2020届四川省绵阳市高中高三第二次诊断性测试理科数学试卷(原卷版)

合集下载

2020年2020届四川省绵阳市高中2017级高三第二次诊断性考试数学(理)试卷及解析

2020年2020届四川省绵阳市高中2017级高三第二次诊断性考试数学(理)试卷及解析

2020年2020届四川省绵阳市高中2017级高三第二次诊断性考试数学(理)试卷★祝考试顺利★(解析版)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}|0U x x =>,{}2|1x M x e e =<<,则U C M =( )A. ()1,2B. ()2,+∞C. (][)0,12,+∞D. [)2,+∞【答案】D【解析】 先确定集合M 的元素,再由补集定义求解.【详解】由题意2{|1}{|02}x M x e e x x =<<=<<,∴{|2}U C M x x =≥.故选:D .2.已知i 为虚数单位,复数z 满足12z i i ⋅=+,则z =( )A. 2i -B. 2i +C. 12i -D. 2i -【答案】A【解析】由除法计算出复数z . 【详解】由题意122i z i i +==-.故选:A .3.已知两个力()11,2F =,()22,3F =-作用于平面内某静止物体的同一点上,为使该物体仍保持静止,还需给该物体同一点上再加上一个力3F ,则3F =( )A. ()1,5-B. ()1,5-C. ()5,1-D. ()5,1-【答案】A【解析】根据力的平衡条件下,合力为0,即可根据向量的坐标运算求得3F .【详解】根据力的合成可知()()()12+1,22,31,5F F =+-=-因为物体保持静止,即合力为0,则 123+0F F F +=即()31,5F =-故选:A4.甲、乙、丙三位客人在参加中国(绵阳)科技城国际科技博览会期间,计划到绵阳的九皇山、七曲山大庙两个景点去参观考察,由于时间关系,每个人只能选择一个景点,则甲、乙、丙三人恰好到同一景点旅游参观的概率为( ) A. 18B. 14C. 38D. 12【答案】B【解析】 可用列举法写出三人选择景点的各种情形.然后计数后可概率.【详解】两景点用1,2表示,三人选择景点的各种情形为:甲1乙1丙1 ,甲1乙1丙2 ,甲1乙2丙1 ,甲2乙1丙1 ,甲2乙2丙1 ,甲2乙1丙2 ,甲1乙2丙2 ,甲2乙2丙2 共8种,其中三人去同一景点的有甲1乙1丙1 和甲2乙2丙2两种,所以概率为2184P ==. 故选:B .5.已知α为任意角,则“1cos 23α=”是“sin 3α=”的( ) A. 充分不必要条件 B. 必要不充分条件。

2020年四川省绵阳市高考数学二诊试卷(理科)

2020年四川省绵阳市高考数学二诊试卷(理科)
在平面直角坐标系中,曲线 的参数方程为 ( , 为参数),以坐标原点 为极点, 轴正半轴为极轴建立极坐标系,曲线 经过点 ,曲线 的直角坐标方程为 = .
(1)求曲线 的普通方程,曲线 的极坐标方程;
(2)若 , 是曲线 上两点,当 时,求 的取值范围.
[选修4-5:不等式选讲](10分)
已知关于 的不等式 ,其中 .
5.
【答案】
此题暂无答案
【考点】
充分常件、头花条件滤充要条件
【解析】
此题暂无解析
【解答】
此题暂无解答
6.
【答京关概念
【解析】
此题暂无解析
【解答】
此题暂无解答
7.
【答案】
此题暂无答案
【考点】
求解线都接归方程
【解析】
此题暂无解析
【解答】
此题暂无解答
8.
【答案】
此题暂无答案
【考点】
双曲根气离心率
【解析】
此题暂无解析
【解答】
A. B. C. D.
4.甲、乙、丙三位客人在参加中国(绵阳)科技城国际科技博览会期间,计划到绵阳的九皇山、七曲山大庙两个景点去参观考察,由于时间关系,每个人只能选择一个景点,则甲、乙、丙三人恰好到同一景点旅游参观的概率为()
A. B. C. D.
5.已知 为任意角,则“ ”是“ ”的()
A.必要不充分条件B.充分不必要条件
列联表


总计
总计
附表:
其中: .
已知等差数列 的前 项和为 ,且满足 = , = .各项均为正数的等比数列 满足 = , = .
(1)求 和 ;
(2)求和: = .
在 中,内角 , , 所对的边分别为 , , .已知 = .

