永磁电机的介绍、分析与应用

合集下载

新型永磁电机的设计、分析与应用研究

新型永磁电机的设计、分析与应用研究

新型永磁电机的设计、分析与应用研究一、概述随着全球能源危机和环境保护压力的不断增大,高效、节能、环保的电机技术成为了当前研究的热点。

永磁电机作为一种新型的电机技术,具有高效率、高功率密度、低噪音、低维护等优点,被广泛应用于电动汽车、风力发电、工业自动化等领域。

对新型永磁电机的研究具有重要意义。

新型永磁电机的研究涉及到电机设计、分析、优化以及应用等多个方面。

在电机设计方面,需要考虑电机的结构、绕组、永磁体等因素,以实现电机的最佳性能。

在电机分析方面,需要建立电机的数学模型,对电机的性能进行预测和评估。

在电机优化方面,需要采用先进的优化算法,对电机的结构参数进行优化,以提高电机的效率和可靠性。

在应用方面,需要研究永磁电机在不同领域的应用特点和技术难点,以推动永磁电机的广泛应用。

本文旨在对新型永磁电机的设计、分析与应用进行深入的研究和探讨。

介绍了永磁电机的基本原理和分类,为后续研究打下基础。

详细阐述了永磁电机的设计方法,包括电机的结构设计、绕组设计、永磁体设计等。

建立了永磁电机的数学模型,对电机的性能进行了预测和评估。

接着,采用先进的优化算法,对电机的结构参数进行了优化,以提高电机的效率和可靠性。

结合实际应用案例,分析了永磁电机在不同领域的应用特点和技术难点,为永磁电机的应用提供了有益的参考。

通过本文的研究,可以为新型永磁电机的设计、分析与应用提供理论支持和技术指导,推动永磁电机技术的进一步发展和应用。

1. 永磁电机的发展历程与现状永磁电机,作为一种重要的电机类型,其发展历程与现状反映了电机技术的持续进步与革新。

早在20世纪初,永磁电机就已经开始被研究和应用,但受限于当时永磁材料的性能,其应用范围和效率相对较低。

随着稀土永磁材料的出现和发展,尤其是钕铁硼等高性能永磁材料的出现,永磁电机的性能得到了显著提升,应用领域也大幅扩展。

近年来,随着全球对节能减排和环保要求的不断提高,永磁电机以其高效率、高功率密度、低维护成本等优点,在新能源汽车、风力发电、电动工具、家用电器等领域得到了广泛应用。

永磁同步电动机的分析与设计

永磁同步电动机的分析与设计

永磁同步电动机的分析与设计永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)是一种采用永磁材料作为励磁源的同步电机。

