排序算法总结
十大经典排序算法总结

⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。
它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。
⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。
10种常用典型算法

10种常用典型算法1. 冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。
它通过依次比较相邻的两个元素,如果顺序不对则交换位置。
这样,每一趟排序都会将最大的元素移动到末尾。
通过多次重复这个过程,直到所有元素按照升序排列为止。
2. 选择排序(Selection Sort)选择排序也是一种简单的排序算法。
它通过每次从未排序的部分中选出最小的元素,放到已排序部分的末尾。
通过多次重复这个过程,直到所有元素按照升序排列为止。
3. 插入排序(Insertion Sort)插入排序是一种简单且稳定的排序算法。
它通过将未排序的元素逐个插入到已排序部分的正确位置。
每次插入一个元素,已排序部分都是有序的。
通过多次重复这个过程,直到所有元素按照升序排列为止。
4. 快速排序(Quick Sort)快速排序是一种高效的排序算法。
它通过选择一个基准元素,将数组分成两部分,一部分元素小于基准,另一部分元素大于基准。
然后对这两部分递归地进行快速排序。
通过多次重复这个过程,直到所有元素按照升序排列为止。
5. 归并排序(Merge Sort)归并排序是一种稳定的排序算法。
它通过将数组递归地分成两半,分别对这两半进行归并排序,然后将排序好的两部分合并起来。
通过多次重复这个过程,直到所有元素按照升序排列为止。
6. 堆排序(Heap Sort)堆排序是一种高效的排序算法。
它利用堆的性质来进行排序,通过构建一个最大堆或最小堆,并不断地取出堆顶元素并调整堆。
通过多次重复这个过程,直到所有元素按照升序排列为止。
7. 计数排序(Counting Sort)计数排序是一种非比较性的整数排序算法。
它通过统计每个元素的个数来排序。
首先统计每个元素出现的次数,然后根据元素的大小顺序将其放入新的数组中。
通过多次重复这个过程,直到所有元素按照升序排列为止。
8. 桶排序(Bucket Sort)桶排序是一种非比较性的排序算法。
它通过将元素划分到不同的桶中,每个桶内再使用其他排序算法进行排序。
各种排序算法的总结和比较

各种排序算法的总结和比较1 快速排序(QuickSort )快速排序是一个就地排序,分而治之,大规模递归的算法。
从本质上来说,它是归并排序的就地版本。
快速排序可以由下面四步组成。
(1 )如果不多于1 个数据,直接返回。
(2 )一般选择序列最左边的值作为支点数据。
(3 )将序列分成2 部分,一部分都大于支点数据,另外一部分都小于支点数据。
(4 )对两边利用递归排序数列。
快速排序比大部分排序算法都要快。
尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。
快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。
2 归并排序(MergeSort )归并排序先分解要排序的序列,从1 分成2 ,2 分成4 ,依次分解,当分解到只有1 个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。
合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。
3 堆排序( HeapSort )堆排序适合于数据量非常大的场合(百万数据)。
堆排序不需要大量的递归或者多维的暂存数组。
这对于数据量非常巨大的序列是合适的。
比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。
堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。
接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。
4 Shell 排序( ShellSort )Shell 排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。
平均效率是O(nlogn) 。
其中分组的合理性会对算法产生重要的影响。
现在多用D.E.Knuth 的分组方法。
Shell 排序比冒泡排序快5 倍,比插入排序大致快2 倍。
Shell 排序比起QuickSort ,MergeSort ,HeapSort 慢很多。
排序算法总结

排序算法总结排序算法是计算机科学中最基础且常用的算法之一。
它们的作用是将一组数据按照指定的顺序进行排列。
根据数据量的大小和特点,选择适合的排序算法可以提高程序的性能。
常见的排序算法有冒泡排序、插入排序、选择排序、希尔排序、归并排序、快速排序、堆排序和计数排序等。
冒泡排序是最简单、最直观的排序算法。
它通过多次比较相邻的元素,将较大的数往后移动,将较小的数往前移动,从而实现排序。
但是冒泡排序的时间复杂度较高,为O(n^2)。
插入排序的思想是将数组分为有序区和无序区,每次将无序区的第一个元素插入到有序区的合适位置。
它的时间复杂度也为O(n^2),但在实际应用中对小规模数据进行排序时表现良好。
选择排序每次从数组中选择最小的元素,与数组的第一个元素交换位置,然后从剩下的元素中选择最小的元素,与数组的第二个元素交换位置,依此类推。
它的时间复杂度也为O(n^2),但它的交换次数相对较少。
希尔排序是直接插入排序的改进版,它将数组按照一定的步长进行分组,对每组进行插入排序,然后缩小步长,直到步长为1,最后再进行一次插入排序。
希尔排序的时间复杂度介于O(n^1.3)和O(n^2)之间,具体取决于步长的选择。
归并排序是一种稳定且分治的排序算法,它将数组分为两个子数组,分别对子数组进行排序,然后将排好序的子数组合并成一个有序的数组。
归并排序的时间复杂度为O(nlogn),但需要额外的空间来存储临时数组。
快速排序是一种高效且不稳定的排序算法,它通过选取一个基准元素,将数组分为左右两个子数组,使得左边的元素都小于等于基准元素,右边的元素都大于等于基准元素,然后在左右子数组中递归地进行快速排序。
快速排序的时间复杂度为O(nlogn),但在最坏情况下可能达到O(n^2)。
堆排序利用堆这种数据结构进行排序。
堆排序的思想是将数组构建成一个最大堆或最小堆,然后将堆顶的元素与数组的最后一个元素交换位置,再对剩余的元素进行调整,再重复执行这个过程。
数学排序知识点总结