2020年四川省绵阳市高考数学二诊试卷(理科)(含解析)

2020年四川省绵阳市高考数学二诊试卷(理科)(含解析)

2020年四川省绵阳市高考数学二诊试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U ={x|x >0},M ={x|1<e x <e 2},则∁U M =( ) A.(1, 2) B.(2, +∞) C.(0, 1]∪[2, +∞) D.[2, +∞)2.已知i 为虚数单位,复数z 满足z ⋅i =1+2i ,则z 的共轭复数为( ) A.2−i B.2+i C.l −2i D.i −23.已知两个力F 1→=(1, 2),F 2→=(−2, 3)作用于平面内某静止物体的同一点上,为使该物体仍保持静止,还需给该物体同一点上再加上一个力F 3→,F 3→=() A.(1, −5) B.(−1, 5) C.(5, −1) D.(−5, 1)4.甲、乙、丙三位客人在参加中国(绵阳)科技城国际科技博览会期间,计划到绵阳的九皇山、七曲山大庙两个景点去参观考察,由于时间关系,每个人只能选择一个景点,则甲、乙、丙三人恰好到同一景点旅游参观的概率为( ) A.18 B.14C.38D.125.已知α为任意角,则“cos2α=13”是“sinα=√33”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要6.若(ax −1x )5的展开式中各项系数的和为l ,则该展开式中含x 3项的系数为( ) A.−80 B.−10 C.10 D.807.己知某产品的销售额_y 与广告费用x 之间的关系如表:若根据表中的数据用最小二乘法求得y对x的回归直线方程为y=6.5x+9,则下列说法中错误的是()A.产品的销售额与广告费用成正相关B.该回归直线过点(2, 22)C.当广告费用为10万元时,销售额一定为74万元D.m的值是208.双曲线x 2a2−y2b2=1(a>0, b>0)的右焦点为F,过F作与双曲线的两条渐近线平行的直线且与渐近线分别交于A,B两点,若四边形OAFB(O为坐标原点)的面积为bc,则双曲线的离心率为()A.√2B.2C.√3D.39.小明与另外2名同学进行“手心手背”游戏,规则是:3人同时随机等可能选择手心或手背中的一种手势,规定相同手势人数多者每人得1分,其余每人得0分,现3人共进行了4次游戏,记小明4次游戏得分之和为x,则X的期望为()A.1B.2C.3D.410.已知圆C:x2+y2−6x−8y+9=0,点M,N在圆C上,平面上一动点P 满足|PM|=|PN|且PM⊥PN,则|PC|的最大值为()A.8B.8√2C.4D.4√211.己知f(x)为偶函数,且当x≥0时,f(x)=xcosx−sinx+13x3,则满足不等式f(log2m)+f(log12m)<2f (1)的实数m的取值范围为()A.( 12, 2) B.(0, 2) C.(0, 12)∪(1, 2) D.(2, +∞)12.函数f(x)=(2ax−1)2−log a(ax+2)在区间[0, 1a]上恰有一个零点,则实数a的取值范围是()A.( 13, 12) B.(1, 2]∪[3, +∞)C.(1, 2)∪[3, +∞) D.[2, 3)二、填空题:本大题共4小题,每小题5分,共20分.13.直线l 1:ax −(a +1)y −1=0与直线4x −6y +3=0平行,则实数a 的值是________.14.法国数学家布丰提出一种计算圆周率π的方法一一随机投针法.受其启发,我们设计如下实验来估计π的值:先请200名同学每人随机写下一个横、纵坐标都小于l 的正实数对(x, y);再统计两数的平方和小于l 的数对(x, y)的个数m ,最后再根据统计数m 来估计π的值,已知某同学一次试验统计出m =156,则其试验估计π为________.15.函数y =sin(ωx +φ)(ω>0, |φ|<π2)的图象如图所示,则f(x)在区间[−π, π]上的零点之和为________.16.过点M(−1, 0)的直线,与抛物线C:y 2=4x 交于A ,B 两点(A 在M ,B 之间),F 是抛物线C 的焦点,点N 满足:NA →=5AF →,则△ABF 与△AMN 的面积之和的最小值是________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.每年的4月23日为“世界读书日”,某调查机构对某校学生做了一个是否喜爱阅读的抽样调查:该调查机构从该校随机抽查了100名不同性别的学生(其中男生45名),统计了每个学生一个月的阅读时间,其阅读时间t (小时)的频率分布直方图如图所示:(1)求样本学生一个月阅读时间t的中位数m.(2)已知样本中阅读时间低于m的女生有30名,请根据题目信息完成下面的2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下认为阅读与性别有关.2×2列联表附表:.其中:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)18.已知等差数列{a n}的前n项和为S n,且满足a1+a2=0,S6=24.