建筑结构抗震概念设计

合集下载

抗震概念设计的基本要求

抗震概念设计的基本要求

二、抗震设计的基本要求
7 合理选用材料,确保施工质量 合理地使用材料,确保施工质量是保证抗震质量的关键。在结构
施工图中均标有对材料和施工质量的特别要求。混凝土、钢材和砌体 材料的选用参照各自的选用要求。
THAN于抗震
结构构件应符合下列要求:砌体结构应按规范要求设置钢筋混凝土圈梁 和构造柱、芯柱,或采用约束砌体、配筋砌体等;混凝土结构构件应控制截 面尺寸和受力钢筋与箍筋的设置;多高层的混凝土楼、屋盖宜优先采用现 浇混凝土板。
二、抗震设计的基本要求
5 采用隔震和消能减震设计
二、抗震设计的基本要求
2 选择对抗震有利的建筑体形
建筑设计应符合抗震概念设计的要求,不规则的建筑方案应按规定采取 加强措施。不应采用严重不规则的设计方案。建筑平面和立面布置宜规则、 对称,其刚度和质量分布宜均匀。体型复杂的建筑宜设防震缝。
二、抗震设计的基本要求
3 选择合理的抗震体系
结构体系应根据建筑的抗震设防类别、抗震设防烈度、建筑高度、场 地条件、地基、结构材料和施工等因素,经综合分析比较确定。结构体系 应具有多道抗震防线,对可能出现的薄弱部位,应采取措施提高抗震能力。
抗震概念设计的 基本要求
一、抗震设计分类
1 抗震设计分类
为了减轻建筑物的地震破坏,避免人员伤亡,减少经济损失,对地 震区的房屋必须进行抗震设计。建筑结构的抗震设计分为两大部 分:一是计算设计——对地震作用效应进行定量分析计算;一是概 念设计——正确地解决总体方案、材料使用和细部构造,以达到合 理抗震设计的目的。
二、抗震设计的基本要求
5 消能减震设计实例
二、抗震设计的基本要求
6 采用隔震和消能减震设计
隔震和消能减震是建筑结构减轻地震灾害的新技术。隔震的基本 原理是:通过隔震层的大变形来减少其上部结构的地震作用,从而减 少地震破坏。消能减震的基本原理是:通过消能器的控制来控制预期 的结构变形,从而使主体结构在罕遇地震下不发生严重破坏。

建筑结构抗震概念设计符合要求

建筑结构抗震概念设计符合要求

建筑结构抗震概念设计符合要求建筑结构抗震概念设计符合要求地震是一种自然灾害,不可避免,但我们可以通过适当的建筑结构设计,减少地震造成的损失和危害。

因此,建筑结构的抗震概念设计是非常重要的,必须符合国家和行业的相关标准。

1. 抗震设计基本要求抗震设计是指在建筑工程设计过程中,为了保证建筑可抗地震,采用一系列设计措施,从而保障人员生命安全、减少财产损失和减少地震灾害对社会的影响。

抗震设计必须符合以下基本要求:(1)建筑结构和构件必须具备足够的强度和韧性,尽可能减少应变和变形产生的破坏以及构件的疲劳损伤。

(2)建筑结构应能够随地震运动变形,但应限制变形,避免产生破坏性变形。

(3)建筑结构应具有良好的耗能能力,通过消耗地震能量,使建筑产生的波动尽量减少。

(4)建筑结构应避免在地震中引起人员、设备的滑动、倾覆、碰撞等现象,同时保持整体稳定性。

2. 抗震设计的影响因素抗震设计需要考虑很多因素,如地震地区的地震烈度、地震频率、地震波振动的道路、建筑的结构类型和高度、建筑重心高度的位置等,其中地震烈度和地震波频率的选择是非常关键的。

