米,6000000×=6(厘米).答:图上距离应是6厘米.故选:D.8.解:∵2.22=4.84,2.32=5.29,2.2<<2.3,∴1.2<﹣1<1.3,∴0.6<<0.65,故选:C.9.解:∠BAC=90°,∴∠BAD+∠CAD=90°,∵AD⊥BC,∴∠C+∠CAD=90°,∴∠C=∠BAD,∵∠BDA=∠ADC=90°,∴△BDA∽△ADC,∴,即,解得,DC=,故选:D.10.解:①∵∠BAC=90°,AH⊥BC,∴∠ABC+∠BAH=∠BAH+∠CAH=90°,∴∠CAH=∠ABC,故①正确;②过点M作ME∥BC,与AO交于点E,∵M是AC中点,∴ME是△ACN的中位线,∴ME=,AE=EN,∵CN=2BN,∴ME=BN,∵ME∥BC,∴∠OBN=∠OME,∵∠BON=∠MOE,∴△OBN≌△OME(AAS),∴ON=OE,∵AE=EN,∴AN=4ON,∴,∵CN=2BN,S△ABC=48,∴,∴,故②正确;③∵AE=EN,OE=ON,∴AO=3NO,故③正确;④过点C作CF⊥BC,与BM的延长线交于点F,∴∠AIM=∠F,∵M是AC的中点,∴AM=CM,∵∠AMI=∠CMF,∴△AMI≌△CMF(AAS),∴AI=CF,∵IH∥CF,当H不是BC的中点时,IH≠,∴IH≠,故④不正确;故选:A.二.填空题(共10小题,满分30分)11.解:∵四边形ABCD∽四边形A′B′C′D′,∴=,即=,∴C′D′=1.6.故答案为:1.6.12.解:∵△ADE∽△ACB,∴∠AED=∠B,∠ADE=∠C,∵∠ADE=∠B,∴∠C=∠B,∴∠B=4∠C,∵∠A=40°,∠A+∠B+∠C=180°,∴∠C=28°,故答案为:28.13.解:∵DE∥BC,∴,即,∴AE=,∴AC=AE+EC=+5=,故答案为:.14.解:设a,c的比例中项为b,根据题意得b2=ac,∵a=4,c=13,∴b=±=±2.故答案为:±2.15.解:∵=,∴=,∵四边形ABCD与四边形EFGH位似,∴EH∥AD,∴△OEH∽△OAD,∴==,故答案为:.16.解:∵∠AOB=60°,∠ABC=90°,∴当P点在x轴上,∠AOP=60°,∠OAP=90°时,△PAO∽△ABO,此时OP=2OA=4,则P(4,0);当P点在y轴上,若∠APO=60°,∠OAP=90°时,△PAO∽△OBA,此时AP=OA=,OP=2AP=,则P(0,);若∠PAO=60°,∠APO=90°时,△APO∽△OBA,此时AP=OA=1,OP=AP=,则P(0,);综上所述,P点坐标为:(4,0)或(0,)或(0,).故答案为:(4,0)或(0,)或(0,).17.解:∵以点O为位似中心,把△ABC放大2倍得到△A'B'C'',∴AB∥A'B,△ABC∽△A'B'C';AO:AA'=2:1;点C、O、C'三点在同一直线上,①①②④正确,故答案为:①②④.18.解:如图所示:△ABC∽△DEF,DE=,ED=2,EF=.故答案为:,2,.19.解:∵∠BAC=90°,AD⊥BC,∴AD2=CD•BD=36,∴AD=6,故答案为:6.20.解:∵2<<3,∴1<﹣1<2,∴<<1∵n<<n+1,n为整数,∴n=0.故答案为:0.三.解答题(共7小题,满分90分)21.解:(1)∵D点为BC的中点,B(2,3),∴D(1,3),把D(1,3)代入y=得k=1×3=3,∴反比例函数解析式为y=,∵AB⊥x,∴E点的横坐标为2,当x=2时,y==,即E(2,),∴△BDE的面积=×(2﹣1)×(3﹣)=;(2)∵△FBC∽△DEB,∴=,即=,解得CF=,∴OF=OC﹣CF=3﹣=,∴点F坐标为(0,).22.解:∵四边形ABCD∽四边形EFGH,∴α=∠C=83°,∠F=∠B=78°,EH:AD=EF:AB,∴x:21=24:18,解得x=28.在四边形EFGH中,β=360°﹣83°﹣78°﹣118°=81°.∴∠G=∠C=67°.故α=83°,β=81°,x=28.23.解:(1)线段有:AC,AB,CB,共3条,故答案为:3;(2)∵AC=4,AC:CB=2:1,∴CB=2,∴AB=AC+CB=4+2=6.24.解;(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,点C2点坐标为(﹣6,4).25.解:∵AB∥EF,∴=,∵EF∥CD,∴=,∴+=+=1,∴+=.26.解:连接AE,过E作EI⊥AC于点I,延长PM交AC于J,交ED于K,则IE=JK=CD =8,KM=DM=DN=NQ=2,∴JE∥PJ,∠AEJ=∠EPK,∵∠AJE=∠EKP=90°,∴△AEJ∽△EPK,∴,∵AB∥MP,∴,即,∴AB=4,答:遮雨玻璃的水平宽度AB为4m.27.(1)证明:∵BC=CD,∴∠CBD=∠CDB,∵BD平分∠ABC.∴∠CBD=∠ABD,∴∠CDB=∠ABD,又∵∠CED=∠AEB,∴△AEB∽△CED.(2)解:∵BC=CD,BC=9,∴CD=9,∵△AEB∽△CED,∴==,∴AB=DC=6.。

浙教版数学九年级上册 第四章 相似三角形 单元练习(含答案)

浙教版数学九年级上册 第四章 相似三角形  单元练习(含答案)

浙教版数学九年级上册第四章相似三角形一、选择题1.如果2a =5b ,那么下列比例式中正确的是( )A .a b =25B .a 5=2b C .a 2=b 5D .a 5=b 22.如图,直线l 1∥l 2∥l 3,AC =6,DE =3,EF =2,则AB 的长为( )A .3B .125C .165D .1853.如图,点P 是线段AB 的黄金分割点,且PA >PB ,若AB =2,则PA 的长度是( )A .5−1B .3−5C .25−4D .14.如图, 在▱ABCD 中, E 是边AB 上一点, 连结AC ,DE 相交于点F . 若AE EB =23,则 AF CF 等于( )A .13B .23C .25D .355.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )A .B .C.D.6.△ABC和△DEF是两个等边三角形,AB=2,DE=4,则△ABC与△DEF的面积比是( ) A.1:2B.1:4C.1:8D.1:27.如图,在△ABC中,BC=6,AC=8,∠C=90°,以B为圆心,BC长为半径画弧,与AB交于点D,再分别以点A,D为圆心,大于12AD的长为半径画弧,两弧交于点M,N,作直线MN,分别交AC,AB于点E,F,则AE的长度为( )A.52B.103C.3D.228.如图,△ABC和△A1B1C1是以点O为位似中心的位似图形,点A在线段O A1上,若OA:A A1=1:2,则△ABC和△A1B1C1的周长之比为( )A.1:2B.2:1C.1:3D.3:19.如图,在△ABC中,D为线段AC上一点,点E在AC的延长线上,过点D作DF∥AB交BC于点F,连结BE,EF,若A C2+D E2=A E2,则△BEF与△DCF的面积比为( )A.1:2B.1:3C.2:3D.2:510.如图,矩形ABCD中,AB=4,AD=2,E为边AD上一个动点,连接BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是( )A .4B .154C .3D .114二、填空题11.如图,AC 、BD 交于点O ,连接AB 、CD ,若要使△AOB ∽△COD ,可以添加条件 .(只需写出一个条件即可)12.已知△ABC ∽△DEF ,且AB:DE =1:3,△ABC 与△DEF 的周长比是 .13.如图,在这架小提琴中,点C 是线段AB 的黄金分割点(BC >AC ).若AB =60cm ,则BC = cm .14.如图,在Rt △ABC 中,∠ABC =90°,AB =4,AC =5,AE 平分∠BAC ,点D 是AC 的中点,AE 与BD交于点O ,则的值AOOE .15.如图,矩形ABCD 中,AB =3 6 ,BC =12,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是 .16.如图,正方形ABCD 中,BF =FG =CG ,BE =2AE ,CE 交DF 、DG 于M 、N 两点,有下列结论:①DF ⊥EC ;②S △MFC =59S 四边形MFBE ;③DM :MF =2:1;④MN NC =913.其中,正确的有  .三、解答题17.(1)已知线段a =2,b =6,求线段a ,b 的比例中项线段c 的长.(2)已知x :y =3:2,求2x−yx的值.18.如图,已知D 、E 分别是△ABC 的边AB 、AC 上的点,DE ∥BC ,AD BD =32,求DE BC 的值.19.如图,AD 、BC 相交于点P ,连接AC 、BD ,且∠1=∠2,AC =6,CP =4,DP =2,求BD 的长.20. 如图,在平行四边形ABCD 中,E 为DC 边上一点,∠EAB =∠EBC .(1)求证:△ABE∽△BEC ;(2)若AB=4,DE=3,求BE的长.21.如图,在四边形ABCD中,OA=OC,OB=OD,AB=BC,AC=12,BD=16.(1)求证:四边形ABCD时菱形;(2)延长BC至点M,连接OM交CD于点N,若∠M=12∠BAC,求MNOM.22.如图,AB∥CD,且AB=2CD,E是AB的中点,F是边BC上的动点(F不与B,C重合),EF与BD相交于点M.(1)求证:△FDM∽△FBM;(2)若F是BC的中点,BD=18,求BM的长;(3)若AD=BC,BD平分∠ABC,点P是线段BD上的动点,是否存在点P使DP⋅BP=BF⋅CD,若存在,求出∠CPF的度数;若不存在,请说明理由.23.如图,在平面直角坐标系中,已知抛物线y=12x2+bx+c与x轴交于A、B两点,与y轴交于C点,且OB=OC=4.(1)求抛物线的解析式;(2)在抛物线上是否存在点M,使∠ABC=∠BCM,如果存在,求M点的坐标,如果不存在,说明理由;(3)若D是抛物线第二象限上一动点,过点D作DF⊥x轴于点F,过点A、B、D的圆与DF交于E点,求△ABE的面积.答案解析部分1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】A8.【答案】C9.【答案】A10.【答案】B11.【答案】∠A=∠C(答案不唯一)12.【答案】1:313.【答案】(305−30)14.【答案】9415.【答案】21516.【答案】①④17.【答案】(1)解:∵线段a=2,b=6,线段c是线段a、b的比例中项,∴c2=ab=12,∴c=23(负值舍去);(2)解:∵x:y=3:2,∴可设x=3k,y=2k(k≠0),∴2x−yx=6k−2k3k=43.18.【答案】3519.【答案】BD=320.【答案】(1)证明:∵平行四边形ABCD,∴AB//CD,∴∠EBA=∠BEC,又∵∠EAB=∠EBC,∴△ABE∽△BEC.(2)解:∵四边形ABCD 平行四边形,∴AB =DC =4,∵DE =3,∴CE =1,∵△ABE∽△BEC ,∴AB EB =EBEC,∴AB ⋅CE =B E 2=4×1=4,∴BE =2.21.【答案】(1)证明:∵ 在四边形ABCD 中,OA=OC ,OB=OD∴ 四边形ABCD 是平行四边形 ∵ AB=BC∴ 平行四边形ABCD 是菱形。