各项均为正数的等比数列{b n}满足b1+b2=a4+1,b3=S4.(1)求a n和b n;(2)求和:T n=1+(1+b1)+(1+b1+b2)+...+(1+b1+b2+...+b n−1).19.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知(sinA+sinB)(a−b)=c(sinC+sinB).(1)求A;(2)若D为BC边上一点,且AD⊥BC,BC=2√3AD,求sinB.20.已知椭圆C:x 22+y 2=1,直线l 交椭圆C 于A ,B 两点.(l)若点P(−1, 1)满足OA ¯+OB ¯+OP ¯=0→(O 为坐标原点),求弦AB 的长; 若直线l 的斜率不为0且过点(2, 0),M 为点A 关于x 轴的对称点,点N(n, 0)满足MN ¯=λNB ¯,求n 的值.21.己知函数f(x)=2lnx +12x 2−ax ,其中a ∈R . (1)讨论函数f(x)的单调性;(2)设函数f(x)有两个极值点x 1,x 2(其中x 2>x 1),若f(x 2)−f(x I )的最大值为2ln2−32,求实数a 的取值范围.(二)选考题:共10分.请考生在第22、23题申任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系中,曲线C 1的参数方程为{x =1+rcosφy =rsinφ (r >0,φ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1经过点P(2, π3),曲线C 2的直角坐标方程为x 2−y 2=1. (1)求曲线C 1的普通方程,曲线C 2的极坐标方程;(2)若A(ρ1, α),B(ρ2, α−π6)是曲线C2上两点,当α∈(0, π4)时,求1|OA|2+1|OB|2的取值范围.[选修4-5:不等式选讲](10分)23.已知关于x的不等式|x+1|−|2x−1|≤log12a,其中a>0.(1)当a=4时,求不等式的解集;(2)若该不等式对x∈R恒成立,求实数a的取值范围.2020年四川省绵阳市高考数学二诊试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U ={x|x >0},M ={x|1<e x <e 2},则∁U M =( ) A.(1, 2) B.(2, +∞) C.(0, 1]∪[2, +∞) D.[2, +∞)【解答】∵U ={x|x >0},M ={x|0<x <2}, ∴∁U M =[2, +∞).2.已知i 为虚数单位,复数z 满足z ⋅i =1+2i ,则z 的共轭复数为( ) A.2−i B.2+i C.l −2i D.i −2【解答】∵z ⋅i =1+2i ,∴z =1+2i i=(1+2i)i i 2=2−i ,∴z 的共轭复数为:2+i ,3.已知两个力F 1→=(1, 2),F 2→=(−2, 3)作用于平面内某静止物体的同一点上,为使该物体仍保持静止,还需给该物体同一点上再加上一个力F 3→,F 3→=() A.(1, −5) B.(−1, 5) C.(5, −1) D.(−5, 1)【解答】根据题意可知−F 3=F 1+F 2=(1, 2)+(−2, 3)=(−1, 5),则F 3=(1, −5), 4.甲、乙、丙三位客人在参加中国(绵阳)科技城国际科技博览会期间,计划到绵阳的九皇山、七曲山大庙两个景点去参观考察,由于时间关系,每个人只能选择一个景点,则甲、乙、丙三人恰好到同一景点旅游参观的概率为( ) A.18 B.14C.38D.12【解答】甲、乙、丙三人每人有2种选择,共有23=8种情况, 甲,乙,丙三人去同一景点有2种情况,故甲、乙、丙三人恰好到同一景点旅游参观的概率为14, 5.已知α为任意角,则“cos2α=13”是“sinα=√33”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要【解答】若cos2α=13,则cos2α=1−sin 2α,sinα=±√33,则cos2α=13”是“sinα=√33”的不充分条件; 若sinα=√33,则cos2α=1−sin 2α,cos2α=13,则cos2α=13”是“sinα=√33”的必要条件;综上所述:“cos2α=13”是“sinα=√33”的必要不充分条件. 6.若(ax −1x )5的展开式中各项系数的和为l ,则该展开式中含x 3项的系数为( ) A.−80 B.−10 C.10 D.80【解答】对于(ax −1x )5的展开式,令x =1,可得展开式中各项系数的和为(a −1)5=l ,∴a =2.∴(ax −1x )5=(2x −1x )5,故展开式中的通项公式为T r+1=C 5r⋅(−1)r ⋅25−r ⋅x 5−2r ,令5−2r =3,求得r =1,可得该展开式中含x 3项的系数−C 51⋅24=−80,7.己知某产品的销售额_y 与广告费用x 之间的关系如表:若根据表中的数据用最小二乘法求得y 对x 的回归直线方程为y =6.5x +9,则下列说法中错误的是( ) A.产品的销售额与广告费用成正相关 B.