地震烈度等级是根据地震时所受烈度大小来确定的,不同地区的烈度等级是不同的。

在抗震设计中,应根据所处地区的烈度等级,合理选取梁柱结构的截面形状和尺寸,以确保建筑的安全性。

3. 抗震设计的措施在抗震设计中,可以采用多种措施来保障建筑的安全:(1)合理的结构类型选择不同的结构类型适用于不同的建筑,并且适用于不同的地震区域。

设计师应根据地震区域的特点,选用适当的结构类型,如框架式结构、剪力墙结构和内置柱群等,以达到较好的结构抗震性能。

(2)合理的材料选择建筑材料的选择直接影响着建筑抗震性能,一般需要选择具有较高强度、韧性、耐久性、可靠性的材料,并进行质量检验。

对于较高的建筑,建议采用预应力钢筋,在建筑过程中形成预紧力,使预应力混凝土梁柱具有较好的耐震性和承载能力。

(3)考虑动态降震随着科技的发展,动态降震设备也越来越普及,其应用领域也越来越广泛。

建筑结构抗震设计第4章建筑抗震概念设计

建筑结构抗震设计第4章建筑抗震概念设计

表1 有利、一般、不利和危险地段的划分
段 一般地段 不利地段
危险地段
稳定基岩,坚硬土,开阔、平坦、密实、均匀的中硬土 等
不属于有利、不利和危险的地段
软弱土,液化土,条状突出的山嘴,高耸孤立的山丘, 陡坡,陡坎,河岸和边坡的边缘,平面分布上成因、岩 性、状态明显不均匀的土层(含故河道、疏松的断层破 碎带、暗埋的塘浜沟谷和半填半挖地基),高含水量的 可塑黄土,地表存在结构性裂缝等 地震时可能发生滑坡、崩塌、地陷、地裂、泥石流等及 发震断裂带上可能发生地表位错的部位
质量分布的不确定性;基础与上部结构的协同作用;节点的非刚性
转动;偏心、扭转及P—Δ效应;柱轴向变形。考虑或不考虑节点
非刚性转动的影响程度可达5%—10%;考虑柱轴向变形,自振周期
可能加长15%,加速度反应可能降低8%;考虑P—Δ效应可能增加位
移10%。 (3)材料的影响。混凝土的弹性模量随着时间及应变程度而改变。
在海城地震时,从位于大石桥盘龙山高差58m的两个测点 上所测得的强余震加速度峰值记录表明,位于孤突地形上 的比坡脚平地上的平均达1.84倍,这说明在孤立山顶地震波将被 放大。图1表示了这种地理位置的放大作用。
图1 不同地形的震害
天津塘沽港地区,地表下3—5m为冲填土,其下为深厚的 淤泥和淤泥质土,地下水位为-1.6m。1974年兴建的16幢 3层住宅和7幢4层住宅,均采用片筏基础。1976年唐山地 震前,累计沉降分别为200mm和300mm,地震期间沉降量突然增 大,分别增加了150mm和200mm。震后,房屋向一边倾斜,房屋 四周的外地坪地面隆起,如图2所示。
图2 房屋沉降
§4.2 把握建筑形体和结构的规则性
建筑结构的平面、立面规则与否,对建筑的抗震性能具有 重要的影响,建筑结构不规则,可能造成较大扭转,产生 严重应力集中,或形成抗震薄弱层。国内外多次震害表明,房屋形体 不规则、平面上凸出凹进、立面上高低错落,破坏程度比较严重,而 简单、对称的建筑的震害较轻。为此,《抗震规范》规定,建筑设计 应重视其平面、立面和竖向剖面的规则性对抗震性能及经济合理性的 影响,宜择优选用规则的形体,其抗侧力构件的平面布置宜规则对称、 侧向刚度沿竖向宜均匀变化、竖向抗侧力构件的截面尺寸和材料强度 宜自下而上逐渐减小、避免侧向刚度和承载力突变。 建筑平、立面布置的基本原则:对称规则,质量与刚度变化均匀。