(完整word版)九年级数学相似三角形单元测试题及答案

(完整word版)九年级数学相似三角形单元测试题及答案

九年级数学相似单元测试(1)一.选择题(每小题3分洪30分) 1.在比例尺为 A.1250km b 3 1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( C. 12.5km D.1.25km 2•已知a 2 B.125km =c = 0,则匕空的值为 4 cA. 4 5 3. 已知/ ABC 的三边长分别为 相似,那么/ A ' B ' C '的第三边长应该是B.11 2D. 1 2 2,,6,2,/A ' B ' C '的两边长分别是 ( C.2 1 和.3,如果/ ABC 与/ A ' B ' C ' ) A. 24. 在相同时刻,物高与影长成正比 C.-6D.三 2 3 如果高为 1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为 ( ) D 15米 D A 20米 B 18米 5. 如图,/ACB= Z ADC=90 ° ,BC=a,AC=b,AB=c,要使/ ABC s/CAD, 只要CD 等于 ( ) 2 2 2A. —B.—C.abD.— c a c c 6. —个钢筋三角架三长分别为20cm,50cm,60cm ,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和 50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有 ( ) A. 一种 B.两种 C.三种 D.四种 7、 用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在 A 原图形的外部 B 原图形的内部 C 原图形的边上 D 任意位置 8、 如图,口 ABCD 中,EF // AB , DE : EA = 2 : 3, EF = 4,贝U CD 的长( )A 16 A.亍 C 16米 C . 10 D . 16 窗户的高在在室地直线上影长则那的高貉为窗户的下檐到教严面勺距离 C . 2米 D . 1.5 米BC=1米(点B CABC 的边BC10、 某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△ 上,△ ABC 中边BC=60m ,高AD=30m ,则水池的边长应为( ) A 10m B 20m C 30m D 40m 二傾空题(每小题3分洪30分) 11、 已知冬=3,则= y 4 y 12、 .已知点C 是线段AB 的黄金分割点,且AC>BC,则AC : AB= _________ . 13、 .把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 ___________________ .14、 如图,/ABC 中,D,E 分别是AB,AC 上的点(DE.JBC ),当 ________ 或 ________ 或 _______ 时,/ ADE 与/ ABC 相似. 15、 在厶ABC 中,/ B = 25° , AD 是BC 边上的高,并且AD 2 = BD • DC ,则/ BCA 的度数为 _______________ 。

浙教版2022年九年级上册第4章《相似三角形》单元检测卷 (含解析)

浙教版2022年九年级上册第4章《相似三角形》单元检测卷 (含解析)