相较于传统的感应电机,永磁同步电机具有高效率、高功率因数、高转矩密度和高速控制响应等特点,因此在许多应用领域中得到广泛应用。

本文将介绍永磁同步电机的分析与设计内容。

首先,分析永磁同步电机的基本原理。

永磁同步电机由永磁铁和电磁绕组组成。

当绕组通电后,产生的磁场与永磁铁的磁场相互作用,使电机转子产生旋转力矩。

通过分析电机的磁动特性和电动力学特性,可以得到电机的数学模型和控制方程,为电机设计和控制提供理论依据。

其次,设计永磁同步电机的结构参数。

永磁同步电机的结构参数包括定子绕组的匝数、线圈的截面积和磁链密度等。

这些参数的选择将直接影响电机的性能,如转矩、效率和功率因数等。

通过优化设计,可以使电机在给定的体积和功率范围内获得最佳性能。

然后,进行永磁同步电机的电磁设计。

电磁设计包括计算电机的电磁参数,如磁链、磁势和磁密等。

在设计过程中,需要考虑电机的工作条件和负载要求,选择合适的磁路结构和电磁铁材料,以提高电机的效率和转矩密度。

接下来,进行永磁同步电机的电气设计。

电气设计包括计算电机的电气参数,如电压、电流和功率等。

通过分析电机的电气性能,可以确定电机的绕组参数和功率电路的参数,以满足电机的输出要求和电力系统的特性。

最后,进行永磁同步电机的控制设计。

控制设计是永磁同步电机应用中至关重要的一环。

通过采用合适的控制策略和控制器,可以实现电机的速度、位置和转矩精确控制,提高电机的动态响应和工作效率。

总之,永磁同步电机的分析与设计是实现高效电机控制的关键步骤。

通过对电机的原理分析、结构参数设计、电磁设计、电气设计和控制设计等方面的研究,可以实现电机的优化设计和性能优化,推动永磁同步电机技术在各个领域的应用发展。

新型永磁外转子电机的设计与分析

新型永磁外转子电机的设计与分析

新型永磁外转子电机的设计与分析简介永磁外转子电机是一种新型的电机类型,它与传统的永磁内转子电机相比,具有更加优秀的动态特性,转速响应更快、更准确。

除此之外,其结构也更加紧凑,因此具有更加广泛的应用前景。

本文将介绍永磁外转子电机的结构设计和性能分析,并简要介绍其应用领域和发展前景。

永磁外转子电机的结构设计永磁外转子电机的结构相对于传统的永磁内转子电机,最大的不同在于其定子部分是内部,转子部分则成为了外部,同时外部转子的形状也完全不同。

永磁外转子电机主要由两个部分组成,分别为转子和定子。

其中转子由永磁磁铁和轴承支持组成,轴承支持主要起到支撑转子的作用,以确保转子能够平稳旋转。

定子则由线圈和铁芯组成,线圈通过外部设置的电源通电,然后与转子产生电磁作用,驱动转子旋转。

永磁外转子电机的性能优势与传统的永磁内转子电机相比,永磁外转子电机具有以下的性能优势:1.发热量更少永磁外转子电机由于结构更加紧凑,因此空气阻力较小,同时也会产生较少的磁场损耗,从而减少了发热量。

2.效率更高永磁外转子电机的结构使得其转子和定子的距离更近,因此磁阻更小,磁场更强,同时也更加节能。

3.转速响应更快永磁外转子电机具有更快的响应时间,对于需要高速旋转、精密控制的设备非常适合。

应用领域和发展前景永磁外转子电机主要应用于高要求的电机应用领域,特别是在需要高速旋转和精密控制的场合下。

例如,永磁外转子电机对于飞行器、无人机、及医疗等领域均有广泛的应用。

随着科技的进步,永磁外转子电机在未来的发展趋势将会更加广阔,其性能的优秀将会促进其更多的应用。

总结本文简要介绍了永磁外转子电机的结构和性能优势,介绍了其应用领域和发展前景。

仅当有了更好的理解和掌握新型永磁外转子电机的设计和分析,才能促进其在各种领域更加广泛的应用。

永磁三相异步电机

永磁三相异步电机

永磁三相异步电机
永磁三相异步电机是一种常用的电动机,具有高效、节能、环保等特点。

其工作原理是利用永磁体产生磁场,通过改变输入的电流相位来控制电机的旋转。

与传统的电励磁电机相比,永磁电机具有更高的效率和可靠性,因此被广泛应用于各种领域,如工业自动化、电动汽车、风力发电等。

永磁三相异步电机由定子和转子两部分组成。

定子是电机的固定部分,由铁芯和绕组组成,绕组通电后会产生磁场。

转子是电机的旋转部分,由永磁体和导磁体组成,永磁体产生磁场,导磁体引导磁场。

当电流通过定子绕组时,会产生旋转磁场,该磁场与转子永磁体的磁场相互作用,从而驱动电机旋转。

永磁三相异步电机具有许多优点。

首先,由于采用了永磁体,电机的结构简单、体积小、重量轻,且具有较高的功率密度。

其次,永磁电机的效率高、节能效果好,能够显著降低能源消耗和运行成本。

此外,永磁电机的可靠性高、寿命长,能够减少维护成本和使用寿命。

最后,永磁电机的动态响应速度快、控制精度高,能够实现高精度的控制和快速的调节。

综上所述,永磁三相异步电机具有高效、节能、环保等优点,因此在工业自动化、电动汽车、风力发电等领域得到了广泛应用。

未来随着技术的不断发展,永磁三相异步电机将会有更广阔的应用前景和更大的发展潜力。

永磁同步外转子电机-概述说明以及解释

永磁同步外转子电机-概述说明以及解释

永磁同步外转子电机-概述说明以及解释1.引言1.1 概述永磁同步外转子电机是一种高效、高性能的电机类型,其原理是通过在转子上安装永磁体,使得转子本身具有磁场,与定子中的磁场相互作用而产生转矩。