简述结构抗震概念设计的含义

简述结构抗震概念设计的含义

简述结构抗震概念设计的含义结构抗震概念设计是指在建筑设计阶段,通过合理分析和设计结构,使建筑在地震作用下能够充分发挥自身的抗震能力,以减少地震对建筑物造成的破坏和人员伤亡。

结构抗震概念设计需要考虑以下方面:1. 结构整体性:通过合理的结构布局和连通方式,使整个建筑结构能够形成一个整体,以提高抗震能力。

2. 建筑材料:选用合适的材料,如高强度钢筋混凝土、钢结构等,以增加结构的刚度和强度,提高抗震能力。

3. 结构体系:选择适当的结构体系,如框架、剪力墙、桁架等,以满足地震作用下的荷载传递要求。

4. 抗震设计要素:考虑地震作用下的水平力、垂直力、剪力等,确定结构的尺寸、强度、柱网布置、墙体厚度等参数,以满足设计要求。

5. 结构连接:合理设计结构连接,如梁柱连接、墙体与结构连接等,以确保结构的整体性和刚度。

6. 附加构件:增设抗震构件,如减隔震、阻尼器等,以增加结构的抗震性能。

结构抗震概念设计目的是在建筑设计早期阶段,通过合理的设计理念和方法,尽可能提高建筑的抗震能力,减少地震对建筑物和人员的危害。

这样可以提高建筑的安全性和可靠性,保护人民的生命财产安全。

结构抗震概念设计是指在建筑结构设计的初期阶段,考虑地震影响和力学特性的基础上,通过结构布局、形式、材料、连接方式等方面的综合设计,以提高建筑结构在地震发生时的抗震性能。

结构抗震概念设计的含义包括以下几个方面:1. 提前考虑抗震性能:结构抗震概念设计在初期阶段就将抗震性能的考虑纳入设计中,通过合理的布局、形式和结构系统的选择,以及考虑地震产生的荷载、地震波传播路径等因素,在建筑结构设计的初期就提出合理的抗震方案。

2. 综合设计思路:结构抗震概念设计是综合考虑建筑的整体性能和安全性的设计过程,不仅仅追求单一方面的抗震性能,还要考虑结构的可行性、经济性、舒适性等因素。

3. 满足抗震设计要求:结构抗震概念设计需要满足国家和地区的抗震设计规范要求,确保建筑在地震发生时能够安全、稳定地承受地震力的作用。

建筑结构抗震设计(概念及其他)1

建筑结构抗震设计(概念及其他)1

1)平面不规则 4个楼梯间偏置塔楼西端,西端有填充墙。 4层以上的楼板仅为5cm厚,搁置在高45cm长14m小梁上。 2)竖向不规则 塔楼上部(4层楼面以上),北、东、西三面布置了密集的小柱子,共64根,支承在4层楼板水平 处的过渡大梁上,大梁又支承在其下面的10根1m× 1.55m的柱子上(间距9.4m)。上下两部分严 重不均匀,不连续。 主要破坏:第4层与第5层之间(竖向刚度和承载力突变),周围柱子严重开裂,柱钢筋压屈; 横向裂缝贯穿3层以上的所有楼板(有的宽达1cm),直至电梯井东侧; 塔楼西立面、其他立面窗下和电梯井处的空心砖填充墙及其它非结构构件均 严重破坏或倒塌。 震后计算分析结果:1.结构存在十分严重扭转效应;2.塔楼3层以上北面和南面大多数柱子抗剪能 力大大不足,率先破坏;水平地震作用下,柔而长的楼板产生可观的竖向运动等。
十、妥善处理非结构部件
非结构部件在抗震设计时若处理不当, 在地震中易发生严重破坏或闪落,甚至造 成主体结构破坏。 1、考虑填充墙的影响
2、玻璃幕墙的构造 3、外墙板的连接
2 混凝土结构房屋抗震设计
多层和高层钢筋混凝土结构体系包括: 1、框架结构; 2、抗震墙结构; 3、框架—抗震墙结构; 4、筒体结构; 5、框架—筒体结构等。
4、框架填充墙的震害
4、框架填充墙的震害
5、抗震墙的震害
在强震作用下,抗震墙的震害主要 表现为墙肢之间连梁的剪切破坏 。这 主要是由于连梁跨度较小、高度大形 成深梁,在反复荷载作用下形成X形剪 切裂缝,这种破坏为剪切型脆性破坏, 尤其是在房屋1/3高度处的连梁破坏更 为明显。
5、抗震墙的震害
马那瓜美洲银行大厦
马那瓜中央银行大厦
马那瓜 中央银行大厦
结构是均匀对称的,基本的抗侧力体系包 括4个L形的桶体,对称地由连梁连接起来, 美洲 这些连梁在地震时遭到剪切破坏,是整个结 银行 构能观察到的主要破坏。 分析表明:1.对称的结构布置及相对刚强的 联肢墙,有效地限制了侧向位移,并防止了 明显的扭转效应;2.避免了长跨度楼板和砌 体填充墙的非结构构件的损坏;当连梁剪切 破坏后,结构体系的位移虽有明显增加,但 由于抗震墙提供了较大的侧向刚度,位移量 得到控制。