浙教版2022年九年级上册第4章《相似三角形》单元检测卷一.选择题(共10小题,满分30分,每小题3分)1.已知线段a,b,c,求作线段x,使bx=ac,下列作法中正确的是()A.B.C.D.2.如果x:y=2:3,那么下列各式中成立的是()A.B.2x=3y C.D.3.如图所示的两个五边形相似,则以下a,b,c,d的值错误的是()A.a=3B.b=4.5C.c=4D.d=84.已知△ABC∽△DEF,AG和DH是它们的对应边上的高,若AG=4,DH=6,则△ABC与△DEF的面积比是()A.2:3B.4:9C.3:2D.9:45.如图,在△ABC中,P为AB上一点,在下列四个条件中,不能判定△APC和△ACB相似的条件是()A.∠ACP=∠B B.∠APC=∠ACBC.AC2=AP•AB D.AC•CP=AP•CB6.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,则下列结论不正确的是()A.B.C.△ADE∽△ABC D.AD•AB=AE•AC7.如图所示,在平面直角坐标系中,A(1,0),B(0,2),C(﹣2,1),以A为位似中心,把△ABC在点A同侧按相似比1:2放大,放大后的图形记作△A'B'C',则C'的坐标为()A.(﹣6,2)B.(﹣5,2)C.(﹣4,2)D.(﹣3,2)8.将两张直角三角形纸片按如图所示的方式摆进⊙O内,点A,B,C,D都在圆上,点E在边AC上,已知∠BAC =∠AED=90°,AB=AE=6,DE=2,则⊙O的直径为()A.B.C.D.109.已知点P是边长为4的正方形ABCD内一点,且PB=3,BF⊥BP,垂足是点B,若在射线BF上找一点M,使以点B,M,C为顶点的三角形与△ABP相似,则BM为()A.3B.C.3 或D.以上都错10.如图,在边长为4的正方形ABCD中,对角线AC,BD交于点O,E在BD上,连接CE,作EF⊥CE交AB于点F,交AC于点G,连接CF交BD于点H,延长CE交AD于点M,连接FM,则下列结论:①点E到AB,BC的距离相等;②∠FCE=45°;③∠DMC=∠FMC;④若DM=2,则.正确的有()个.A.1B.2C.3D.4二.填空题(共6小题,满分18分,每小题3分)11.已知,则的值为.12.如图,l1∥l2∥l3,已知AB=6cm,BC=3cm,A1B1=4cm,则线段B1C1的长为cm.13.在△ABC中,AC=6,BC=9,D是△ABC的边BC上的点,且∠CAD=∠B,则BD=.14.有五本形状为长方体的书放置在方形书架中,如图所示,其中四本竖放,第五本斜放,点G正好在书架边框上.每本书的厚度为5cm,高度为20cm,书架宽为40cm,则FI的长.15.如图,已知平行四边形ABCD中,E,F分别是边AB,AD上的点,EF与对角线AC交于P,若,,则的值为.16.如图,一个由8个正方形组成“C”型模板恰好完全放入一个矩形框内,模板四周的直角顶点M,N,O,P,Q都在矩形ABCD的边上,若8个小正方形的面积均是1,则边AB的长为.三.解答题(共7小题,满分52分)17.(6分)如图,在△ABC中,BD平分∠ABC,交AC于点D,点E是AB上一点,连接DE,BD2=BC•BE.证明:△BCD∽△BDE.18.(6分)某校初三年级在一次研学活动中,数学研学小组为了估计澧水河某段水域的宽度,在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=25米,BD=12米,DE=35米,求河的宽度AB为多少米?19.(7分)已知线段a,b,c满足a:b:c=2:3:4,且a+b﹣c=3.(1)求线段a,b,c的长.(2)若线段m是线段a,b的比例中项,求线段m的长.20.(8分)已知O是坐标原点,A、B的坐标分别为(3,1)、(2,﹣1).(1)画出△OAB绕点O顺时针旋转90°后得到的△OA1B1;(2)在y轴的左侧以O为位似中心作△OAB的位似图形△OA2B2,使新图与原图相似比为2:1;(3)若点D(a,b)在线段OA上,直接写出变化(2)后点D的对应点D2的坐标为.(4)分别求出△OAB的周长和△OA2B2的面积.21.(8分)如图,正方形ABCD中,点E是边CD的中点,点F在AD边上,且=2,AE与CF相交于点G.(1)若AD=6,EG=3,连接DG,求证:△ADE∽△DGE;(2)求∠AGF的度数.22.(8分)如图,正方形ABCD中,E、F分别是AD、AB上的点,AP⊥BE于点P.(1)如图1,如果点F是AB的中点,求证:BP•BE=2PF•BC;(2)如图2,如果AE=AF,联结CP,求证:CP⊥FP.23.(9分)如图,在矩形ABCD中,AB=6,AD=8,点E是CD边上的一个动点(点E不与点C重合),延长DC 到点F,使EC=2CF,且AF与BE交于点G.(1)当EC=4时,求线段BG的长;(2)设CF=x,△GEF的面积为y,求y与x的关系式,并求出y的最大值;(3)连接DG,求线段DG的最小值.浙教版2022年九年级上册第4章《相似三角形》单元检测卷参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:由题意,bx=ac,∴=,故选:D.2.【解答】解:∵x:y=2:3,∴设x=2k,y=3k,A、==﹣,故本选项不符合题意;B、∵x:y=2:3,∴3x=2y,故本选项不符合题意;C、∵x:y=2:3,∴=,故本选项,符合题意;D、不能约分,故本选项不符合题意.故选:C.3.【解答】解:∵两个五边形相似,∴====,∴a=3,b=4.5,c=4,d=6.故选:D.4.【解答】解:∵△ABC∽△DEF,AG和DH是它们的对应边上的高,∴=()2=()2=,故选:B.5.【解答】解:当∠ACP=∠B时,∵∠A=∠A,∴△ACP∽∠ABC;当∠APC=∠ACB时,∵∠A=∠A,∴△ACP∽∠ABC;当AC2=AP•AB时,即,∵A=∠A,∴△ACP∽∠ABC;当AB•CP=AP•CB时,即,∵A=∠A,∴不能判定△APC和△ACB相似,故选:D.6.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==,∴,故选:D.7.【解答】解:∵以A为位似中心,把△ABC按相似比1:2放大,放大后的图形记作△AB'C',∴AC=AC′,∴点C是线段AC′的中点,∵A(1,0),C(﹣2,1),∴C'的坐标为'(﹣5,2).故选:B.8.【解答】解:连接BD,CD,∵圆周角∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°,设CE=a,由勾股定理得:AD===2,CD===,BC===,∵∠DEA=∠BDC=90°,∠DBC=∠DAE(在同圆中,同弧所对的圆周角相等),∴△AED∽△BDC,∴=,∴=,解得:a=﹣或a=,∵a表示边的长度,不能为负,∴a=﹣舍去,∴BC==,即⊙O的直径是,故选:A.9.