相比传统的异步电机或直流电机,永磁同步外转子电机具有更高的功率密度和转矩密度,同时还具备快速响应、高效率、高速运行等特点。

永磁同步外转子电机的特点可以总结如下:1. 高效率:永磁同步外转子电机采用永磁体作为转子磁场源,相比传统的电机类型,永磁同步外转子电机的磁场损耗更小,因此具有更高的效率。

2. 高转矩密度:由于转子上安装了永磁体,使得转子自身具备了磁场,与定子中的磁场相互作用产生转矩,因此永磁同步外转子电机相比其他类型的电机在单位体积或重量下可以输出更高的转矩。

3. 快速响应:永磁同步外转子电机具有良好的动态性能,响应速度快,能够在短时间内提供所需的电机输出功率,适用于对动态响应要求较高的应用场景。

4. 高速运行:永磁同步外转子电机由于其特殊的结构设计,可以实现高速运转,适用于需要高速转动的应用领域。

5. 长寿命:由于永磁同步外转子电机的结构简单,无需使用传统电机中的电刷和换向器等易损件,因此具有较长的使用寿命和更低的维护成本。

永磁同步外转子电机在众多领域都有广泛应用,例如电动汽车、高速列车、风力发电、船舶推进、空调压缩机等。

由于其高效率和高功率密度的特点,永磁同步外转子电机在推动清洁能源发展、提升能源利用效率和改善环境质量等方面发挥着重要作用。

通过对永磁同步外转子电机的深入研究,我们可以进一步发挥其优势,提高其性能和可靠性。

随着科技的不断进步和应用领域的拓展,相信永磁同步外转子电机将在未来有更广阔的发展前景。

文章结构部分的内容可以是以下内容之一:1.2 文章结构本文主要分为引言、正文和结论三个部分。

引言部分概述了永磁同步外转子电机的重要性和背景,并介绍了本文的目的和结构。

正文部分包括了三个小节,分别讨论了永磁同步外转子电机的原理、特点和应用。

2024年永磁电机市场前景分析

2024年永磁电机市场前景分析

永磁电机市场前景分析引言永磁电机是一种基于永磁材料的电机,具有高效能、高转矩密度和较小体积等优势,因此在许多领域得到广泛应用。

本文将对永磁电机市场的前景进行分析,探讨其未来发展的趋势和机遇。

市场现状目前,永磁电机市场正处于快速增长阶段。

随着电动汽车、风力发电和家用电器等领域的快速发展,对高效能电机的需求不断增加。

永磁电机以其高效能、高转矩密度和较小体积等特点,成为各个领域的首选。

1. 电动汽车市场:随着环保意识的增强和政府对新能源汽车的支持,电动汽车市场快速崛起。

永磁电机作为电动汽车的主要驱动电机,市场需求持续增长。

2. 风力发电市场:风力发电作为可再生能源的重要组成部分,其发展前景广阔。

永磁电机因其高效能特点,在风力发电领域得到广泛应用,并且随着风力发电装机容量的增加,对永磁电机的需求不断增加。

3. 家用电器市场:随着人们对生活质量要求的提高,家用电器市场也在快速发展。

永磁电机凭借其高效能、低噪音和小体积的特点,在家电市场占据了重要地位。

市场趋势1. 高效能要求:随着能源效率的重要性不断凸显,市场对高效能电机的需求将持续增加。

永磁电机以其高效能的特点,具备了应对市场需求的优势。

2. 小型化需求:随着设备体积要求的不断减小,市场对小型化电机的需求越来越高。

永磁电机相对于传统电机来说,由于磁场设计的优势,更适合应对小型化需求。

3. 自动化需求:随着人工智能和自动化技术的飞速发展,市场对自动化设备的需求增加。

永磁电机作为自动化设备的关键组成部分,将受益于自动化需求的增长。

市场机遇1. 新能源汽车市场:随着新能源汽车市场的快速崛起,永磁电机作为电动汽车的核心技术之一,将面临巨大的市场机遇。

预计在未来几年,永磁电机在新能源汽车市场中的应用将呈现爆发式增长。

2. 智能家居市场:智能家居市场在近年来得到快速发展,对高效能、小型化电机的需求也在增加。

永磁电机具备满足智能家居市场需求的特点,未来在智能家居市场中将面临良好的发展机遇。