建筑结构抗震概念设计应符合要求

建筑结构抗震概念设计应符合要求

建筑结构抗震概念设计应符合要求建筑结构抗震概念设计应符合要求地震是一种自然灾害,常常给人们的生命和财产造成无法估量的损失。

灾害发生时,建筑物通常是受到最大影响的,因为建筑物的结构抗震能力不足,往往引起严重的破坏甚至崩塌。

因此,在建筑物的结构设计中,抗震性是至关重要的考虑因素。

本文将介绍建筑结构抗震概念设计的相关要求。

一、建筑结构抗震设计必须符合国家规定的抗震标准。

抗震设计必须符合国家规定的抗震标准,这是保证建筑物抗震安全的重要保证。

目前,我国的抗震标准是GB50011-2010《建筑抗震设计规范》,在实践中应该遵守此规范的相关要求。

在建筑结构设计阶段,应按照规范中规定的设计哪些抗震设备和措施的要求,例如,建筑结构应该有足够的地震防护墙、梁、柱等构件,以及其他的一些抗震设备和措施,以确保建筑物的整体结构能够在地震的影响下保持安全和完整。

二、建筑结构抗震设计必须考虑建筑物的使用环境。

建筑物的使用环境也是影响建筑结构抗震设计的重要因素之一。

不同类型的建筑物的使用环境不同,因此在抗震设计中应考虑不同的情况。

比如,学校、医院、办公室等公共场所的抗震要求应比住宅区和工业区要求更高,因为这些公共场所通常需要在地震后迅速恢复正常运行。

并且在考虑建筑物的使用环境时,需要考虑意外情况的发生,例如自然灾害、火灾、强风等对建筑物的影响,因为这些事件往往会对建筑物的抗震性产生重要影响。

三、建筑结构抗震设计必须遵循“质量第一、安全第一”的设计原则。

建筑结构抗震设计中,应当遵循“质量第一、安全第一”的设计原则,这是一种保证建筑物健康安全的设计理念。

为了确保建筑物能够承受地震的影响,设计师应当从建筑物的整体结构出发,考虑建筑物的质量和安全性同时考虑。

这样做有助于提高建筑物的稳定性和耐久性,防止建筑物在建设过程中出现走样等质量问题,确保建筑物能够经受住大力的冲击和地震的影响,为设计师提供充分的创造空间。

总之,建筑结构抗震概念设计应符合要求,以确保建筑物具有足够的抗震能力,从而保障用户的生命和财产安全。

建筑结构抗震概念设计应该符合的要求

建筑结构抗震概念设计应该符合的要求

建筑结构抗震概念设计应该符合的要求随着城市化进程的加速,建筑的安全性和抗震性成为了人们越来越关注的问题。

建筑的结构抗震设计是建筑工程中非常关键的环节,它关系到人们的生命财产安全。

建筑结构抗震概念设计应该符合以下要求。

一、适应地震反复性在建筑结构设计时,应该根据地震活动的特点,预测其反复性和破坏程度,进行合理的结构设计。

一般来说,地震反复性与地震的短周期有关,在决定结构抗震设计的时候,应该考虑到地震的短周期。

二、符合强震下结构变形能力的要求强震时,结构变形是非常普遍的情况,为此建筑结构抗震设计必须考虑结构在一定程度上的变形能力。

因此,对于抗震设计来说,应该准确掌握结构抗震性能,在设计时合理夹杂剪力,以满足结构变形的自适应性。