数学排序知识点总结一、排序算法的概念及分类1.1 排序算法的概念排序算法是一种用来对一组数据进行排序的算法。
它使得数据按照一定的顺序排列,方便我们进行查找、统计、分析等操作。
在实际应用中,排序算法扮演着非常重要的角色,例如在数据库检索、数据压缩、图像处理等领域都有着广泛的应用。
1.2 排序算法的分类排序算法一般可以分为两大类,即比较排序和非比较排序。
比较排序是指通过比较待排序元素之间的大小关系来进行排序的算法,其时间复杂度一般为O(nlogn),包括常见的快速排序、归并排序、堆排序等;非比较排序则是通过其他辅助信息来确定元素的顺序,其时间复杂度通常较低,包括计数排序、桶排序、基数排序等。
二、常见的排序算法及其应用2.1 快速排序快速排序是一种常用的比较排序算法,其基本思想是通过一次划分将待排序数组分成两个部分,使得左边的元素均小于右边的元素,然后再对左右部分递归进行排序。
快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。
快速排序可以在很多实际应用中发挥作用,例如在数据库查询、数据压缩、图像处理等领域都有着广泛的应用。
2.2 归并排序归并排序也是一种常用的比较排序算法,其基本思想是将待排序数组分成两个部分,分别进行递归排序,然后再将两个有序的子数组合并成一个有序的数组。
归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。
归并排序可以在很多实际应用中发挥作用,例如在文件排序、数据库排序等领域都有着广泛的应用。
2.3 堆排序堆排序是一种利用堆这种数据结构进行排序的算法,其基本思想是通过建立一个大顶堆或小顶堆,然后将堆顶元素与最后一个元素交换,并调整堆,再将堆顶元素与倒数第二个元素交换,以此类推,直到所有元素都有序。
堆排序的时间复杂度为O(nlogn),空间复杂度为O(1)。
堆排序在优先队列、事件排序等领域有着广泛的应用。
2.4 计数排序计数排序是一种非比较排序算法,其基本思想是通过对待排序数组进行统计,然后根据统计信息将元素放置到正确的位置上。
各种排序方法总结

选择排序、快速排序、希尔排序、堆排序不是稳定的排序算法,冒泡排序、插入排序、归并排序和基数排序是稳定的排序算法。
冒泡法:这是最原始,也是众所周知的最慢的算法了。
他的名字的由来因为它的工作看来象是冒泡:复杂度为O(n*n)。
当数据为正序,将不会有交换。
复杂度为O(0)。
直接插入排序:O(n*n)选择排序:O(n*n)快速排序:平均时间复杂度log2(n)*n,所有内部排序方法中最高好的,大多数情况下总是最好的。
归并排序:l og2(n)*n堆排序:l og2(n)*n希尔排序:算法的复杂度为n的1.2次幂这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况1.数组的大小是2的幂,这样分下去始终可以被2整除。
假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n所以算法复杂度为O(lo g2(n)*n) 其他的情况只会比这种情况差,最差的情况是每次选择到的midd le都是最小值或最大值,那么他将变成交换法(由于使用了递归,情况更糟)。
但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。
实践证明,大多数的情况,快速排序总是最好的。
如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢于快速排序(因为要重组堆)。
排序题方法总结