《永磁同步电动机》课件

《永磁同步电动机》课件

面临的挑战与解决方案
成本问题
随着高性能永磁材料价格的上涨,永磁同步电动机的成本 也随之增加。解决方案包括采用替代性材料、优化设计等 降低成本。
控制精度问题
在某些高精度应用场景中,永磁同步电动机的控制精度仍 需提高。解决方案包括采用先进的控制算法和传感器技术 提高控制精度。
可靠性问题
在高温、高湿等恶劣环境下,永磁同步电动机的可靠性可 能会受到影响。解决方案包括加强散热设计、提高材料耐 久性等提高可靠性。
总结词
风力发电系统中应用永磁同步电动机,具有 高效、可靠、低噪音等优点。
详细描述
风力发电系统需要能够在风能不稳定的情况 下高效、可靠运行的电机,永磁同步电动机 能够满足这些要求。其高效、可靠、低噪音 的特性使得风力发电系统在能源利用效率和
可靠性方面具有显著优势。
THANKS
感谢观看
工作原理
永磁同步电动机通过控制器调节电机电流,使电机转子与定子磁场保持同步, 从而实现电机的运转。其工作原理基于磁场定向控制和矢量控制技术。
种类与特点
种类
永磁同步电动机根据结构可分为 表面贴装式、内置式和无铁心式 等类型。
特点
永磁同步电动机具有效率高、节 能效果好、运行稳定、维护方便 等优点,广泛应用于工业自动化 、新能源、电动汽车等领域。
05
CATALOGUE
永磁同步电动机的发展趋势与挑战
技术发展趋势
高效能化
随着技术的不断进步,永磁同步电动机的效率和性能不断提升, 能够满足更多高效率、高负载的应用需求。
智能化
随着物联网、传感器等技术的发展,永磁同步电动机的智能化水平 不断提高,可以实现远程监控、故障诊断等功能。
紧凑化
为了适应空间受限的应用场景,永磁同步电动机的尺寸和重量不断 减小,同时保持高性能。

永磁电机设计与应用

永磁电机设计与应用

阅读感受
阅读感受
在我深入阅读《永磁电机设计与应用》这本书之后,我对永磁电机的认识有了更深入的理解。这 本书不仅为读者提供了有关永磁电机的全面知识,同时也以清晰的行文风格展示了电机设计及应 用方面的实践经验。以下是我对这本书的读后感。
整体上,我对这本书的评价极高。作者对永磁电机的专业知识和应用技术的深入理解,使得这本 书成为了一部能够让读者受益匪浅的作品。作者将复杂的技术原理与实际应用相结合,使得这本 书兼具理论性和实用性。在阅读过程中,我深感收获良多,对永磁电机的认识和理解得到了很大 的提升。
在结论部分,我们总结了全文的主要观点和内容,概括了永磁电机的设计和应用的核心思想和优 点,并指出了未来发展的局限性和挑战。我们认为,尽管永磁电机具有许多优点,但在其设计和 应用过程中仍需考虑一些局限性和挑战,如成本、维护等问题。因此,未来研究人员和工程师应 继续这些问题,寻求更有效的解决方案,以推动永磁电机技术的进一步发展。
目录分析
与其他相关文献相比,《永磁电机设计与应用》这本书具有以下特点: 内容全面:本书不仅介绍了永磁电机的基本原理和性能特点,还详细阐述了其设计方法和应用案 例。与其他相关文献相比,本书的内容更加全面和系统。 实用性强:本书在介绍永磁电机的设计和应用时,注重理论与实践相结合。除了理论知识外,还 列举了许多具体的应用案例,使读者能够更好地了解永磁电机的实际应用情况,提高其在实际应 用中的可操作性。 突出重点:本书在目录分析时,强调了重点内容的剖析。例如,对永磁材料、电机原理、设计方 法等重点内容进行了深入探讨,有助于读者深入理解这些关键知识点。
在书中的关键点分析上,我对一些专题的阐述印象深刻。例如,书中详细探讨了永磁电机的设计 理念和基本原则,同时结合了多种实际案例进行分析,这对我来说是非常有价值的内容。作者还 对永磁电机的最新研究成果和应用前景进行了深入的探讨,这使得我对永磁电机的发展趋势有了 更清晰的认识。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