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC=4,又∵∠PBF=90°,∴∠ABP=∠CBF=90°﹣∠CBP;若以点B,M,C为顶点的三角形与△ABP相似,则:①如图1中,,即=,解得BM=;②如图2中,,即=,解得BM=3.综上所述,满足条件的BM的值为3或.故选:C.10.【解答】解:如图,连接AE,设FM交AC于点I,∵四边形ABCD是正方形,∴AB=AD=CB=CD,∠BAD=∠BCD=∠ABC=90°,∴∠ABD=∠ADB=45°,∠CBD=∠CDB=45°,∴∠ABD=∠CBD,∴点E到AB,BC的距离相等,故①正确;在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE,∠BAE=∠BCE,∵EF⊥CE,∴∠CEF=∠MEF=90°,∴∠BCE+∠BFE=180°,∵∠EF A+∠BFE=180°,∴∠BCE=∠EF A,∴∠BAE=∠EF A,∴AE=FE,∴CE=FE,∴∠FCE=∠CFE=45°,故②正确;∵AD∥BC,∴∠DME=∠BCE=∠BAE,∵∠MDE=∠ABE,∴△MDE∽△ABE,∴=,∴=,∵∠MEF=∠MDC,∴△MEF∽△MDC,∴∠DMC=∠FMC,故③正确;作FL⊥BD于点L,则∠BLF=90°,设BL=x,∴∠LFB=∠LBF=45°,∴FL=BL=x,∵BF2=BL2+FL2=2BL2,∴BF=x,∵AD=CD=BC=4,DM=2,∴CM==2,BD==4,∵△DEM∽△BEC,∴====,∴FE=CE=CM=,BE=BD=,∵EL===,∴x+=,解得x1=,x2=2(不符合题意,舍去),∴BF=×=≠,故④错误,故选:C.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:∵=1,∴x=y,∴==0.故答案为:0.12.【解答】解:∵l1∥l2∥l3,∴,∴AB=6cm,BC=3cm,A1B1=4cm,∴,解得B1C1=2.故答案为:2.13.【解答】解:∵∠CAD=∠B,∠C=∠C,∴△DAC∽△ABC,∴=,∵AC=6,BC=9,∴=,∴DC=4,∴BD=BC﹣DC=9﹣4=5,故答案为:5.14.【解答】解:由题知,CI=BI﹣BC=40﹣20=20cm,EF=20cm,FG=5cm,∵∠EFC+∠CEF=90°,∠EFC+∠GFI=90°,∴∠CEF=∠GFI,∵∠ECF=∠FIG=90°,∴△GIF∽△FEC,∴=,即=,∴CE=4FI,在Rt△CEF中,由勾股定理得CE2+CF2=EF2,即(4FI)2+(20﹣FI)2=202,解得FI=或FI=0(舍去),故答案为:cm.15.【解答】解:过E作EH∥AD,交DC于点H,交AC于点G,如图:∵四边形ABCD是平行四边形,∴AD∥BC,∴EH∥BC,∴==,∴设AG=a,GC=2a,∵DC∥AB,∴△CHG∽△AEG,∴==,∴=,∴EG=EH,∵=,∴=,,∴AF=AD=EH,∵AD∥EH,∴AF∥EG,∴△APF∽△GPE,∴===,∴AP=a,PG=,∴PC=a,∴=,故答案为:.16.【解答】解:如图所示,连接EG,则∠OEP=90°,由题意得,小正方形的边长为1,∴OP==,∵四边形ABCD是矩形,∴∠B=∠C=∠A=90°,∠MQP=90°,∴∠BMQ=∠CQP=90°﹣∠MQP,同理∠EPO=∠CQP=90°﹣∠QPC,∴∠BMQ=∠EPO,又∠OEP=∠B=90°,∴△OEP∽△QBM,∴===,∴BM===,QB===,∵∠B=∠A=90°,∠NMQ=90°,∴∠BMQ=∠ANM=90°﹣∠AMN,在△QBM和△MAN中,,∴△QBM≌△MAN(AAS),∴AM=QB=,∴AB=BM+AM=.故答案为:.三.解答题(共7小题,满分52分)17.【解答】证明:∵BD平分∠ABC,∴∠DBE=∠CBD.∵BD2=BC•BE,∴,∴△BCD∽△BDE.18.【解答】解:∵BC∥DE,∴△ABC∽△ADE,∴=,即=,∴AB=30.答:河的宽度AB为30米.19.【解答】解:(1)∵a:b:c=2:3:4,∴a=2k,b=3k,c=4k,∵a+b﹣c=3,∴2k+3k﹣4k=3,解得k=3,∴a=6,b=9,c=12;(2)∵m是a、b的比例中项,∴m2=ab,∴m2=6×9,∴x=3或x=﹣3(舍去),即线段m的长为3.20.【解答】解:(1)如图所示:△OA1B1即为所求;(2)如图所示:△OA2B2即为所求;(3)∵点D(a,b)∴变化(2)后点D的对应点D2的坐标为(﹣2a,﹣2b),故答案为:(﹣2a,﹣2b);(4)△OAB的周长=++=+,△OA2B2的面积=×5×(2+2)=10.21.【解答】(1)证明:∵四边形ABCD是正方形,AD=6,点E是边CD的中点,∴DE=3,∴AE==15,∵EG=3,∴=,,∴,∵∠AED=∠DEG,∴△ADE∽△DGE;(2)连接AC,过F作FH⊥AC,垂足为点H,设AD=3a,则AF=2a,DF=a,DE=a,∵四边形ABCD是正方形,∴∠CAD=45°,AC=3a,AE=,∴△AHF是等腰直角三角形,∴AH=FH=a,CH=2a,∴=2,=2,∴,∵∠CHF=∠ADE=90°,∴△CHF∽△ADE,∴∠HCF=∠DAE,∵∠AGF=∠GAC+∠ACG,∴∠AGF=∠GAC+∠DAE=∠CAD=45°.22.【解答】证明:(1)如图1,∵四边形ABCD是正方形,∴∠BAE=90°,∵AP⊥BE,∴∠BP A=90°,∴∠BP A=∠BAE,∵∠PBA=∠ABE,∴△BP A∽△BAE,∴=,∵点F是AB的中点,∴BA=2PF,∵BA=BC,∴=,∴BP•BE=2PF•BC.(2)∵△BP A∽△BAE,∴=,∴=,∴AE=AF,BA=BC,∴=,∵BC∥AD,∴∠CBP=∠BEA,∵∠BEA=∠F AP,∴∠CBP=∠F AP,∴△CBP∽△F AP,∴∠BPC=∠APF,∴∠FPC=∠BPF+∠BPC=∠BPF+∠APF=∠BP A=90°,∴CP⊥FP.23.【解答】解:(1)当EC=4时,则:CF=2,∴AB=FE=6,∵四边形ABCD为矩形,∴AB∥CD,∴∠F=∠BAG,∠ABG=∠FEG,∴△ABG≌△FEG(ASA),∴BG=EG=BE,在直角三角形BCE中,BC=8,CE=4,∴BE=4,∴BG=2;(2)如图,过点G作MN∥AD分别交AB,CD于点M,N,设CF=x,则:EF=3x,显然△ABG∽△FEG,∴=,设GN=h,则:MG=8﹣h,∴===,∴h=,∴S△GEF=y=×3x×=,∴y与x的关系式为:y=,∵x>0,2x≤6,∴0<x≤3,∵y==,∴y随x的增加而增加,∴当x=3时,y max=;(3)如图,在AB上取一点Q,使得BQ=2AQ,∵AB∥CD,∴△AQG∽△FCG,△BQG∽△DCG,∴==,==,∴点E在CD上运动总会有=,即点G在线段CQ上运动,∴当点E与点D重合时,CG最长,∵=,∴GC=,如图,作DM⊥CQ,GN⊥CD,当点G运动到点M时,此时DG即为最小值,∵DM•CG=CD•GN,∴DM•=×6×(×8),∴DM=,∴DG的最小值为.。

