分子自组装原理及应用(精)

合集下载

自组装的原理以及应用

自组装的原理以及应用

自组装的原理以及应用1. 什么是自组装自组装是一种在物理、化学、生物等领域中广泛存在的现象,指的是分散的单个组分能够在适当的条件下自发地聚集在一起,形成有序的结构。

自组装是一种自发过程,不需要外界的干预或控制。

它可以通过调节条件和选择不同的组分来实现不同的结构和性质。

2. 自组装的原理自组装的原理主要表现为热力学驱动、非平衡动力学和分子间相互作用三个方面。

2.1 热力学驱动热力学驱动是自组装的基本原理之一。

在自组装过程中,组分之间会遵循熵的最大化原理和自由能最小化原理。

当组分在适当的条件下相互作用时,它们会在熵增加的情况下趋向于形成较稳定的有序结构,以降低系统的自由能。

2.2 非平衡动力学除了热力学驱动外,非平衡动力学也是自组装的重要原理之一。

在非平衡动力学中,外界的能量输入可以改变系统的热力学平衡状态,从而导致自组装的发生。

例如,利用温度梯度可以使纳米粒子在溶液中自发地形成有序排列结构。

2.3 分子间相互作用自组装的原理还与分子间的相互作用密切相关。

不同组分之间的相互作用力可以使它们在合适的条件下相互吸引或排斥,从而促进自组装的发生。

这些相互作用力包括范德华力、静电相互作用、水合作用等。

3. 自组装的应用自组装作为一种自发且可控的过程,具有广泛的应用前景。

以下列举了几个常见的自组装应用领域。

3.1 纳米材料的制备自组装技术在纳米材料的制备中发挥着重要作用。

通过在溶液中加入适当的功能性分子,可以使纳米粒子自组装成特定的形状和结构,从而实现对纳米材料的精确控制和设计。

这种方法可以用于磁性材料、光学材料、催化剂等领域的制备。

3.2 药物传递系统自组装技术在药物传递系统中的应用也受到了广泛关注。

通过将药物封装在自组装的纳米粒子中,可以实现药物的稳定性增加、靶向性传递和缓释效果。

这种方法可以提高药物的治疗效果,减少副作用,并改善疗效。

3.3 光电器件的制备自组装技术在光电器件的制备中也有广泛应用。

通过调控分子间的相互作用,可以实现有机光电材料的自组装,从而制备出高效率、稳定性好的光电器件。

大分子自组装的原理和应用

大分子自组装的原理和应用

大分子自组装的原理和应用随着科技的不断发展,自组装技术在生物医学、纳米技术、材料科学等领域中得到广泛应用。

大分子自组装作为一种重要的自组装方式,在这些领域中发挥着越来越重要的作用。

本文将就大分子自组装的原理和应用展开讨论。

一、自组装的概念和分类自组装是指无外部控制下,分子从无序的状态自发组装成有序的结构。

根据组装过程中所需要的能量来源不同,自组装分为热力学自组装和荧光自组装。

根据分子大小和结构类型,自组装又可分为小分子自组装和大分子自组装。

二、大分子自组装的原理大分子自组装过程中,分子之间主要靠相互作用力相互吸引,使它们形成自组装体。

当大分子在溶液或介质中处于非平衡状态时,为了获得平衡状态,这些张力很大的大分子就会自发地组装形成稳定的有序体系。

大分子自组装的原理还有很多,如疏水作用、静电作用、氢键作用、范德华作用等。

这些作用影响自组装体的形态和稳定性,并为其应用提供了理论依据。

三、大分子自组装的应用1.智能材料利用大分子自组装的能力,可以将一些感应机制设计到材料中,使材料在特定环境下具有智能化的响应行为。

如,通过磁场的作用使大分子材料发生定向组装,从而获得磁响应性能。

2.药物传递系统大分子自组装体的大小和形态可以通过分子设计和自组装条件的控制来调控,从而实现药物的长时间缓慢释放,以达到治疗目的。

如,在药物触发下发生自组装,从而用于小分子物质刺激响应传递药物的目的。