永磁电机的介绍、分析与应用一、永磁电机的发展及应用永磁电机是由永磁体建立励磁磁场,从而实现机电能量转换的装置,它与电励磁同步电机一样以同步速旋转,亦称永磁同步电机。

永磁同步电机,特别是稀土永磁同步电机与电励磁同步电机相比,具有结构紧凑、体积小、重量轻等特点,且永磁电机的尺寸和结构形式灵活多样,可以拓扑出很多种结构形式。

由于永磁电机取消了电励磁系统,从而提高了电机效率,使得电机结构简化,运行可靠。

永磁电机的发展是与永磁材料的发展密切相关的。

早在1821年法拉第发明世界上第一台电机模型,他就利用了天然永磁磁铁建立磁场,给放在磁场中的导线通以直流电,导线能够绕着永磁磁铁不停旋转,这可以说是永磁电机的雏形。

1831年法拉第在发现电磁感应现象之后不久,利用电磁感应原理发明了世界上第一台真正意义上的电机—法拉第圆盘发电机,其结构是将紫铜圆盘放置在蹄形永磁体的磁场中,圆盘的边缘和圆心处各与一个电刷紧贴,用导线把电刷和电流表连接起来,当转动圆盘中心处固定的摇柄时,电流表的指针偏向一边,电路中产生了持续的电流。

同年夏天,亨利对法拉第的电机模型进行了改进,制成了一个简单的永磁振荡电动机模型。

1832年斯特金发明了换向器,并对亨利的振荡电动机进行了改进,制作了世界上第一台能产生连续运动的旋转电动机。

同年,法国人皮克希发明了一台永磁交流发电机。

以上电机均是采用永久磁铁建立磁场的,由于当时永久磁铁是用磁性能很低的天然磁铁矿石做成的,造成电机体积庞大、性能较差。

1845年英国的惠斯通用电磁铁代替永久磁铁,并于1857年发明了自励电励磁发电机,开创了电励磁方式的新纪元。

由于电励磁方式能在电机中产生足够强的磁场,使电机体积小、重量轻、性能优良,在随后的70多年内,电励磁电机理论和技术得到了迅猛发展,而永磁励磁方式在电机中的应用则较少。

20世纪中期,随着铝镍钻和铁氧体永磁材料的出现以及性能的不断提高,各种微型永磁电机不断出现,在工农业生产、日常生活、军事工业中都得到了应用。

但铝镍钻和铁氧体永磁材料的磁能积较低,导致永磁电机性能低、体积大,限制了永磁电机的发展。

1967年衫钻永磁材料的出现,开创了永磁电机发展的新纪元,杉钻永磁材料性能好、价格昂贵,各国研究开发的重点是航空航天用电机和要求高性能而价格不是主要因素的高科技领域。

20世纪80年代末,西门子公司生产的用于舰船推进的6相、1.IMW、230r/min、45kN·m的低速大转矩永磁同步电动机,ABB公司生产的用于舰船推进的1.SMW永磁同步电动机和德国AEG研制的用于调速系统的3.SMw、4极永磁同步电动机是国外稀土钻永磁电机的代表。

1983年磁性能更高而价格相对较低的钱铁硼永磁材料问世后,国内外研究开发的重点转移到工业和民用电机上。

其中,高效钦铁硼永磁同步电动机在额定负载时的效率比同规格的感应式异步电动机可提高2%一8%,且它在25%~120%额定负载范围内均可保持较高的效率和功率因数,使轻载运行时节能效果更为显著。

因此,近十年来在油田抽油机上得到了较多的应用,是中小型钦铁硼永磁同步电动机应用比较成功的例子。

这类永磁电机通常在转子上设置起动绕组,具有在某一频率和电压下直接起动的能力,因而称为异步起动永磁同步电动机。

对于100kw~1000kW的大功率同步电动机来说,异步起动永磁同步电动机省去了励磁柜,对比电励磁同步电动机不仅提高了效率、简化了结构,而且成本增加不多,因而成为它的又一重要应用场合,以8极110kw永磁电机为例,其效率达95%,功率因数为0.916,永磁体用量为0.15kg/kW。