2023年人教版九年级数学下册第27章《相似》复习检测卷(一)附答案解析

2023年九年级数学下册第27章《相似》复习检测卷(一)考试范围:§27.1图形的相似~27.2相似三角形的判定满分:120分一、选择题(每小题3分,共30分)1.将△ABC 的每条边都扩大3倍得到△DEF ,其中点A 、B 、C 的对应点分别是D 、E 、F ,则∠D 与∠A 的关系为()A .∠D =∠AB .∠D =3∠AC .∠D =6∠AD .∠D =9∠A2.如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()3.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E ,B 、D 、F ,AC =8,CE =12,BD =6,则DF 的长为()A .4B .5C .9D .74.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,F 为BC 边上一点,连接AF交DE 于点G ,则下列结论中一定正确的是()A .AD AEAB CE=B .AC AEGF BD=C .BD CEAD AE=D .AG ACAF CE=5.如图,在正方形网格上有两个三角形,且△ABC 和△DEF 相似,则∠BAC 的度数为()A .135°B .125°C .115°D .105°6.如图,△ACP ∽△ABC ,若∠A =100°,∠ACP =20°,则∠ACB 的度数是()A .80°B .60°C .50°D .30°7.如图,在□ABCD 中,EF ∥AB ,DE ∶EA =2∶3,EF =4,则CD 的长为()A .6B .8C .9D .108.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm 、6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为()A .3cmB .4cmC .4.5cmD .5cm9.如图,在矩形ABCD 中,AB =a ,AD =3,按照图中的方式将它分成完全相同的三个矩形,如果每一个小矩形都与矩形ABCD 相似,则a 的值为()第5题第3题第4题第6题第7题第9题第10题A .22B .23C .33D .3210.如图,正方形ABCD 的边长为4,E 是BC 边上一点,过点E 作EF ⊥AE 交CD 边于点F ,则CF 的最大值是()A .0.5B .1C .1.5D .2二、填空题(每小题3分,共18分)11.如图,添加一个条件__________________,使△ADE ∽△ACB .12.如图,在□ABCD 中,E 是AD 的中点,EC 交对角线BD 于点F ,则BF ∶FD 的值为_________.13.如图,在△ABC 中,DE ∥BC ,若AD =1,BD =3,BC =8,则DE 的长为________.14.已知654a b c==,且a +b -2c =6,则a 的值为_______.15.如图,在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数ky x=(k >0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD ,若△OCD ∽△ACO ,则直线OA 的解析式为_______.16.如图,直线l 1∥l 2∥l 3,直线l 1与l 2之间的距离为2,直线l 2与l 3之间的距离为1,等边△ABC 的三个顶点分别在直线l 1、l 2、l 3上,则等边三角形的边长是______.三、解答题(共8题,共72分)17.(8分)如图,四边形ABCD ∽四边形A 'B 'C 'D ',∠BCD =125°,分别求x 、y 、α的值.18.(8分)如图,在矩形ABCD 中,点E 、F 分别在BC 、CD 上,AE ⊥BF 于点M ,若BC =2AB ,探究AE 与BF 的数量关系,并证明你的结论.第10题第11题第16题第12题第13题第15题19.(8分)如图,在四边形ABCD中,AC平分∠BAD,∠ADC=∠ACB=90°.(1)求证:AC2=AB·AD;(2)若BC=3,AB=5,求CD的长.20.(8分)如图,在矩形ABCD中,E是AD上一点,连接BE.(1)请用尺规在BE上求作一点P,使得△PCB∽△ABE(不写作法,保留作图痕迹);(2)若AE=3,AB=4,BC=6,求EP的长.21.(8分)如图,在△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)作DE∥AB交AC于点E,请直接写出另一个与△ABD相似的三角形,并求出DE的长.22.(10分)在△ABC中,AB=6,AC=8,点D、E分别在AB、AC上,连接DE,设BD=x(0<x<6),CE=y(0<y<8).(1)当x=2,y=5时,求证:△AED∽△ABC;(2)若△ADE和△ABC相似,求y与x的函数表达式.23.(10分)如图,在△ABC中,∠ABC=90°,D是斜边AC的中点,连接DB.过点A作AE⊥BD于点F,交BC于点E.(1)求证:EB2=EF・EA;(2)若AB=4,CE=3BE,求AE的长.24.(12分)(1)【问题背景】如图1,D是等边△ABC中AB边上的点,以CD为边在CD的上方作等边△CDE,连接AE,求证:BD=AE;(2)【尝试应用】如图2,D是Rt△ABC中AB边上的一点,∠B=90°,∠BAC=30°,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,∠CED=30°,连接AE,请探究BD与AE的数量关系,并说明理由;(3)【拓展创新】如图3,在Rt△ABC中,∠ABC=90°,点D在AB边上,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,43DE ABCD BC==,DE交AC于F,若AD=3BD,求AFDF的值.《相似》阶段检测卷(一)考试范围:§27.1图形的相似~27.2相似三角形的判定满分:120分一、选择题(每小题3分,共30分)1.将△ABC 的每条边都扩大3倍得到△DEF ,其中点A 、B 、C 的对应点分别是D 、E 、F ,则∠D 与∠A 的关系为()A .∠D =∠AB .∠D =3∠AC .∠D =6∠A D .∠D =9∠A【答案】A .详解:依题意,△ABC 与△DEF 的三边成比例,∴△ABC ∽△DEF ,∴∠A =∠D ,故选A .2.如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()【答案】C .详解:由两个角分别相等的两个三角形相似,知选项A 和B 中的阴影三角形与原三角形相似,选项D 中,阴影三角形的∠A 的两边分别为4-1=3,6-4=2,∵4623=,∠A =∠A ,∴选项D 中的阴影三角形与原三角形相似.而选项C 中,不能保证∠B 的两边成比例,故选C .3.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E ,B 、D 、F ,AC =8,CE =12,BD =6,则DF 的长为()A .4B .5C .9D .7【答案】C .详解:∵a ∥b ∥c ,∴AC BD CE DF =,即8612DF=,解得DF =9,故选C . 4.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,F 为BC 边上一点,连接AF 交DE 于点G ,则下列结论中一定正确的是()A .AD AEAB CE=B .AC AEGF BD=C .BD CEAD AE=D .AG ACAF CE=【答案】C .详解:∵DE ∥BC ,∴BD CE AD AE =,故C 对;AD AEAB AC=,故A 错;AG AE ADAF AC AB==,故D 错;选项B 中的4条线段不成比例,故D 错.故选C .5.如图,在正方形网格上有两个三角形,且△ABC 和△DEF 相似,则∠BAC 的度数为()A .135°B .125°C .115°D .105°【答案】A .详解:∵△ABC 和△DEF 相似,观察角的大小,∠BAC =∠DEF =90°+45°=135°,故选A . 6.如图,△ACP ∽△ABC ,若∠A =100°,∠ACP =20°,则∠ACB 的度数是()A .80°B .60°C .50°D .30°【答案】B .详解:在△ACP 中,∵∠A =100°,∠ACP =20°,∴∠APC =60°.∵△ACP ∽△ABC ,∴∠ACB =∠APC =60°,故选B .7.如图,在□ABCD 中,EF ∥AB ,DE ∶EA =2∶3,EF =4,则CD 的长为()A .6B .8C .9D .10【答案】D .详解:∵EF ∥AB ,∴EF DEAB DA=,∵DE ∶EA =2∶3,EF =4,∴4223AB =+,∴AB =10,则CD =AB =10,故选D .8.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm 、6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为()A .3cmB .4cmC .4.5cmD .5cm【答案】C .详解:设所求的最长边为xcm ,则592.5x=,解得x =4.5,故选C .9.如图,在矩形ABCD 中,AB =a ,AD =3,按照图中的方式将它分成完全相同的三个矩形,如果每一个小矩形都与矩形ABCD 相似,则a 的值为()A .B .C .D .【答案】C .