三、实现结构的整体协同性在设计建筑的时候,结构的整体协同性是非常重要的,因为它可以帮助建筑在强震下保持整体稳定。

在实际设计中,应该合理运用钢筋混凝土、钢结构等材料,并充分利用结构的整体协同性和合理性。

四、保证建筑物的安全性建筑物的安全性是建筑结构抗震概念设计中的核心要求之一。

对于地震来说,应该尽可能减少结构的横向位移来保证建筑物的安全性。

因此,设计建筑结构要尽量减小钢筋混凝土等建筑材料的弯曲和扭曲变形。

五、采用合适的土基策略不同地方的土壤性质和地形环境也会对建筑物的抗震性产生影响。

设计时需要结合当地的土地状况和地形环境,采用合适的土基策略来保证建筑物的抗震性和安全性。

六、满足救援要求在设计建筑结构抗震的过程中,应该考虑到救援要求。

建筑物在抗震之后,通常需要运用救援设备进行吊运或简单破坏。

因此,在设计时需要考虑到救援设备的使用情况。

建筑结构抗震概念设计是保护人民生命财产安全的关键之一。

为了确保抗震设计的有效性和保护性,工程师们应该根据实际情况,把握好设计极限和要求,进行合理的设计。

同时,在实际建设过程中,对于抗震性监测和评价,应该动态地进行监测和评价,为建筑物开展科学管理奠定良好基础。

抗震设计概念

抗震设计概念

抗震设计概念
抗震设计,是针对地震区的工程结构进行的一种专项设计,以满足地震作用下工程结构安全与经济的综合要求。

一般包括抗震分析和抗震措施两个方面。

抗震分析是以结构动力学为基础,计算和分析结构在地震动作用下的反应。

抗震措施则包括工程总体布置、结构选型、地基基础处理以及各种构造措施。

抗震概念设计是指根据地震作用水平,选择合适的结构体系、材料及细部构造,以到达合理的抗震设计目的。

涉及方面有建筑场地的选择、结构体系的选择、平面立面布置的规则性、结构的动力特性的确定、传力机制的可靠性等。

这种设计可以在源头上避免或减轻不利于抗震设计因素的影响,有助于获得结构抗震性能方面的最有利组合,为设计过程中的数值计算创造有利条件。

总的来说,抗震设计的主要目的是保证建筑在地震发生时能够保持结构的完整性,减少地震对建筑的破坏,保证人们的生命安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建筑结构抗震概念设计摘要:建筑结构抗震设计中的概念设计是对建筑抗震设计的宏观控制。

在工程的一开始从建筑的场地选择、平立面形式、结构布置、延性等方面从根本上消除建筑中的抗震薄弱环节,再辅以必要的计算和构造措施,就有可能使设计出的房屋建筑具有良好的抗震性能和足够的抗震可靠度。

较好的运用抗震概念和原则是结构抗震设计的必要前提。

关键词:建筑场地;建筑结构;抗震;概念设计1地震作用地震是地球内部构造运动的产物,是普遍存在的一种自然现象,由于地震作用的随机性、复杂性、藕联性,每次地震所产生的波形各异,因而其对建筑物的作用各不相同,所产生的破坏程度也千差万别。