3.生物检测大分子自组装的物理和化学性质,使其可以被用于生物分子的检测。

通过分子设计和表面修饰,可以使其与目标生物分子特异性结合,从而进行检测。

如,以随时适应细胞生长环境的自组装大分子用于细胞标记物的检测。

4.光催化大分子自组装在光催化反应中起重要作用。

通过控制自组装体的大小、形态和表面性质,使其适应不同的光催化反应,提高光合成效率。

如,以纳米棒自组装体作为模板,通过光催化反应制备出具有优异性能的双氧水分解催化剂。

四、结论大分子自组装是一种十分重要的自组装方式,在材料科学、生物医学、纳米技术等领域中应用广泛。

生物大分子的自组装与纳米技术应用

生物大分子的自组装与纳米技术应用

生物大分子的自组装与纳米技术应用随着科技的不断发展,纳米技术的应用正在越来越广泛,从医学到环境保护,从电子到食品安全,都能看到其身影。

而生物大分子的自组装,作为纳米技术的先驱者之一,也成为了纳米技术领域中的热门话题之一。

本篇文章将探讨生物大分子的自组装与纳米技术应用。

一、生物大分子的自组装原理生物大分子的自组装是指生物大分子自行组合形成纳米级别的结构。

其中,自组装分为溶剂自组装和模板自组装两种方式。

溶剂自组装是指物质在溶剂中自然形成稳定的纳米级别结构,而模板自组装则是指物质在模板的引导下形成纳米级别结构。

无论是溶剂自组装还是模板自组装,其基本原理都是靠生物大分子之间的相互作用力,实现自行组装的过程。

生物大分子有很多种类,其中有些是天然存在的,有些则是人工合成的。

这些生物大分子之间的相互作用主要有三种类型:静电相互作用、氢键相互作用以及范德华力。

静电相互作用是指正负电荷之间相互作用的力,氢键相互作用是指氢原子与非金属原子之间的化学键,而范德华力则是分子之间由于极性产生的吸引力和排斥力。

这些相互作用力共同作用,使得生物大分子能够自组装形成不同的结构。

二、生物大分子的自组装应用生物大分子的自组装不仅是一种自然现象,同时也是一种实现生物分子在纳米尺度上自组装的方法。

这种方法已经被应用于医学、材料科学、能源、环境保护等多个领域。

1. 医学应用利用生物大分子的自组装可以制备一些具有特殊功能的生物材料,用于医学领域。

例如,利用大分子自组装技术制备的纳米囊泡可以被用作药物载体,而利用DNA、蛋白质等生物大分子的自组装可以用于细胞治疗、基因检测等方面。

2. 新型材料应用生物大分子自组装技术也被广泛应用于新型材料的制备。

例如,将生物大分子和无机材料组装在一起可以制备出复合材料,具有优异的力学和物理化学性能,例如高强度、高韧性、高导电性、高储能性、高红外透过率等。

3. 环境保护应用生物大分子的自组装技术也可以用于环保领域。

生物分子的自组装及其应用

生物分子的自组装及其应用

生物分子的自组装及其应用生物分子的自组装是指生物分子通过特定的物理化学过程,在没有外界干扰下,自发地组合成具有特定功能的结构。

生物分子的自组装是自然界中普遍存在的现象,它在细胞组织的分化、代谢调节、信号传递等许多生物学过程中起着重要作用。

随着化学、物理、生物学等学科的相互渗透,生物分子的自组装也成为了新型材料、纳米器件等领域中的关键技术和研究热点。

1. 自组装的基本原理生物分子自组装的基本原理是静电相互作用、疏水性相互作用、氢键相互作用和范德华力相互作用。

静电相互作用主要是指带电物质间的相互作用,通常是正、负电荷之间吸引;疏水性相互作用是因为不喜水性的非极性分子在水中不稳定,会聚集形成疏水的区域,以降低自由能;氢键相互作用则是由于氢键是一种特殊的弱相互作用力,通过氢键作用可使生物分子组装形成高度有序的结构;范德华力是生物分子自组装过程中的另一种重要力,它是分子之间最常见的相互作用方式,提供了垫底力和吸引力。