由变频器供电的无刷直流和调速永磁同步电动机加上转子位置闭环控制系统后,在要求高控制精度和高可靠性的场合,如航空航天、数控机床、机器人、电动汽车、计算机外围设备和家用电器等方面都得到了广泛应用。

另外,特殊结构的永磁电机,如盘式电机、无槽电机、无铁心电机、音圈电机(即驱动磁盘驱动器中读写磁头作往复运动的动圈式直线电动机)等在电动汽车、计算机、航天工程和要求精确定位控制的场合都得到了广泛应用。

随着钦铁硼永磁材料耐高温性能的提高和价格的降低,钦铁硼永磁电机在国防、工农业生产和日常生活等方面得到了更为广泛的应用,正向大功率化(高转速)、大转矩化、高功能化和微型化方向发展,目前最高转速已超过300000r/min,最低转速低于0.01r/min,最小电机外径只有0.8mm,轴向长度只有1.2mm。

二、永磁电机的分类常规的旋转永磁同步电动机可以分为以下4类:永磁(有刷)直流电动机、异步起动永磁同步电动机、永磁无刷直流电动机和调速永磁同步电动机。

永磁(有刷)直流电动机与普通直流电动机相比,结构上取消了励磁绕组和磁极铁心,代之以永磁磁极,具有结构简单、效率高、体积小、重量轻等特点。

永磁(有刷)直流电动机多为微型电机,在电动玩具、家用电器、汽车电气中得到了广泛应用,其中尤以在汽车电气中的应用发展最快,在高级轿车中可使用几十台微型永磁(有刷)直流电动机。

永磁无刷直流电动机和调速永磁同步电动机在结构上基本相同,定子电枢为多相绕组,转子上装有永磁体,两者间的主要区别在于前者是由方波电流驱动的永磁无刷电动机,而后者是由正弦波电流驱动的永磁无刷电动机,它们具有可靠性高、散热条件好、体积小、重量轻等优点。

异步起动永磁同步电动机的特点是转子上有起动绕组或具有起动作用的整体铁心,能自起动,无需控制系统即可接入市电起动运行。

调速永磁同步电动机的定子一般采用三相对称的分布式短距绕组,以得到接近正弦波的相电动势,并采用转子斜极或定子斜槽等措施来降低齿槽转矩、振动和噪声。

调速永磁同步电动机的转子结构形式多样,主要有永磁体表面凸出式、表面插入式和内置式三种结构,如图l一1所示。

在永磁体采用稀土永磁材料的情况下,由于该材料的相对回复磁导率接近于空气的磁一导率,因此图 1 (a)所示转子结构的直轴磁阻与交轴磁阻近似相等,于是该结构的交、直轴电感近似相等,表现出隐极电机的特性。

而另外两种结构的直轴磁阻大于交轴磁阻,因而直轴电感小于交轴电感,表现出凸极电机的特性。

图1 调速永磁同步电动机的转子结构三、永磁材料的性能永磁材料的主要性能参数永磁材料是一种经外部磁场饱和充磁后,无需外部能量而可以持续提供磁场的特殊材料,也称为硬磁材料。

永磁材料的磁滞回线较宽,可用磁滞回线的第二象限部分描述永磁材料的特性,称为退磁曲线,如图2所示。

图2 永磁材料的退磁曲线在上图的坐标系下,永磁材料中的磁场满足00M B =-H μμ+ (1)式中70410H/m μπ-=⨯为真空的磁导率;M 为单位体积内磁矩的矢量和,称为磁化强度(A/m)。

可以看出,在永磁材料中B 有两个分量,即与真空中一样的脚沂口磁化后产生的分量脚M ,脚初称为内票磁感应强度,用Bi 表示。

由式(l)可推知,内票磁感应强度与磁感应强度之间满足如下关系式:j 0B =B H μ+由上式决定的曲线Bi=f (H )同称为内察退磁曲线。

永磁材料有以下几项主要的性能参数:(l)剩磁密度、矫顽力和内票矫顽力从图1一3可以看出,当磁场强度H 为零时,磁感应强度B 不为零,而是一个较大的值,称为剩余磁感应强度(或剩磁密度),用Br 表示。