详解:小矩形的边边分别为13a 和3,∵小矩形与矩形ABCD 相似,∴13a ∶3=3∶a ,解得a =±(舍去负值),∴a =C .10.如图,正方形ABCD 的边长为4,E 是BC 边上一点,过点E 作EF ⊥AE交CD 边于点F ,则CF 的最大值是()A .0.5B .1C .1.5D .2【答案】B .详解:∵∠B =∠C =90°,AE ⊥EF ,可证△ABE ∽△ECF ,∴AB BECE CF=,设BE =x ,则CE =4-x ,∴44x x CF =-,∴CF =14x (4-x )=-14(x -2)2+1,当x =2时,CF 取得最大值1,故选B .二、填空题(每小题3分,共18分)11.如图,添加一个条件__________________,使△ADE ∽△ACB .【答案】答案不唯一,可以填下列中的一个:∠ADE =∠C ,∠AED =∠B ,AD AEAC AB=.12.如图,在□ABCD 中,E 是AD 的中点,EC 交对角线BD 于点F ,则BF ∶FD的值为_________.【答案】2.详解:∵四边形ABCD 为平行四边形,∴BC =AD ,BC ∥AD .∵E 为AD 的中点,∴BC =AD =2DE ,由AD ∥BC ,得△BCF ∽DEF ,∴BF ∶FD =BC ∶DE =2.13.如图,在△ABC 中,DE ∥BC ,若AD =1,BD =3,BC =8,则DE 的长为________.【答案】2.详解:∵DE ∥BC ,∴AD DE AB BC =,即1138DE=+,∴DE =2.14.已知654a b c==,且a +b -2c =6,则a 的值为_______.【答案】12.详解:∵654a b c==,故可设a =6x ,b =5x ,c =4x ,代入a +b -2c =6,得:6x +5x -2(4x )=6,解得x =2,∴a =6x =12.15.如图,在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数ky x=(k >0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD ,若△OCD ∽△ACO ,则直线OA 的解析式为_______.【答案】y =2x .详解:设B (t ,k t ),则直线OA 的解析式为y =2ktx .∵B 为OA 的中点,∴A (2t ,2k t ),∴D (2t ,2k t ),OC =2t ,CD =2k t ,CA =2kt.∵△OCD ∽△ACO ,∴OC CD AC OC =,∴OC 2=AC ·CD ,∴4t 2=2k t ·2k t,∴k 2=4t 4,∵k >0,∴k =2t 2,∴直线OA 的解析式为y =2x .16.如图,直线l 1∥l 2∥l 3,直线l 1与l 2之间的距离为2,直线l 2与l 3之间的距离为1,等边△ABC 的三个顶点分别在直线l 1、l 2、l 3上,则等边三角形的边长是______.【答案】2213.F详解:过C 作CE ⊥AC 交AB 的延长线于D ,过C 作CF ⊥l 1于F ,交l 3于H ,过E 作ED ⊥FC 交延长线于D ,∵∠AFC =∠ACE=∠CDE =90°,∴△ACF ∽△CED ,∴DE CD CECF AF AC==,∵△ABC 为等边△,∴CE ,AB =BC =BE ,则CD AF .依题意,FH =FC +CH =2+1=3,由AB =BE ,l 1∥l 3∥ED ,得DH =FH =3,CD =4,∴AF CD AC .三、解答题(共8题,共72分)17.(8分)如图,四边形ABCD ∽四边形A 'B 'C 'D ',∠BCD =125°,分别求x 、y 、α的值.【答案】∵四边形ABCD ∽四边形A 'B 'C 'D ',∴∠C ′=∠C =125°,∴∠α=360°-80°-75°-125°=80°,且AD AB BC A D A B B C =='''''',即45316x y==,解得x =20,y =12.答:x =20,y =12,α=80°.18.(8分)如图,在矩形ABCD 中,点E 、F 分别在BC 、CD 上,AE ⊥BF 于点M ,若BC ,探究AE 与BF 的数量关系,并证明你的结论.【答案】BF AE ,理由如下:∵四边形ABCD 是矩形,∴∠ABC =∠C ,∵AE ⊥BF ,∴∠AMB =∠BAM +∠ABM =90°,又∵∠ABM +∠CBF =90°,∴∠BAM =∠CBF ,∴△ABE ∽△BCF ,∴AE AB BF BC ==,∴BF AE .19.(8分)如图,在四边形ABCD 中,AC 平分∠BAD ,∠ADC =∠ACB =90°.(1)求证:AC 2=AB ·AD ;(2)若BC =3,AB =5,求CD 的长.【答案】(1)∵AC 平分∠BAD ,∴∠DAC =∠CAB .∵∠ADC =∠ACB =90°,∴△ADC ∽△ACB ,∴AD ACAC AB=,∴AC 2=AB ·AD .(2)在Rt △ABC 中,∵BC =3,AB =5,由勾股定理,得AC =4.∵AC 2=AB ·AD ,∴42=5AD ,∴AD =165.在Rt △ADC 中,CD 125.20.(8分)如图,在矩形ABCD 中,E 是AD 上一点,连接BE .(1)请用尺规在BE 上求作一点P ,使得△PCB ∽△ABE(不写作法,保留作图痕迹);(2)若AE =3,AB =4,BC =6,求EP 的长.【答案】(1)如图所示;(2)由勾股定理,得BE 5,由△PCB ∽△ABE ,得BP BC AE BE =,即635BP =,∴BP =185,∴EP =BE -BP =5-185=75.21.(8分)如图,在△ABC 中,AB =2,BC =4,D 为BC 边上一点,BD =1.(1)求证:△ABD ∽△CBA ;(2)作DE ∥AB 交AC 于点E ,请直接写出另一个与△ABD 相似的三角形,并求出DE 的长.【答案】(1)∵AB =2,BC =4,BD =1,∴AB BDBC AB=,又∠ABD =∠CBA ,∴△ABD ∽△CBA .(2)如图,∵DE ∥AB ,∴△CDE ∽△CBA ,∵△ABD ∽△CBA ,∴△CDE ∽△ABD ,∴DE CD BD AB =,即4112DE -=,∴DE =1.5.22.(10分)在△ABC 中,AB =6,AC =8,点D 、E 分别在AB 、AC 上,连接DE ,设BD =x (0<x <6),CE =y (0<y <8).(1)当x =2,y =5时,求证:△AED ∽△ABC ;(2)若△ADE 和△ABC 相似,求y 与x 的函数表达式.【答案】(1)∵AB =6,BD =x =2,∴AD =4.∵AC =8,CE =y =5,∴AE =3.∴AD AEAC AB=.又∵∠EAD =∠BAC ,∴△AED ∽△ABC .(2)分两种情况,1°当△ADE ∽△ABC 时,AD AE AB AC =,则6868x y --=,∴y =43x (0<x <6).2°当△ADE ∽△ACB 时,AD AE AC AB =,则6886x y --=,∴y =34x +72(0<x <6).23.(10分)如图,在△ABC 中,∠ABC =90°,D 是斜边AC 的中点,连接DB .过点A 作AE ⊥BD 于点F ,交BC 于点E .(1)求证:EB 2=EF ・EA ;(2)若AB =4,CE =3BE ,求AE 的长.【答案】(1)∵AE ⊥BD ,∴∠BFE =90°=∠ABC .又∵∠BEF =∠AEB ,∴△EBF ∽△EAB ,∴BE EFAE BE=,∴EB 2=EF ・EA .(2)在Rt △ABC 中,∵D 为斜边AC 的中点,∴BD =CD ,∴∠DBC =∠C .由(1),得△EBF∽△EAB,∴∠EBF=∠EAB,∴∠C=∠EAB.又∠ABE=∠CBA,∴△BAE∽△BCA,∴AB BEBC AB=,∴AB2=BE·BC.∵AB=4,CE=3BE,∴BC=4BE,42=BE(4BE),∴BE=2.∴AE=.24.(12分)(1)【问题背景】如图1,D是等边△ABC中AB边上的点,以CD为边在CD的上方作等边△CDE,连接AE,求证:BD=AE;(2)【尝试应用】如图2,D是Rt△ABC中AB边上的一点,∠B=90°,∠BAC=30°,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,∠CED=30°,连接AE,请探究BD与AE的数量关系,并说明理由;(3)【拓展创新】如图3,在Rt△ABC中,∠ABC=90°,点D在AB边上,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,43DE ABCD BC==,DE交AC于F,若AD=3BD,求AFDF的值.【答案】(1)∵△ABC与△CDE均为等边三角形,∴BC=AC,CD=CE,∠ACB=∠DCE=60°,∴∠BCD=∠ACE,∴△BCD≌△ACE,∴BD=AE.(2)AE=2BD,理由如下:∵∠BAC=∠DEC=30°,∠B=∠EDC=90°,∴△ABC∽△EDC,∴BC AC CD CE=.由条件得∠ACB=∠DCE,AC=2BC,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴12BD BCAE AC==,∴AE=2BD.(3)由(2)得,△BCD∽△ACE,∴AE ACBD BC=,∵43DE ABCD BC==,∴53ACBC=,∴53AE ACBD BC==设BD=a,则AD=3BD=3a,AB=4a,BC=3a,CDa,AE=53BD=53a.∵△AFE∽△DFC ,∴53aAF AEDF CD=.。