2. 自组装在生物学中的应用生物分子的自组装在生物学领域中具有重要的应用价值。

生物学家通过研究生物分子自组装的规律,可以深入理解细胞中生物大分子的组装过程,为生物分子的自组装提供更为明晰的解释。

同时,生物分子自组装技术可应用于生物材料研究,如纳米生物材料、蛋白质组装体、超分子化学、医学作用机理等领域,这些应用广泛地影响到了人类的生活。

2.1纳米材料自组装的特点之一是通常会形成无序、随机的结构,其微观形貌的制备、调控与组织是极为重要的问题。

然而,从分子自组装到微观器件的制备过程还存在很多实际难题。

人类已能够利用生物分子自组装制备出各种纳米材料,如金属纳米粒子、纳米晶体、纳米线等,并将之应用于分子电子学、荧光探针、生物分析、药物载体等领域。

2.2生物材料生物材料是一种新型的高性能工程材料,它们不但具有生物相容性、低毒性等优点,而且还具有高度的结构多样化、特异性能及可调控性等特点。

由于生物分子自组装能力强、环境适应性好等特点,生物分子自组装技术成为制备生物材料的重要方法。

分子自组装的物理化学机制与应用

分子自组装的物理化学机制与应用

分子自组装的物理化学机制与应用分子自组装是一种自然界中广泛存在的现象,它在生物体系、材料科学、纳米技术等领域都具有重要的应用价值。

在本文中,我们将探讨分子自组装的物理化学机制以及它的一些常见应用。

一、分子自组装的物理化学机制1. 非共价键作用力分子之间的非共价键作用力,如氢键、范德华力、疏水相互作用等,是分子自组装的主要驱动力。

这些作用力可以使分子在特定条件下自发地组装成稳定的结构,实现自组装过程。

例如,氢键可以使水分子自组装成水合团簇,形成液态水。

2. 疏水效应疏水效应是一种疏水性物质在水中自组装形成有序结构的现象。

当疏水性物质与水相接触时,水分子倾向于形成有序的氢键网络,将疏水性分子排斥到一起,从而形成自组装的有序结构。

疏水效应在生物体系中起到重要作用,如脂质双层结构的形成。

3. 构型选择性某些分子自组装过程中会倾向于形成特定的构型,这种构型选择性可以通过分子的结构和物理性质来调控。

例如,手性分子自组装成手性结构,形成立体异构体。

这种构型选择性常常通过非共价键作用力和空间约束来实现。

二、分子自组装的应用1. 纳米材料合成分子自组装可以用于纳米材料的合成。

通过控制分子之间的相互作用力和条件,可以使分子自组装成具有特定形貌和尺寸的纳米结构,如纳米颗粒、纳米棒等。

这些纳米结构具有独特的光、电、磁等性质,具有广泛的应用前景,如催化剂、传感器、光电材料等。

2. 药物输送系统分子自组装可以用于构建药物输送系统。

通过将药物分子与自组装载体相结合,可以实现药物的包裹和控释。

自组装载体的表面性质和结构可以调控药物的释放速率和靶向性,提高药物的疗效和减少副作用。

这为药物传递和治疗提供了新的解决方案。

3. 生物传感器分子自组装可以用于构建生物传感器。

通过将生物识别分子自组装到传感器表面,可以实现对特定生物分子的高灵敏检测。

自组装的结构可以提高传感器的灵敏度、选择性和稳定性,为生物医学和环境监测等领域提供了有效的工具。

超分子自组装的基本原理和应用

超分子自组装的基本原理和应用

超分子自组装的基本原理和应用超分子自组装是一种自然界普遍存在的现象,也是一种新兴的科学研究领域。

它源于分子自组装,在分子层面上实现了自组组装,从而形成了更为复杂和功能性的超分子结构。

这种自组装过程既简单又神奇,被广泛应用于化学、生物学、材料学等领域,展现出了极其广泛的应用前景。

本文将着重探讨超分子自组装的基本原理和应用。

一、超分子自组装的基本原理超分子自组装的基本原理是靠分子间的非共价作用力(如范德华力、静电作用力、氢键、疏水作用等)来实现的。

这些作用力,来源于分子间的相互作用和键合,而不是来自于共价键。

因此,这种自组装过程不仅仅是化学反应,而更像是一种热力学平衡过程。

在这种平衡过程中,自组装的超分子结构具有高度的稳定性和适应性。

同时,这种自组装也具有很高的快速性和简便性,能够在不需要外界介入的情况下自发完成。

二、超分子自组装的应用1、药物传输和纳米医疗超分子自组装可以用于药物传输和纳米医疗。

药物分子可以与载体分子(如脂质、高分子等)自组装形成纳米粒子,从而增加药物的溶解度和稳定性,提高药物的生物利用度,实现靶向释放。

同时,这种自组装的纳米结构具有良好的生物相容性和低毒性,能够用于生物传感和诊断。

2、高分子材料与超分子自组装高分子材料与超分子自组装的有机结合,不仅能够增加材料的稳定性和耐久性,而且还可以实现材料的形态调控和性能优化。

例如,超分子自组装可以用于高分子降解性的调控、表面性质的改变、荧光分子探针的设计等。

3、光、电和催化材料超分子自组装还可以应用于光、电和催化材料领域,在这些领域中,超分子自组装的特殊结构和功能起到了非常关键的作用。

例如,催化剂在吸附分子时能够通过超分子自组装的方式实现更高的活性面积和更完整的基元,从而提高催化剂的催化性能和稳定性。

在电子材料领域,超分子自组装可以用于有机半导体、薄膜太阳能电池和OLED等领域的研究。

4、功能性大分子和智能材料超分子自组装还可以用于设计功能性大分子和智能材料。

分子自组装原理及应用

分子自组装原理及应用

分子自组装原理及应用分子自组装的原理及特点:分子自组装的原理是利用分子与分子或分子中某一片段与另一片段之间的分子识别,相互通过非共价作用形成具有特定排列顺序的分子聚合体。

分子自发地通过无数非共价键的弱相互作用力的协同作用是发生自组装的关键。

这里的“弱相互作用力”指的是氢键、范德华力、静电力、疏水作用力、ππ堆积作用、阳离子π吸附作用等。

非共价键的弱相互作用力维持自组装体系的结构稳定性和完整性。

并不是所有分子都能够发生自组装过程,它的产生需要两个条件:自组装的动力以及导向作用。

自组装的动力指分子间的弱相互作用力的协同作用,它为分子自组装提供能量。

自组装的导向作用指的是分子在空间的互补性,也就是说要使分子自组装发生就必须在空间的尺寸和方向上达到分子重排要求。

自组装膜的制备及应用是目前自组装领域研究的主要方向。

自组装膜按其成膜机理分为自组装单层膜(Self- assembled monolayers , SAMs和逐层自组装膜(Layer -by –layer self-assembled membrane)。