地震对建筑物的作用与建筑物自身所固有的自振周期、场地土的动力特性有关,但因结构计算中计算模型、自振周期、材料性能、基础类型以及阻尼变化等均与实际情况存在差异,使得抗震计算时所考虑的地震作用无法准确估算,因而,在进行结构的抗震设计时,不能完全依赖地震作用计算,更要综合考虑多种因素,切实做好建筑抗震概念设计。

2抗震概念设计的含义抗震设计是通过地震作用的取值和抗震措施共同实现的,通过总结历次地震灾害后发现,对于结构抗震设计来说,“概念设计”比“数值计算”更为重要。

结构抗震性能的决定因素是良好的“概念设计”,也就是说,“概念设计”是结构抗震设计的首要问题。

所谓“概念设计”是指在进行结构设计时,既要着眼于结构的整体地震反应,又按照结构的破坏机制和过程,灵活运用抗震设计准则;既要把握整体布置的大原则,又兼顾了关键部位的细节,从根本上解决了结构抗震设计的问题,有效地提高了结构自身的整体抗震能力[1]。

3 抗震设计的一般原则3.1场地和地基建筑结构在地震作用下的破坏情况有四种:(1)地震时,在水平和竖向振动作用下,建筑物的内力和变形骤增,甚至结构的受力形式发生改变,最终导致建筑物承载力不足甚至于丧失或者变形过大而破坏。

(2)地震作用下,由于节点强度不足、延性不够、锚固失效,使得结构构件缺乏可靠的连接,建筑物丧失整体性而遭破坏。

(3)地震作用下,由于地基承载力下降或地基土液化,使得地基部分失效甚至于完全失效,最终导致建筑物倾斜、倒塌。

(4)由地震引发的次生灾害如火山、洪水、滑坡、泥石流等造成建筑物的严重破坏。

所以场地的选择是建筑抗震设计成功的第一步,从选址工作开始就应该选择对抗震有利的地段,尽量避开不利的地段,避不开时应采取有效措施确保地基的稳定性;任何情况下均不考虑在抗震危险地段建造建筑物[2]。

3.2规则性建筑在建筑的方案设计阶段就应该尽量采用规则建筑方案,即建筑平、立、剖应规则、简单、对称;结构侧向刚度、材料强度和质量的分布应均匀、连续,无突变,因为不规则的建筑在水平地震作用下也会产生扭转振动,进而破坏。

3.3合理的结构体系一个合理的结构体系,首先应有明确的计算简图和合理、简洁的传力途径,对于不规则建筑,应采用空间计算模型计算地震力,考虑扭转藕联影响,使其更接近实际工况。

不在同一结构单元混用受力体系,优先选用现浇混凝土结构,在多层砌体房屋中优先采用横墙承重的结构体系,在底层框架抗震墙砌体房屋中,优先采用混凝土抗震墙。

体型复杂的建筑,设置合理的抗震缝将上部结构分割成相互独立、相对规则的结构单元。

3.4计算结果的校核一般来说,在结构设计中,通常采用计算软件进行抗震分析,这就要求设计人员对所用软件的适用范围、技术条件、计算模型等均有深刻的认识和充分的掌握,对所有计算结果,应经认真分析校核,只有经分析判断结果合理、有效后,方可用于工程实际。