相似三角形》单元测试题(含答案)

相似三角形》单元测试题(含答案) 相似三角形》单元测试题一、精心选一选(每小题4分,共32分)1.下列各组图形有可能不相似的是(。

C )。

A)各有一个角是50°的两个等腰三角形B)各有一个角是100°的两个等腰三角形C)各有一个角是50°的两个直角三角形D)两个等腰直角三角形2.如图,D是⊿ABC的边AB上一点,在条件(1)△ACD=∠B,(2)AC=AD·AB,(3)AB边上与点C距离相等的点D有两个,(4)∠B=△ACB中,一定使⊿ABC∽⊿ACD的个数是(。

B )。

A)1.(B)2.(C)3.(D)43.如图,∠ABD=∠ACD,图中相似三角形的对数是(。

B )。

A)2.(B)3.(C)4.(D)54.如图,在矩形ABCD中,点E是AD上任意一点,则有(。

B )。

A)△ABE的周长+△CDE的周长=△BCE的周长B)△ABE的面积+△CDE的面积=△BCE的面积C)△ABE∽△DECD)△ABE∽△EBC5.如果两个相似多边形的面积比为9:4,那么这两个相似多边形的相似比为(。

C )。

A.9:4.B.2:3.C.3:2.D.81:166.下列两个三角形不一定相似的是(。

C )。

A.两个等边三角形。

B.两个全等三角形C.两个直角三角形。

D.两个等腰直角三角形7.若⊿ABC∽⊿A B C,∠A=40°,∠B=110°,则∠C=(。

D )。

A。

40°。

B。

110°。

C。

70°。

D。

30°8.如图,在ΔABC中,AB=30,BC=24,CA=27,AE=EF=FB,EG∥FD∥BC,FM∥EN∥AC,则图中阴影部分的三个三角形的周长之和为(。

D )。

A、70.B、75.C、81.D、80二、细心填一填(每小题3分,共24分)9.如图,在△ABC中,△BAC=90°,D是BC中点,AE∥AD交CB延长线于点E,则⊿BAE相似于△ABC。

【期末复习】九年级上《第四章相似三角形》单元检测试卷有答案

期末专题复习:浙教版九年级数学上册第四章相似三角形单元检测试卷一、单选题(共10题;共30分)1.如图,△ABC中,AD⊥BC于D ,下列条件:①∠B+∠DAC=90°;②∠B=∠DAC;③ = ;④AB2=BD•BC .其中一定能够判定△ABC是直角三角形的有()A. 1B. 2C. 3D. 42.已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF的面积为()A. 32B. 8C. 4D. 163.在某幅地图上,AB两地距离8.5cm,实际距离为170km,则比例尺为()A. 1:20B. 1:20000C. 1:200000D. 1:20000004.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB::3,则下列结论正确的是( )A. B. C. ∠∠ D. ∠∠5.如图▱ABCD,E是BC上一点,BE:EC=2:3,AE交BD于F,则BF:FD等于()A. 5:7B. 3:5C. 2:3D. 2:56.如图,在△ABC中,点D、E分别在AB、AC边上,且DE∥BC,若= ,则的值等于()A. B.3 C. D.7.已知,直角坐标系中,点E(-4,2),F(-1,-1),以O为位似中心,按比例尺2:1把△EFO缩小,则点E的对应点的坐标为()A. (2,-1)或(-2,1)B. (8,-4)或(-8,4)C. (2,-1)D. (8,-4)8.如图,已知BC∥DE,则下列说法中不正确的是()A. 两个三角形是位似图形B. 点A是两个三角形的位似中心C. AE︰AD是位似比D. 点B与点E、点C与点D是对应位似点9.如图,▱ABCD中,AE∶ED=1∶2,S△AEF=6 cm2,则S△CBF等于( )A. 12 cm2B. 24 cm2C. 54 cm2D. 15 cm210.如图,已知矩形ABCD,AB=6,BC=8,E,F分别是AB,BC的中点,AF与DE相交于I,与BD相交于H,则四边形BEIH的面积为()A. B. C. D.二、填空题(共10题;共30分)11.两个相似三角形的周长的比为,它们的面积的比为________.12.如图,点在的边上,请你添加一个条件,使得∽,这个条件可以是________.13.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则BD=________ .14.如图,点为△的边上一点,,.若∠∠,则________.15.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,若,则________.16.如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以4cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以3cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了________ s时,以C点为圆心,2cm为半径的圆与直线EF相切.17.如图,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC交AD于点F,那么=________ .18.已知点P是边长为4的正方形ABCD内一点,且PB="3" , BF⊥BP,垂足是点B, 若在射线BF上找一点M,使以点B, M, C为顶点的三角形与△ABP相似,则BM为________ .19.如图,在平行四边形ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF∶CF=________ .20.如图,在一块直角三角板ABC中,∠C=90°,∠A=30°,BC=1,将另一个含30°角的△EDF的30°角的顶点D放在AB边上,E,F分别在AC,BC上,当点D在AB边上移动时,DE始终与AB垂直,若△CEF与△DEF 相似,则AD=________.三、解答题(共8题;共60分)21.如图,在△ABC和△ADE中,已知∠B=∠D ,∠BAD=∠CAE ,求证:△ABC∽△ADE .22.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.23.如图,G是正方形ABCD对角线AC上一点,作GE⊥AD,GF⊥AB,垂足分别为点E、F.求证:四边形AFGE与四边形ABCD相似.24.如图,在△ABC中,AC=8cm,BC=16cm,点P从点A出发,沿着AC边向点C以1cm/s的速度运动,点Q从点C出发,沿着CB边向点B以2cm/s的速度运动,如果P与Q同时出发,经过几秒△PQC和△ABC 相似?25.如图,点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE.①试说明BE·AD=CD·AE;②根据图形特点,猜想可能等于哪两条线段的比?并证明你的猜想,(只须写出有线段的一组即可)26.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D 作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.27.如图所示,已知AB是⊙O的直径,BC⊥AB,连接OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,求AD:OC的值.28.如图,在Rt△ABC中,AB=AC=4.一动点P从点B出发,沿BC方向以每秒1个单位长度的速度匀速运动,到达点C即停止.在整个运动过程中,过点P作PD⊥BC与Rt△ABC的直角边相交于点D,延长PD 至点Q,使得PD=QD,以PQ为斜边在PQ左侧作等腰直角三角形PQE.设运动时间为t秒(t>0).(1)在整个运动过程中,设△ABC与△PQE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及相应的自变量t的取值范围;(2)当点D在线段AB上时,连接AQ、AP,是否存在这样的t,使得△APQ成为等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由;(3)当t=4秒时,以PQ为斜边在PQ右侧作等腰直角三角形PQF,将四边形PEQF绕点P旋转,PE与线段AB相交于点M,PF与线段AC相交于点N.试判断在这一旋转过程中,四边形PMAN的面积是否发生变化?若发生变化,求出四边形PMAN的面积y与PM的长x之间的函数关系式以及相应的自变量x的取值范围;若不发生变化,求出此定值.答案解析部分一、单选题1.【答案】B2.【答案】C3.【答案】D4.【答案】B5.【答案】D6.【答案】D7.【答案】A8.【答案】C9.【答案】C10.【答案】C二、填空题11.【答案】4:912.【答案】∠C=∠ABP(答案不唯一)13.【答案】14.【答案】15.【答案】116.【答案】17.【答案】18.【答案】3或19.【答案】20.【答案】或三、解答题21.【答案】解答:如图,∵∠BAD=∠CAE ,∴∠BAD+∠BAE=∠CAE+∠BAE ,即∠DAE=∠BAC .又∵∠B=∠D ,∴△ABC∽△ADE .22.【答案】(1)解:如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,5)(2)解:如图所示:△A2B2C223.【答案】证明:∵四边形ABCD是正方形,AC是对角线,∴∠DAC=∠BAC=45°.又∵GE⊥AD,GF⊥AB,∴EG=FG,且AE=EG,AF=FG.∴AE=EG=FG=AF,即四边形AFGE为正方形.∴===,且∠EAF=∠DAB,∠AFG=∠ABC,∠FGE=∠BCD,∠AEG=∠ADC. ∴四边形AFGE与四边形ABCD相似24.【答案】解:设经过x秒,两三角形相似,则CP=AC-AP=8-x,CQ=2x,①当CP与CA是对应边时,,即,解得x=4秒;②当CP与BC是对应边时,,即,解得x= 秒;故经过4或秒,两个三角形相似25.【答案】解:①∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠DAC=∠BAE,∵∠AEB=∠ADB+∠DAE,∠ADC=∠ADB+∠BDC,又∵∠DAE=∠BDC,∴∠AEB=∠ADC,∴△BEA∽△CDA,∴= ,即BE·AD=CD·AE;②猜想= 或(),由△BEA∽△CDA可知,= ,即= ,又∵∠DAE=∠BAC,∴△BAC∽△EAD,∴= 或()26.【答案】解:(1)∵∠ACB=90°,AC=3,BC=4,∴AB= =5.∵AD=5t,CE=3t,∴当AD=AB时,5t=5,即t=1;∴AE=AC+CE=3+3t=6,DE=6﹣5=1.(2)∵EF=BC=4,G是EF的中点,∴GE=2.当AD<AE(即t<)时,DE=AE﹣AD=3+3t﹣5t=3﹣2t,若△DEG与△ACB相似,则或,∴=或=,∴t=或t= ;当AD>AE(即t>)时,DE=AD﹣AE=5t﹣(3+3t)=2t﹣3,若△DEG与△ACB相似,则或,∴=或=,解得t=或t=;综上所述,当t=或或或时,△DEG与△ACB相似.27.【答案】(1)证明:连接OD,∵OA=OD,∴∠ODA=∠OAD,∵AD∥OC,∴∠OAD=∠COD,∠ODA=∠COD,∴∠COD=∠BOC,在△COD和△BOC中:∠∠,∴△COD≌△BOC,∴∠ODC=∠OBC=90°,∴CD为圆O的切线;(2)解:∵△COD≌△COB,∴BC=CD,∵DE=2BC,∴DE=2CD,∵AD∥OC,∴△DAE∽△COE,∴AD:OC=ED:AC=2:3.28.【答案】解:(1)当0<t≤4时,S=t2,当4<t≤时,S=-t2+8t-16,当<t<8时,S=t2-12t+48;(2)存在,理由:当点D在线段AB上时,∵AB=AC,∴∠B=∠C=(180°-∠BAC)=45°.∵PD⊥BC,∴∠BPD=90°,∴∠BDP=45°,∴PD=BP=t,∴QD=PD=t,∴PQ=QD+PD=2t.过点A作AH⊥BC于点H,∵AB=AC,∴BH=CH=BC=4,AH=BH=4,∴PH=BH-BP=4-t,在Rt△APH中,AP==;(ⅰ)若AP=PQ,则有=2t.解得:=,=(不合题意,舍去);(ⅱ)若AQ=PQ,过点Q作QG⊥AP于点G,如图(1),∵∠BPQ=∠BHA=90°,∴PQ∥AH.∴∠APQ=∠PAH.∵QG⊥AP,∴∠PGQ=90°,∴∠PGQ=∠AHP=90°,∴△PGQ∽△AHP,∴=,即=,∴PG=,若AQ=PQ,由于QG⊥AP,则有AG=PG,即PG=AP,即=.解得:t1=12-4,t2=12+4(不合题意,舍去);(ⅲ)若AP=AQ,过点A作AT⊥PQ于点T,如图(2),易知四边形AHPT是矩形,故PT=AH=4.若AP=AQ,由于AT⊥PQ,则有QT=PT,即PT=PQ,即4=×2t.解得t=4.当t=4时,A、P、Q三点共线,△APQ不存在,故t=4舍去.综上所述,存在这样的t,使得△APQ成为等腰三角形,即=秒或t2=(12-4)秒;(3)四边形PMAN的面积不发生变化.理由如下:∵等腰直角三角形PQE,∴∠EPQ=45°,∵等腰直角三角形PQF,∴∠FPQ=45°.∴∠EPF=∠EPQ+∠FPQ=45°+45°=90°,连接AP,如图(3),∵此时t=4秒,∴BP=4×1=4=BC,∴点P为BC的中点.∵△ABC是等腰直角三角形,∴AP⊥BC,AP=BC=CP=BP=4,∠BAP=∠CAP=∠BAC=45°,∴∠APC=90°,∠C=45°,∴∠C=∠BAP=45°,∵∠APC=∠CPN+∠APN=90°,∠EPF=∠APM+∠APN=90°,∴∠CPN=∠APM,∴△CPN≌△APM,∴S△CPN=S△APM,∴S=S△APM+S△APN=S△CPN+S△APN=S△ACP=×CP×AP=×4×4=8.四边形PMAN∴四边形PMAN的面积不发生变化,此定值为8.。