如图1所示,自组装膜的成膜机理是通过固液界面间的化学吸附,在基体上形成化学键连接的、取向排列的、紧密的二维有序单分子层,是纳米级的超薄膜。

活性分子的头基与基体之间的化学反应使活性分子占据基体表面上每个可以键接的位置,并通过分子间力使吸附分子紧密排列。

如果活性分子的尾基也具有某种反应活性,则又可继续与别的物质反应,形成多层膜,即化学吸附多层膜。

自组装成膜较另外一种成膜技术LangmuirBlodgett(LB)成膜具有操作简单,膜的热力学性质好,膜稳定的特点,因而它更是一种具有广阔应用前景的成膜技术。

另外,根据膜层与层之间的作用方式不同,自组装多层膜又可分为两大类,除了前面所述基于化学吸附的自组装膜外,还包括交替沉积的自组装膜。

通过化学吸附自组装膜技术制得的单层膜有序度高,化学稳定性也较好。

而交替沉积自组装膜主要指的是带相反电荷基团的聚电解质之间层与层组装而构筑起来的膜,这种膜能把膜控制在分子级水平,是一种构筑复合有机超薄膜的有效方法。

分子自组装及其在纳米技术中的应用

分子自组装及其在纳米技术中的应用

分子自组装及其在纳米技术中的应用随着纳米技术的发展,分子自组装技术越来越被广泛应用。

分子自组装是指由分子之间的相互作用自然而然地形成的有序结构。

它是一种非常重要的自组装技术,常用于制备具有特定形态、尺寸和性质的纳米材料。

本文将探讨分子自组装的原理及其在纳米技术中的应用。

一、分子自组装的原理分子自组装是由分子之间的相互作用导致的。

分子之间的相互作用包括范德华力、静电相互作用、氢键、配位作用和疏水作用等。

这些相互作用可以使分子形成特定的排列方式,形成有序的结构。

分子自组装的过程通常分为三步:吸附、扩散和刚化。

吸附阶段是指分子在固体表面吸附的过程;扩散阶段是指分子在表面扩散的过程;刚化阶段是指分子在表面形成有序结构的过程。

这些阶段的重要性不同,控制好吸附和扩散过程是制备具有特定形态、尺寸和性质的纳米材料的关键。

二、分子自组装在纳米技术中的应用分子自组装技术可以被广泛应用于纳米技术的各个领域。

下面将详细介绍一些应用。

1. 纳米材料的制备分子自组装技术在制备纳米材料方面具有广泛的应用前景。

它可以用来制备各种形态的纳米材料,比如纳米颗粒、纳米片、纳米管和纳米线等。

通过控制分子自组装的过程,可以实现纳米材料的形态和尺寸的定向控制,进而调控其性质。

这对制备高性能的纳米电子器件和纳米生物材料具有极大的意义。

2. 纳米模板的制备分子自组装技术还可以用于制备纳米模板。

纳米模板是纳米制备过程中非常重要的一环,它可以作为制备纳米材料的基础。

分子自组装技术可以制备出具有亚纳米级别阵列的规则结构,利用这种规则结构可以制备具有复杂形态的纳米材料。

3. 纳米电子器件的制备和应用分子自组装技术还可以应用于纳米电子器件的制备和应用。

利用分子自组装技术构建纳米器件,可以大大降低制备纳米器件的成本,同时,还可以实现非常高的精度和灵活性。

纳米电子器件应用于生物传感、纳米筛选、环境监测和纳米电力等领域,取得了很好的应用效果。

4. 纳米生物材料的制备和应用分子自组装技术还可以应用于纳米生物材料的制备和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子自组装原理及应用毛薇莉无机专业MG0424012【摘要】分子自组装在生物工程技术上的建模、分子器件、表面工程以及纳米科技领域已经有很广泛的应用。