排序题方法总结
排序方法可以总结为以下几种:
1. 冒泡排序:重复比较相邻的两个元素,若顺序错误则交换位置,直至整个数组有序。
时间复杂度为O(n^2)。
2. 选择排序:每次从数组中选择最小(或最大)的元素,放到已排序的末尾,直至整个数组有序。
时间复杂度为O(n^2)。
3. 插入排序:将数组分为已排序和未排序两部分,每次从未排序部分中取出一个元素,并插入到已排序部分的适当位置,直至整个数组有序。
时间复杂度为O(n^2)。
4. 归并排序:将数组不断地分割成更小的子数组,然后再将子数组合并,直至整个数组有序。
时间复杂度为O(nlogn)。
5. 快速排序:选择一个基准元素,将数组分为小于和大于基准元素的两部分,再对两部分分别进行快速排序,直至整个数组有序。
时间复杂度为O(nlogn)。
6. 堆排序:将数组构建成大顶堆(或小顶堆),然后不断地将堆顶元素与最后一个元素交换,并重新调整堆,直至整个数组有序。
时间复杂度为O(nlogn)。
7. 计数排序:统计数组中每个元素出现的次数,然后根据计数从小到大将元素重新排列。
时间复杂度为O(n+k),其中k是值的范围。
8. 基数排序:按照位数从低到高的顺序,将数组分配到桶中,然后重组桶中的元素,直至整个数组有序。
时间复杂度为
O(d*(n+k)),其中d是最大位数,k是每个桶的大小。
以上是常见的排序算法,每种算法都有不同的适用场景和特点,需要根据实际问题选择合适的算法。
排序算法十大经典方法