当磁感应强度B 为零时,H 不为零而是Hc ,Hc 称为矫顽力。

同理,使内察磁感应强度B ,降低至零所需的磁场强度称为内票矫顽力,用Hcj 表示。

对于内票矫顽力较高的稀土永磁材料来说,Hc 和凡有较大的差别,而凡更能表征材料保持磁化状态的能力。

(2)表观剩磁当永磁体两端开路时,外磁路具有较大的磁阻,相当于对永磁体产生了一个退磁场,这个退磁场的方向与材料内的磁感应强度方向相反。

此时,永磁体表现出来的磁感应强度不是B ,而是退磁曲线上低于的某一点D 所对应的磁感应强度,如图所示,称为表观剩磁B D 。

(3)最大磁能积永磁体通常是在去磁情况下工作的,退磁曲线上任何一点代表一个磁状态,该点B 和H 的乘积代表了该磁状态下永磁体所具有的磁场能量密度,称为磁能积。

如图1一3所示,退磁曲线上存在一点d ,该点的磁感应强度B 、和磁场强度场的乘积有最大值,称为最大磁能积,用叨闭max 表示。

最大磁能积越大,永磁材料性能越好。

从理论上讲,在进行磁路设计时,将永磁体的工作点设计在最大磁能积点时,可用最少的永磁体得到所需要的磁场。

(4)回复磁导率当永磁体处于外加磁场中时,工作点为A 点;当去掉外加磁场时,工作点不是沿着退磁曲线变化,而是到一个新的位置A ,如图1一3所示。

如果循环地改变外磁场,得到一个局部磁滞回线,由于其非常狭窄,故可用一条直线代替,称为回复线。

回复线的斜率称为回复磁导率。

rec B tan Hμα∆==∆ μrec 与μ0的比值称为相对回复磁导率,用μr 表示。

若退磁曲线为直线,则回复线与退磁曲线重合。

(5)温度系数永磁体通常工作在电磁装置内,装置所处环境温度的变化和装置产生的热量使永磁体工作温度变化,对永磁体的性能有一定影响,其影响可用温度系数表示。

在永磁体允许的工作范围内,其所处环境温度每变化1℃,剩余磁感应强度变化的百分比称为剩磁温度系数,矫顽力变化的百分比称为矫顽力温度系数,分别用αBr 和αHc 表示。

温度系数表征了永磁材料的温度稳定性。

(6)居里温度磁性材料并不是在任何温度下都具有磁性的,存在一个临界温度Tc 。

在临界温度以上时,由于原子的剧烈热运动,原子磁矩的排列是混乱无序的,材料不显示磁性;在临界温度以下时,原子磁矩排列整齐,产生自发磁化,材料表现出铁磁性。

居里首先发现了这一现象,因而该临界温度被称为居里温度。

(7)最高工作温度将规定尺寸的永磁材料样品加热到某一特定温度,保持100Oh,然后冷却到室温,其开路磁通不可逆损失小于5%的最高保温温度,称为永磁材料的最高工作温度。

(8)退磁曲线的拐点铁氧体退磁曲线的上半部分为直线,NdFeB稀土永磁体的退磁曲线在室温下为直线,但温度升高到一定程度时都会出现弯曲。

退磁曲线上明显发生弯曲的点称为拐点。

如果永磁体工作点在拐点以下,会发生磁性能的不可逆损失。

四、永磁材料的种类我国是世界上最早利用磁性材料的国家,早在公元前2500年就己经出现了关于天然磁石的知识,四大发明之一的指南针便是应用了天然磁铁的特性。

但是,世界上对永磁材料进行的深入科学研究直到19世纪末20世纪初才开始,永磁材料的发展大致经历了四个阶段:第一阶段—基于碳钢的永磁材料、第二阶段一一铝镍钻永磁材料、第三阶段—铁氧体永磁材料、第四阶段—稀土永磁材料。

永磁材料种类繁多,根据其制造方式和组成成为的不同,可将常见的永磁材料分类如下:以下对主要的几种永磁材料做简要介绍:(l)马氏体钢永磁材料是早期使用的永磁材料,包括碳钢、钨钢、铬钢、钻钢和铝钢,它是通过热处理将己经加工好的零件加热到高温,通过淬火使奥氏体转化为马氏体而得到的永磁材料。

相关文档
最新文档