在未来的几十年中,分子自组装作为一种技术手段将会在新技术领域产生巨大的影响。

在这篇文章里,我们介绍了分子自组装技术的定义、基本原理、分类、影响因素、表征手段等,并阐述了分子自组装技术目前的研究进展,展望了分子自组装技术的应用前景。

【关键词】分子自组装;自组装膜1前言分子自组装是分子与分子在一定条件下,依赖非共价键分子间作用力自发连接成结构稳定的分子聚集体的过程[1]。

通过分子自组装我们可以得到具有新奇的光、电、催化等功能和特性的自组装材料,特别是现在正在得到广泛关注的自组装膜材料在非线性光学器件、化学生物传感器、信息存储材料以及生物大分子合成方面都有广泛的应用前景,受到研究者广泛的重视和研究。

2分子自组装的原理及特点分子自组装的原理是利用分子与分子或分子中某一片段与另一片段之间的分子识别,相互通过非共价作用形成具有特定排列顺序的分子聚合体[2]。

分子自发地通过无数非共价键的弱相互作用力的协同作用是发生自组装的关键。

这里的“弱相互作用力”指的是氢键、范德华力、静电力、疏水作用力、ππ堆积作用、阳离子π吸附作用等。

非共价键的弱相互作用力维持自组装体系的结构稳定性和完整性[3]。

并不是所有分子都能够发生自组装过程,它的产生需要两个条件[4]:自组装的动力以及导向作用。

自组装的动力指分子间的弱相互作用力的协同作用,它为分子自组装提供能量。

自组装的导向作用指的是分子在空间的互补性,也就是说要使分子自组装发生就必须在空间的尺寸和方向上达到分子重排要求。

自组装膜的制备及应用是目前自组装领域研究的主要方向。

自组装膜按其成膜机理分为自组装单层膜(Self- assembled monolayers , SAMs和逐层自组装膜(Layer -by – layer self-assembled membrane)。

如图1所示,自组装膜的成膜机理是通过固液界面间的化学吸附,在基体上形成化学键连接的、取向排列的、紧密的二维有序单分子层,是纳米级的超薄膜。

活性分子的头基与基体之间的化学反应使活性分子占据基体表面上每个可以键接的位置,并通过分子间力使吸附分子紧密排列。

如果活性分子的尾基也具有某种反应活性,则又可继续与别的物质反应,形成多层膜,即化学吸附多层膜。

自组装成膜较另外一种成膜技术LangmuirBlodgett(LB)成膜具有操作简单,膜的热力学性质好,膜稳定的特点,因而它更是一种具有广阔应用前景的成膜技术。

另外,根据膜层与层之间的作用方式不同,自组装多层膜又可分为两大类,除了前面所述基于化学吸附的自组装膜外,还包括交替沉积的自组装膜。

通过化学吸附自组装膜技术制得的单层膜有序度高,化学稳定性也较好。

而交替沉积自组装膜主要指的是带相反电荷基团的聚电解质之间层与层组装而构筑起来的膜,这种膜能把膜控制在分子级水平,是一种构筑复合有机超薄膜的有效方法。

图1:自组装单分子膜示意图3分子自组装体系形成的影响因素分子自组装是在热力学平衡条件下进行的分子重排过程,它的影响因素也多种多样,主要有以下三个影响因素:3. 1分子识别对分子自组装的影响分子识别可定义为某给定受体对作用物或者给体有选择地结合并产生某种特定功能的过程,包括分子间有几何尺寸、形状上的相互识别以及分子对氢键、ππ相互作用等非共价相互作用力的识别。