3.5抗震构造措施对结构构件采用多道设防,严格按规范要求保证“强柱弱梁”,“强剪弱弯”,“强节点弱构件”,加强节点连接,加强梁、柱端头箍筋加密区的箍筋量。

所用材料等级不低于规范要求的最低等级,从而有效减小材料的脆性,计算中还应严格控制梁的相对受压区高度。

砌体结构应按规范要求设置圈梁、构造柱等,有效约束砌体,提高砌体的延性和整体性。

非结构构件比如框架填充墙两端应与柱有效拉结,附属构件女儿墙、雨篷、挑檐等除保证自身整体性能外,还应与主体结构有可靠连接和锚固。

3.6结构的整体性结构是由许多构件连接组合而成的一个整体,并通过各个构件的协调工作来有效地抵抗地震作用。

若结构在地震作用下丧失了整体性,则结构各构件的抗震能力不能充分发挥,这样容易使结构成为机动体而倒塌。

因此,结构的整体性是保证结构各个部分在地震作用下协调工作的重要条件,确保结构的整体性是抗震概念设计的重要内容[3]。

3.7结构材料的选择单从抗震角度考虑, 作为一种结构材料应轻质、高强、材质均匀; 构件间的连接应有良好的整体性、连续性及延性, 且能发挥材料的全强度。

按照这一原则, 不同材料结构的抗震性能优劣排序是: 钢结构; 型钢混凝土结构; 混凝土- 钢混合结构; 现浇钢筋混凝土结构; 预应力混凝土结构; 装配式钢筋混凝土结构; 配筋砌体结构[4]。

工程中常用结构抗震表现分述如下:(1)钢结构钢结构最符合抗震材料的要求, 从已有的地震震害实例来看, 钢结构的表现均很好; 但它当前的造价及维护费用较高。

(2)现浇钢筋混凝土结构该结构整体性好, 造价低廉, 有较大的抗侧移刚度, 并且经良好的设计可保证结构具有良好的延性。

但该材料也存在难以克服的弱点: 当地震持时较长时, 在周期性往复水平荷载作用下, 构件刚度因裂缝的开展而递减, 且塑性铰区会产生反向斜裂缝, 将混凝土挤碎, 产生永久性的“剪切滑移”[7]。

(3)预应力混凝土结构预应力混凝土结构在非开裂状态下能承受较大的变形, 因而在烈度不高时结构破坏较轻,相应地其所贮藏的弹性变形能要比钢筋混凝土高, 但预应力混凝土结构的滞回曲线比钢筋混凝土狭窄, 所能耗散的滞后能量要少一些, 且由于预应力构件受压区配筋一般相对较少, 一旦混凝土开始压碎, 承载能力就会急剧下降, 因此在高烈度地区, 必须采取措施提高延性, 方能使用预应力混凝土结构。

实践证明, 通过合理控制预应力筋的含量(Q≤0. 5%) 可以实现这个目的[8]。

(4)装配式钢筋混凝土结构此类结构致命的抗震弱点在于整个结构缺乏连续性和整体性; 框架节点等预制构件的连接和接头强度及变形能力均低于构件本身而形成薄弱环节; 同时预制构件装配时会产生次应力, 故这类结构不宜在高烈度地区采用; 但若采用整体装配式结构则可以改善这种情况[5]。

3.8多道抗震设防体系无论选用何种材料、何种结构体系的抗震结构, 都宜设置多道抗震防线。

一次地震持续的时间少则几秒, 多则十几秒甚至更长。

这样长时间的地震动, 一个接一个的强脉冲对建筑物产生多次往复式冲击, 造成累积式破坏; 如果建筑物采用的是单结构体系, 仅有一道抗震防线, 一旦破坏后接踵而来的持续地震就会使建筑倒塌; 而设了多重抗震体系的建筑物, 在第一道防线的抗侧力体系遭破坏后, 后备的第二道、第三道防线立即接替, 抵挡后续的地震冲击, 特别是对于因“共振”而引起的破坏, 在第一道防线失效后,结构转入第二道、第三道防线工作, 此时随着第一道防线破坏塑性铰出现, 结构基本周期已生变化, 从而错开了地震动卓越周期, 建筑物免遭进一步破坏。

这种抗震设计概念是对付高度地震的一种经济有效的办法, 且已应用到实际工程中, 如前面提到的马那瓜美洲银行就是一个应用多道抗震防线概念的成功实例。

美国林同炎国际设计公司设计这一工程(美洲银行)时所采取的指导思想是: 在风荷载和规范规定的等效静力地震荷载作用下, 结构具有较大的抗推刚度以满足变形方面的要求; 当遭遇更高地震烈度, 建筑物所受的地震力很大时,通过某些构件的屈服过渡到另一个具有较高变形能力的结构体系。