排序算法十大经典方法
排序算法是计算机科学中的经典问题之一,它们用于将一组元素按照一定规则排序。
以下是十大经典排序算法:
1. 冒泡排序:比较相邻元素并交换,每一轮将最大的元素移动到最后。
2. 选择排序:每一轮选出未排序部分中最小的元素,并将其放在已排序部分的末尾。
3. 插入排序:将未排序部分的第一个元素插入到已排序部分的合适位置。
4. 希尔排序:改进的插入排序,将数据分组排序,最终合并排序。
5. 归并排序:将序列拆分成子序列,分别排序后合并,递归完成。
6. 快速排序:选定一个基准值,将小于基准值的元素放在左边,大于基准值的元素放在右边,递归排序。
7. 堆排序:将序列构建成一个堆,然后一次将堆顶元素取出并调整堆。
8. 计数排序:统计每个元素出现的次数,再按照元素大小输出。
9. 桶排序:将数据分到一个或多个桶中,对每个桶进行排序,最后输出。
10. 基数排序:按照元素的位数从低到高进行排序,每次排序只考虑一位。
以上是十大经典排序算法,每个算法都有其优缺点和适用场景,选择合适的算法可以提高排序效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排序算法总结
排序算法:一种能将一串数据依照特定的排序方式进行排列的一种算法。
排序算法性能:取决于时间和空间复杂度,其次还得考虑稳定性,及其适应的场景。
稳定性:让原本有相等键值的记录维持相对次序。
也就是若一个排序算法是稳定的,当有俩个相等键值的记录R和S,且原本的序列中R在S前,那么排序后的列表中R应该也在S之前。
以下来总结常用的排序算法,加深对排序的理解。
冒泡排序
原理
俩俩比较相邻记录的排序码,若发生逆序,则交换;有俩种方式进行冒泡,一种是先把小的冒泡到前边去,另一种是把大的元素
冒泡到后边。
性能
时间复杂度为O(N^2),空间复杂度为O(1)。
排序是稳定的,排序比较次数与初始序列无关,但交换次数与初始序列有关。
优化
若初始序列就是排序好的,对于冒泡排序仍然还要比较
O(N^2)次,但无交换次数。
可根据这个进行优化,设置一个flag,
当在一趟序列中没有发生交换,则该序列已排序好,但优化后排序
的时间复杂度没有发生量级的改变。
代码
插入排序
原理
依次选择一个待排序的数据,插入到前边已排好序的序列中。
性能
时间复杂度为O(N^2),空间复杂度为O(1)。
算法是稳定的,比较次数和交换次数都与初始序列有关。
优化
直接插入排序每次往前插入时,是按顺序依次往前找,可在这里进行优化,往前找合适的插入位置时采用二分查找的方式,即
折半插入。
折半插入排序相对直接插入排序而言:平均性能更快,时间复杂度降至O(NlogN),排序是稳定的,但排序的比较次数与初始序列无关,总是需要foor(log(i))+1次排序比较。
使用场景
当数据基本有序时,采用插入排序可以明显减少数据交换和数据移动次数,进而提升排序效率。
代码
希尔排序
原理
插入排序的改进版,是基于插入排序的以下俩点性质而提出的改进方法:
插入排序对几乎已排好序的数据操作时,效率很高,可以达到线性排序的效率。
但插入排序在每次往前插入时只能将数据移动一位,效率比较低。
所以希尔排序的思想是:
先是取一个合适的gap
缩小间隔gap,例如去gap=ceil(gap/2),重复上述子序列划分和排序
直到,最后gap=1时,将所有元素放在同一个序列中进行插入排序为止。
性能
开始时,gap取值较大,子序列中的元素较少,排序速度快,克服了直接插入排序的缺点;其次,gap值逐渐变小后,虽然子序列的元素逐渐变多,但大多元素已基本有序,所以继承了直接插入排
序的优点,能以近线性的速度排好序。
代码
选择排序
原理
每次从未排序的序列中找到最小值,记录并最后存放到已排序序列的末尾
性能
时间复杂度为O(N^2),空间复杂度为O(1),排序是不稳定的(把最小值交换到已排序的末尾导致的),每次都能确定一个元素所在的最终位置,比较次数与初始序列无关。
代码
快速排序
原理
分而治之思想:
Divide:找到基准元素pivot,将数组A[p..r]划分为
A[p..pivotpos-1]和A[pivotpos+1…q],左边的元素都比基准小,右
边的元素都比基准大;
Conquer:对俩个划分的数组进行递归排序;
Combine:因为基准的作用,使得俩个子数组就地有序,无
需合并操作。
性能
快排的平均时间复杂度为O(NlogN),空间复杂度为O(logN),但最坏情况下,时间复杂度为O(N^2),空间复杂度为O(N);且排序是不稳定的,但每次都能确定一个元素所在序列中的最终位置,复
杂度与初始序列有关。
优化
当初始序列是非递减序列时,快排性能下降到最坏情况,主要因为基准每次都是从最左边取得,这时每次只能排好一个元素。
所以快排的优化思路如下:
优化基准,不每次都从左边取,可以进行三路划分,分别取最左边,中间和最右边的中间值,再交换到最左边进行排序;或者进行随机取得待排序数组中的某一个元素,再交换到最左边,进行排序。
在规模较小情况下,采用直接插入排序
代码
归并排序
原理
分而治之思想:
Divide:将n个元素平均划分为各含n/2个元素的子序列;
Conquer:递归的解决俩个规模为n/2的子问题;
Combine:合并俩个已排序的子序列。
性能
时间复杂度总是为O(NlogN),空间复杂度也总为为O(N),算法与初始序列无关,排序是稳定的。
优化
优化思路:
在规模较小时,合并排序可采用直接插入;
在写法上,可以在生成辅助数组时,俩头小,中间大,这时不需要再在后边加俩个while循环进行判断,只需一次比完。
代码
堆排序
原理
堆的性质:
是一棵完全二叉树
每个节点的值都大于或等于其子节点的值,为最大堆;反之为最小堆。
堆排序思想:
将待排序的序列构造成一个最大堆,此时序列的最大值为根节点
依次将根节点与待排序序列的最后一个元素交换
再维护从根节点到该元素的前一个节点为最大堆,如此往复,最终得到一个递增序列
性能
时间复杂度为O(NlogN),空间复杂度为O(1),因为利用的
排序空间仍然是初始的序列,并未开辟新空间。
算法是不稳定的,
与初始序列无关。
使用场景
想知道最大值或最小值时,比如优先级队列,作业调度等场景。
代码
计数排序
原理
先把每个元素的出现次数算出来,然后算出该元素所在最终排好序列中的绝对位置(最终位置),再依次把初始序列中的元素,根据该元素所在最终的绝对位置移到排序数组中。
时间复杂度为O(N+K),空间复杂度为O(N+K),算法是稳定的,与初始序列无关,不需要进行比较就能排好序的算法。
使用场景
算法只能使用在已知序列中的元素在0-k之间,且要求排序的复杂度在线性效率上。
代码
桶排序
根据待排序列元素的大小范围,均匀独立的划分M个桶将N个输入元素分布到各个桶中去
再对各个桶中的元素进行排序
此时再按次序把各桶中的元素列出来即是已排序好的。
性能
时间复杂度为O(N+C),
O(C)=O(M(N/M)log(N/M))=O(NlogN-NlogM),空间复杂度为
O(N+M),算法是稳定的,且与初始序列无关。
使用场景
算法思想和散列中的开散列法差不多,当冲突时放入同一个桶中;可应用于数据量分布比较均匀,或比较侧重于区间数量时。
基数排序
原理
对于有d个关键字时,可以分别按关键字进行排序。
有俩种方法:
MSD:先从高位开始进行排序,在每个关键字上,可采用计数排序
LSD:先从低位开始进行排序,在每个关键字上,可采用桶排序
性能
时间复杂度为O(d*(N+K)),空间复杂度为O(N+K)。
总结
以上排序算法的时间、空间与稳定性的总结如下:。