利用分子彼此间的识别、结合特征,从中挖掘高效、高选择性的功能。

若将具有识别部位的多个分子组合,彼此便寻找最安定、最接近的位置,并形成超过单个分子功能的高次结构的聚集体。

在有机分子自组装过程中控制组装顺序的指令信息就包含于自组装分子之中,信息依靠分子识别进行[6]。

目前分子识别进一步应用于临床药物分析、模拟酶催化以及化学仿生传感器。

为定性分离和设计提供更多的信息,也为加速分子发现提供潜能。

3. 2组分对分子自组装的影响组分的结构和数目对自组装超分子聚集体的结构有很大的影响。

吴凡等[7]利用扫描轨道电镜观测了4 十六烷氧基苯甲酸(T1)和3,4,5 三取代十六烷氧基苯甲酸(T3)分子在石磨上形成的自组装体系的结构,结果发现这两种分子的自组装排列结构有着很大的不同:T1分子形成的是有序的明暗相间的条陇状结构,而T3分子形成的是密堆积结构。

这说明组分结构的微小变化或组分的数目变化可能导致其参与形成的自组装体结构上的重大变化。

3 .3溶剂对分子自组装的影响绝大多数对自组装体系的研究都是在溶液中进行的,因而溶剂对自组装体系的形成起着关键作用。

溶剂的性质及结构上的不同都可能导致自组装体系结构发生重大改变。

任何破坏非共价键的溶剂,都可能会影响到自组装过程的进行,包括溶剂的类型、密度、pH值以及浓度等。

JosephM.Desimone[8]用不同密度液态或超临界态二氧化碳作为溶剂时,考察对两性共聚分子的自组装的形成的影响,结果发现在CO2溶剂密度低于0 82gcm3时,CO2相和高分子相是独立存在的:当CO2溶剂密度增加时,高分子溶解,成为低聚物(半径2~4nm);当密度到达一定值时,低聚物团聚成球形颗粒。

由此可知溶剂的密度对自组装确实有一定的影响。

4分子自组装的表征手段分子自组装由于其过程的微观性,其表征手段自成一整套体系,如:固态结构可通过有效的X射线晶体衍射的方法;红外光谱和X射线光电子能谱来获得组装体系的分子结构信息;X射线反射可测自组装膜的厚度和粗糙度;用示差扫描量热法(DSC)和X射线衍射及极化光谱来研究自组装体系的热力学性质;蒸汽相渗透压力测定法、膜渗透压力测定法和凝胶测定色谱测定分子量,但是误差较大,仅提供溶液中物种的平均值;溶液中全部信息都可以由光或中子散射实验获得;光谱学方法、光谱学滴定和NMR数据(结合后的化学位移、分子间核的Overhauser效应、迟豫和相关时间)提供获得平衡状态的重要参数及结构和动力学特征的途径;质谱技术可对溶液中形成的各种物种进行直接探测;二次离子能谱(SIMS)能对分子间相互作用进行测定。

一些较新型仪器和方法也应用于自组装体系的研究中。

例如膜分子在固体支撑物上的排列、取向、空间构象等可通过扫描轨道电镜(STM)、扫描透射电镜(STEM),扫描探针显微镜(SPM)或原子力显微镜(AFM)来进行分析。

U.Denker[10]等在高温下将SiGe的在硅表面自组装,然后将所形成的自组装岛状物用蚀刻剂侵蚀,通过TEM可以清楚地看到自组装所形成的SiGe岛状物以及在其周围侵蚀后所形成的沟状物的形状。

ChristopherMYip[11]系统阐述了ATM和SPM在蛋白质超分子自组装体系的应用,包括蛋白质分子相互间的作用、结构、形成自组装膜的动力学研究等。

N.Bttaglini等[12]用STM研究烷基硫醇在金表面的自组装单分子膜,研究表明甲基和乙基为端基的双分子自组装膜结构上涉及到了共轭有机基团的选择性迁移。

石英微量天平(QCM)可对自组装膜进行纳克级测定,如H.S.Kim等用石英微量天平跟踪了导电高分子和磁性纳米颗粒在涂金石英表面的逐层自组装体系的质量变化情况,得知在石英表面发生的是逐层自组装,并得出了体系的质量变化规律。