初三数学相似三角形测试题及答案

相似三角形测试题 姓名一、选择题1.如果23=y x ,则=+yy x ( ) A .21 B .23 C .25 D .52 2.如图,∠1=∠2,则下列各式不能说明△ABC ∽△ADE 的是( )A .∠D=∠B B .∠E=∠C C .AC AE AB AD = D .BCDE AB AD = 3.若△ABC ∽△DEF ,则相似比等于( )A .DE :AB B .∠A :∠DC .S △ABC :S △DEFD .C △ABC :C △DEF 4.下列说法错误的是( )A .任意两个直角三角形一定相似B .任意两个正方形一定相似C .位似图形一定是相似图形D .位似图形每一组对应点到位似中心的距离之比都等于位似比5.△ABC ∽△DEF ,它们的周长之比为2:1,则它们的对应高比及面积比分别为( )A .1:2,2:1B .2:1,2:1C .2:1,2:1D .1:2,2:16.如图所示,在△ABC 中,DE ∥BC ,如果AE :EC=3:2,那么DE :BC 等于( )A .3:2B .3:5C .2:3D .2:57.已知△ABC ∽△DEF ,AB=6cm ,BC=4cm ,AC=9cm ,且△DEF 的最短边边长为8cm ,则最长边边长为( )A .16 cmB .18 cmC .4.5 cmD .13 cm8.已知:如图,DE ∥AC ,DF ∥AB ,则下列比例式中正确的是( )二、填空题9.如图,DE 与BC 不平行,当 ACAB 时,△ABC 与△ADE 相似. 10.若△ABC ∽△DEF ,△ABC 的面积为81cm 2,△DEF 的面积为36cm 2,且AB=12cm ,则DE= cm .11.某一时刻,一根3m 长的旗杆的影子长6m ,同一时刻,一座建筑物的影子长32m ,则这座建筑物的高度为 m .12.已知△ABC ∽△DEF ,S △ABC :S △DEF =l :16,△ABC 的周长为l5cm ,则△DEF 的周长为 cm .13.如图,△EDC 是由△ABC 缩小得到的,A (-3,5),那么点E 的坐标是 .14.如图,在△ABC 中,M 、N 是AB 、BC 的中点,AN 、CM 交于点O ,那么△MON 与△AOC 面积的比是 .三、解答题15.作图题(不写作图过程).将图中的△ABC 根据下列题目的要求在网格中 画出相应的图形,(1)沿y 轴向上平移2个单位;(2)关于y 轴对称;(3)以点B 为位似中心,放大到2倍.16.如图,△ABC 中,BD 是角平分线,过D 作DE ∥AB 交BC 于点E ,AB=5cm ,BE=3cm ,则EC 的长为 cm .17..如图,已知:在□ABCD中,G是DC延长线上一点,AG分别交BD和BC于E、F.试说明AF•AD=AG•BF.18.如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿AB以每秒4cm的速度向B点运动,同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动的时间为x,则x为何值时,PQ∥BC?19.如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成矩形零件,使一边在BC上,其余两个顶点分别在边AB、AC上.(1)若这个矩形是正方形,那么边长是多少?(2)若这个矩形的长是宽的2倍,则边长是多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十七章自主检测(满分:120分时间:100分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.已知△MNP如图27-1,则下列四个三角形中与△MNP相似的是()图27-1A B C D2.△ABC和△A′B′C′是位似图形,且面积之比为1∶9,则△ABC和△A′B′C′的对应边AB和A′B′的比为()A.3∶1 B.1∶3 C.1∶9 D.1∶273.下列命题中正确的有()①有一个角等于80°的两个等腰三角形相似;②两边对应成比例的两个等腰三角形相似;③有一个角对应相等的两个等腰三角形相似;④底边对应相等的两个等腰三角形相似.A.0个B.1个C.2个D.3个4.在△ABC中,BC=15 cm,CA=45 cm,AB=63 cm,另一个和它相似的三角形的最短边长是5 cm,则最长边长是()A.18 cm B.21 cm C.24 cm D.19.5 cm5.在梯形ABCD中,AD∥BC,AC与BD相交于点O,如果AD∶BC=1∶3,那么下列结论中正确的是()A.S△OCD=9S△AOD B.S△ABC=9S△ACD C.S△BOC=9S△AOD D.S△DBC=9S△AOD 6.如图27-2,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF∶S四边形BCED的值为()A.1∶3 B.2∶3 C.1∶4 D.2∶5图27-2 图27-37.如图27-3,已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF=()A.7B.7.5 C.8D.8.58.如图27-4,身高1.6 m的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2 m,CA=0.8 m,则树的高度为()图27-4A .4.8 mB .6.4 mC .8 mD .10 m9.如图27-5,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC ∽△ADE 的是( ) A.AB AD =AC AE B.AB AD =BC DE C .∠B =∠D D .∠C =∠AED图27-5 图27-610.如图27-6,直角梯形ABCD 中,AB ∥CD ,∠C =90°,∠BDA =90°,若AB =a ,BD =b ,CD =c ,BC =d ,AD =e ,则下列等式成立的是( )A .b 2=acB .b 2=ceC .be =acD .bd =ae二、填空题(本大题共6小题,每小题4分,共24分)11.已知线段a =1,b =2,c =3,d =6,则这四条线段________比例线段(填“成”或“不成”).12.在比例尺1∶6 000 000的地图上,量得南京到北京的距离是15 cm ,这两地的实际距离是______km.13.如图27-7,若DE ∥BC ,DE =3 cm ,BC =5 cm ,则AD BD =________.图27-714.△ABC 的三边长分别为2,2,10,△A 1B 1C 1的两边长分别为1和5,当△A 1B 1C 1的第三边长为________时,△ABC ∽△A 1B 1C 1.15.如图27-8,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,则这两个四边形每组对应顶点到位似中心的距离之比是__________.图27-8 图27-9 16.如图27-9,在矩形ABCD 中,点E 是BC 的中点,且DE ⊥AC 于点O ,则CD AD =________.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.如图27-10,在▱ABCD 中,EF ∥AB ,FG ∥ED ,DE ∶EA =2∶3,EF =4,求线段CG 的长.18.如图,在△ABC中,AB=8,AC=6,BC=7,点D在BC的延长线上,且△ACD∽△BAD,求CD的长.19.如图,在水平桌面上有两个“E”,当点P1,P2,O在同一条直线上时,在点O处用①号“E”测得的视力与用②号“E”测得的视力相同.(1)图中b1,b2,l1,l2满足怎样的关系式?(2)若b1=3.2 cm,b2=2 cm,①号“E”的测试距离l1=8 cm,要使测得的视力相同,则②号“E”的测试距离应为多少?四、解答题(二)(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,已知DE∥BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.21.如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线CE交⊙O于点F,连接BF与直线CD延长线交于点G.求证:BC2=BG·BF.22.如图,点C,D在线段AB上,△PCD是等边三角形.(1)当AC,CD,DB满足怎样的关系时,△ACP∽△PDB?(2)当△ACP∽△PDB时,求∠APB的度数.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图,AB是⊙O的直径,弦CD⊥AB于点E,过点B作⊙O的切线,交AC的延长线于点F.已知OA=3,AE=2.(1)求CD的长;(2)求BF的长.24.如图,学校的操场上有一旗杆AB,甲在操场上的C处竖立3 m高的竹竿CD;乙从C 处退到E处恰好看到竹竿顶端D与旗杆顶端B重合,量得CE=3 m,乙的眼睛到地面的距离FE=1.5 m;丙在C1处竖立3 m高的竹竿C1D1,乙从E处后退6 m到E1处,恰好看到两根竹竿和旗杆重合,且竹竿顶端D1与旗杆顶端B也重合,量得C1E1=4 m.求旗杆AB 的高.25.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C出发沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于点H,过点E作EF⊥AC 交射线BB1于点F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.第二十七章自主检测1.C 2.B 3.A 4.B 5.C 6.A 7.B 8.C 9.B10.A 解析:∵CD ∥AB ,∴∠CDB =∠DBA .又∵∠C =∠BDA =90°,∴△CDB ∽△DBA .∴CD DB =BC AD =BD AB ,即c b =d e =b a .A .b 2=ac ,成立,故本选项正确;B .b 2=ac ,不是b 2=ce ,故本选项错误;C .be =ad ,不是be =ac ,故本选项错误;D .bd =ec ,不是bd =ae ,故本选项错误.11.成 12.900 13.3214. 2 15.1∶ 216.22解析:∵DE ⊥AC ,BC ∥AD ,∠ADC =90°, ∴∠ACB =∠EDC .又∵∠ABC =∠ECD =90°,∴△ACB ∽△EDC .∴AB CE =BC CD .∵AB =CD ,BC =AD ,∴CD =CE ·AD =2CE .∴CD AD =2CE 2CE =22. 17.解:∵EF ∥AB ,∴△DEF ∽△DAB .又∵DE ∶EA =2∶3,∴DE ∶DA =2∶5. ∴EF AB =DE DA =4AB =25. ∴AB =10.又∵FG ∥ED ,DG ∥EF ,∴四边形DEFG 是平行四边形.∴DG =EF =4.∴CG =CD -DG =AB -DG =10-4=6.18.解:∵△ACD ∽△BAD ,∴CD AD =AC AB =AD BD =68=34. ∴AD =34BD ,AD =43CD .∴16CD =9BD . 又∵BD =7+CD ,∴16CD =9×(7+CD ),解得CD =9.19.解:(1)因为P 1D 1∥P 2D 2,所以△P 1D 1O ∽△P 2D 2O .所以P 1D 1P 2D 2=D 1O D 2O ,即b 1b 2=l 1l 2. (2)因为b 1b 2=l 1l 2,b 1=3.2 cm ,b 2=2 cm ,l 1=8 m , 所以3.22=8l 2.所以l 2=5 m. 20.解:(1)△ADE 与△ABC 相似.∵平行于三角形一边的直线和其他两边相交,交点与公共点所构成的三角形与原三角形相似.即由DE ∥BC ,可得△ADE ∽△ABC .(2)是位似图形.由(1)知:△ADE ∽△ABC .∵△ADE 和△ABC 的对应顶点的连线BD ,CE 相交于点A ,∴△ADE 和△ABC 是位似图形,位似中心是点A .21.证明:∵AB 是⊙O 的直径,∴∠ACB =90°.又∵CD ⊥AB 于点D ,∴∠BCD =∠A .又∵∠A =∠F (同弧所对的圆周角相等),∴∠F =∠BCD =∠BCG .在△BCG 和△BFC 中,⎩⎪⎨⎪⎧∠BCG =∠F ,∠GBC =∠CBF , ∴△BCG ∽△BFC .∴BC BF =BG BC .即BC 2=BG ·BF .22.解:(1)∵△PCD 是等边三角形,∴∠ACP =∠PDB =120°.当AC PD =PC DB ,即AC CD =CD DB,也就是当CD 2=AC ·DB 时,△ACP ∽△PDB . (2)∵△ACP ∽△PDB ,∴∠A =∠DPB .∴∠APB =∠APC +∠CPD +∠DPB=∠APC +∠CPD +∠A =∠PCD +∠CPD =120°.23.解:(1)如图D100,连接OC ,在Rt △OCE 中,图D100 CE =OC 2-OE 2=9-1=2 2.∵CD ⊥AB ,∴CD =2CE =4 2.(2)∵BF 是⊙O 的切线,∴FB ⊥AB .∴CE ∥FB .∴△ACE ∽△AFB .∴CE BF =AE AB ,2 2BF =26. ∴BF =6 2.24.解:如图D101,连接F 1F ,并延长使之与AB 相交,设其与AB ,CD ,C 1D 1分别交于点G ,M ,N ,设BG =x m ,GM =y m.∵DM ∥BG ,∴△FDM ∽△FBG .∴DM BG =FM FG ,则1.5x =33+y. ① 又∵ND 1∥GB ,∴△F 1D 1N ∽△F 1BG .∴D 1N BG =F 1N F 1G ,即1.5x =4y +6+3. ②联立①②,解方程组,得⎩⎪⎨⎪⎧x =9,y =15.故旗杆AB 的高为9+1.5=10.5(m).图D10125.解:(1)∵∠ACB =90°,AC =3,BC =4,∴AB =32+42=5.∵AD =5t ,CE =3t ,∴当AD =AB 时,5t =5,∴t =1.∴AE =AC +CE =3+3t =6,∴DE =6-5=1.(2)∵EF =BC =4,点G 是EF 的中点,∴GE =2.当AD <AE ⎝⎛⎭⎫即t <32时,DE =AE -AD =3+3t -5t =3-2t . 若△DEG ∽△ACB ,则DE EG =AC BC 或DE EG =BC AC,∴3-2t 2=34或3-2t 2=43.∴t =34或t =16.∴当AD >AE ⎝⎛⎭⎫即t >32时,DE =AD -AE =5t -(3+3t )=2t -3. 若△DEG ∽△ACB ,则DE EG =AC BC 或DE EG =BC AC, ∴2t -32=34或2t -32=43.∴t =94或t =176. 综上所述,当t =16或34或94或176秒时,△DEG ∽△ACB .。

相关文档
最新文档