据这一指导思想, 该大楼采用了12. 55 m×12. 55 m 的芯筒作为主要的抗风和抗震构件, 不过, 该芯筒又由4 个“L”形小筒构成, 小筒外边尺寸4. 6 m×4. 6 m, 在每层楼板处, 采用较大截面的钢筋混凝土连梁将4 个小筒连成具有较强整体性的芯筒。

进行抗震设计时, 既考虑了4 个小筒作为大筒组成部分发挥整体作用时受力状况, 又考虑了连梁损坏后 4 个小筒各自作为独立构件时的受力状态。

这样, 当小筒间连梁完全破坏后, 整个结构的抗侧力能力也不至降低很多, 同时由于各层连梁两端出现朔性铰之后, 整个结构自震基本周期加长, 地震反应减弱, 有利于保持结构的安全和稳定。

该大楼的震害表现( 表1) 说明这种设计思想是成功的。

据测算, 该次地震在大楼中引起的水平地震力至少是0. 35 g, 大楼是1963 年设计的, 设计的水平地震力相当于0. 06 g, 这就是说大楼经受住了6 倍于设计的地震力。

震后, 美国伯克利加州大学对这幢大楼进行了动力分析, 分别考虑了 4 个“L”型小筒作为一个整体共同工作和 4 个小筒单独工作两种状态,计算出结构的动力特性和对马拉瓜地震的反应(结果见表2) 。

从表中可以看出, 在“大震”时结构的基本周期延长了1. 5 倍, 结构底部地震力减少了一半, 但结构顶部位移增加了一倍。

3.9抗震新思路如前所述, 目前为减轻震害所采取的措施都偏重于提高结构自身的承载能力和变形能力,从而耗散地震能量避免建筑物的倒塌。

这种方法可说是一种“防守”“被动”的办法, 存在着造价高, 构造复杂, 施工难度大的缺点; 此外, 对于持时短, 震级高的直下型地震, 按此方法设防的建筑物甚至来不及通过结构变形和内力调整来耗散地震能量就已因遭受超过结构所能承受的破坏而发生倒塌。

例如在1995 年1 月17 日发生的日本阪神大地震中, 大阪至神户的高速公路高架桥约500 m 区段内数十根巨大的钢筋混凝土桥墩从根部折断整齐地倒向一侧, 充分暴露了传统抗震设计在抗御高震级, 直下型地震时存在的缺陷[6]。

地震对建筑的破坏作用是由于地面运动激发起建筑物的强烈振动所造成的。

既然破坏能量来自地面, 通过基础向上部结构传递, 那么若在基础和上部结构之间设置一个“能量耗散层”以阻隔或减少地震能量向上部结构的传递就能大大减轻地震对建筑物的破坏。

我国的地震实例证实了这种想法的可行性: 如1966 年邢台地震, 极震区大量民房倒塌, 但其中有几栋土坯民房几无破坏, 经考察, 原因在于基墙处铺设厚约30 mm 芦苇杆防潮层, 起到了隔震效果; 又如1977 年在滦县司家营砂土液化区调查, 发现了同样的实例: 一幢民房整体旋转了90 度, 上部结构基本完好; 1966 年东川地震时, 一座筒仓沿底部油毡防潮层产生了水平滑动, 因而整个筒壁未见明显裂缝。

基于这种想法, 工程界发明了多种形式的隔震器, 国外已将之用于实际工程,我国暂处于试运用阶段。

1987 年2 月6 日日本福岛县地震, 地面峰值加速度为40. 5 Gal, 传统结构房屋的最大反应加速度为155. 1 Gal, 而采用了软垫隔震措施的一幢3 层楼房, 最大反应加速度仅为31. 8 Gal。

相关文档
最新文档