循环伏安阻抗法(CV)是电化学测定中经常用到的仪器,它的主要特色是可以通过改变电极电位的扫描速度来考察所研究体系的电化学性质。

在自组装膜的测定方面,可通过CV的屏蔽效应研究组装膜的结构、影响因素和最佳成膜条件。

AgnieszkaZebrowska等用循环伏安阻抗法研究了在金电极上硫醇油脂单分子膜和双分子膜的绝缘性能,发现附在金表面的双层油脂膜性质十分稳定,可以作为生物细胞膜的一种模型。

椭圆光度法可以精确地测定膜的厚度,紫外可见光吸收(UVVis)光谱可用于在分子水平上研究和原位跟踪分子沉积膜的形成过程。

TaeHyunKim等研究了用逐层自组装的方法制成含TiO2纳米颗粒的光催化薄膜,硅晶片用椭圆光度法测定了膜厚、在石英基底上用紫外可见光吸收光谱跟踪了TiO2纳米颗粒的沉积过程以及在涂金石英表面用石英微量天平测量了每层膜的质量,发现每层膜的质量和厚度大体一致。

表面等离子共振(SPR)以及红外光谱也可用于光学测定自组装膜的形成。

AlvedaJ.Williams等研究在金表面聚γ苯甲基L谷胺酸酯的自组装行为,用SPR研究这种多肽的动力学行为发现多肽的分子量越大自组装的时间越短。

张修华等研究了2 巯基乙醇自组装膜电极对多巴胺电催化氧化行为,通过分析成膜前后SH键的振动伸缩带,得知SH键断裂形成了AuS键,而且其他基团的吸收峰并无大的变化,从而推出2 巯基乙醇已自组装到金的表面上。

此外,I.Weissbuch等用平行入射X光衍射技术来研究有机高分子和金属离子在空气和水的界面上的晶体自组装,得到Langmuir膜的结构特征以及离子和补偿离子的横向排列顺序。

5分子自组装的应用分子自组装的应用愈来愈得到各国研究者的重视。

总体来讲,分子自组装的应用分为以下三个方面:纳米材料中的应用,膜材料方面的应用以及生物科学中的应用。

6. 1分子自组装在纳米材料中的应用分子自组装技术在纳米技术中的应用主要集中在纳米介孔材料、纳米管、纳米微粒的制备中。

6.1 .1纳米介孔材料纳米介孔材料的制备是纳米复合材料合成研究的热点,而分子自组装技术是一种合成纳米介孔材料的有效手段。

它得到的介孔具有均匀、可调的特点。

Kuangmin等以氢键为驱动力将可交联的刚性聚氨酸酯(PAE)低聚物与土壤状的聚4 乙烯基吡啶在它们的共溶液中分子间自组装,然后再使PAE光交联的方法制得纳米介孔材料。

N.Petkov等利用旋涂的方法在预处理含铁硅聚乙烯氧化物聚丙烯氧化物聚乙烯氧化物乙醇溶液体系中合成了纳米介孔膜材料,X射线衍射光谱表明在硅晶片上生成了立方中间相结构。

6. 1 .2纳米管管状纳米材料的研究现在非常活跃,而分子自组装技术在纳米管状材料的制备中发挥了重要作用。

MeixiangWan等发现以(NH4)2S2O8为氧化剂,璜酸为掺杂剂,不需要另外的模板的情况下通过自组装的方法制备聚苯胺的微米纳米管,并发现在这一过程中璜酸是作为模板参与反应的。

BoLi等在CaF2云母基体和Pt晶片上用自组装的方法制备了基于重氮基树脂的单壁(onewalled)纳米管,并对其进行了IR光谱、UVVis光谱和TEM研究,发现经过紫外线照射后羧基和重氮基会以共价键结合,使单层纳米管在极性溶剂中的稳定性大大增加。

N.Saito利用化学气相沉淀法,以正十六烷为前驱体,在活化玻璃表面自组装制备了十六烷单分子膜,通过X光电子分光光度和膜厚度测定发现只有在低压下才能使SAMs通过SC键固定在基底上,这种SAMs表现出比有机硅膜更好的对HF和NH4F水溶液的抗腐蚀性。

相关文档
最新文档