该回归直线过点(2, 22)C.当广告费用为10万元时,销售额一定为74万元D.m 的值是20 【解答】由线性回归方程y =6.5x +9,可知产品的销售额与广告费用成正相关,故A 正确;x¯=0+1+2+3+45=2,y¯=10+15+m+30+355=90+m5,代入y=6.5x+9,得90+m5=6.5×2+9,解得m=20,故D正确;y¯=90+m5=90+205=22,则该回归直线过点(2, 22),故B正确;取x=10,得y=6.5×10+9=74,说明当广告费用为10万元时,销售额预计为74万元,故C错误.8.双曲线x 2a2−y2b2=1(a>0, b>0)的右焦点为F,过F作与双曲线的两条渐近线平行的直线且与渐近线分别交于A,B两点,若四边形OAFB(O为坐标原点)的面积为bc,则双曲线的离心率为()A.√2B.2C.√3D.3【解答】双曲线x 2a −y2b=1(a>0, b>0)的右焦点为F(c, 0),设OA的方程为bx−ay=0,OB的方程为bx+ay=0,过F平行于OA的直线FB的方程为y=ba(x−c),平行于OB的直线FA的方程为y=−ba(x−c),可得平行线OA和BF的距离为√22=b,由{bx−ay=0bx+ay−bc=0可得x=12c,y=bc2a,即A(12c, bc2a),则平行四边形OAFB的面积为S=b√14c2+b2c24a2=bc,化为b2=3a2,则e=ca =√1+b2a2=√1+3=2.9.小明与另外2名同学进行“手心手背”游戏,规则是:3人同时随机等可能选择手心或手背中的一种手势,规定相同手势人数多者每人得1分,其余每人得0分,现3人共进行了4次游戏,记小明4次游戏得分之和为x,则X的期望为()A.1B.2C.3D.4【解答】3人同时随机等可能选择手心或手背中的一种手势,规定相同手势人数多者每人得1分,其余每人得0分,现3人共进行了4次游戏,记小明4次游戏得分之和为x,则X的可能取值为0,1,2,3,4,设其他两位同学为a,b,小明为c,列表得共有8种情况,小明得1分结果有6种情况,,∴小明每局每得分的概率P=34),∴X∼B(4, 34=3.∴E(X)=4×3410.已知圆C:x2+y2−6x−8y+9=0,点M,N在圆C上,平面上一动点P 满足|PM|=|PN|且PM⊥PN,则|PC|的最大值为()A.8B.8√2C.4D.4√2【解答】根据题意,若平面上一动点P满足|PM|=|PN|,又由|CM|=|CN|,则PC为线段MN的垂直平分线,设MN的中点为G,|NG|=n,|CG|=m,又由|PM|=|PN|且PM⊥PN,则△PMN为等腰直角三角形,故|PG|=|NG|=n,圆C:x2+y2−6x−8y+9=0,即(x−3)2+(y−4)2=16,则m2+n2=16,则|PC|=(m+n)=√(m+n)2=√m2+n2+2mn=√16+2mn≤√16+(m2+n2)=4√2,当且仅当m =n 时等号成立, 故|PC|的最大值为4√2,11.己知f(x)为偶函数,且当x ≥0时,f(x)=xcosx −sinx +13x 3,则满足不等式f(log 2m)+f(log 12m)<2f (1)的实数m 的取值范围为( )A.( 12, 2) B.(0, 2)C.(0, 12)∪(1, 2) D.(2, +∞)【解答】当x ≥0时,f′(x)=cosx −xsinx −cosx +x 2=x 2−xsinx =x(x −sinx)>0,即函数f(x)在[0, +∞)上为增函数,∴f(log 2m)+f(log 12m)<2f (1)等价为f(log 2m)+f(−log 2m)<2f(1),即f(log 2m)<f(1), ∴−1<log 2m <1, ∴12<m <2. 故选:A .12.函数f(x)=(2ax −1)2−log a (ax +2)在区间[0, 1a ]上恰有一个零点,则实数a 的取值范围是( ) A.( 13, 12) B.(1, 2]∪[3, +∞) C.(1, 2)∪[3, +∞)D.[2, 3)【解答】依题意,函数f(x)在区间[0, 1a ]上有零点的充分条件为f(0)f(1a )≤0,即(1−log a 2)(1−log a 3)≤0, ∴{1−log a 2≤01−log a 3≥0 或{1−log a 2≥01−log a 3≤0,解得2≤a ≤3,由此可排除A 、B 、C ,又当a =3时,f(x)=(6x −1)2−log 3(3x +2),显然f(13)=1−1=0,f(0)=1−log 32>0,f(19)=19−log 373=109−log 37<0,则在(0,19)上有一个零点,故此时函数f(x)有两个零点,不符题意, 二、填空题:本大题共4小题,每小题5分,共20分.直线l 1:ax −(a +1)y −1=0与直线4x −6y +3=0平行,则实数a 的值是________.【解答】∵直线l1:ax−(a+1)y−1=0与直线4x−6y+3=0平行,∴a4=−(a+1)−6,解得a=2,∴实数a的值为2.法国数学家布丰提出一种计算圆周率π的方法一一随机投针法.受其启发,我们设计如下实验来估计π的值:先请200名同学每人随机写下一个横、纵坐标都小于l的正实数对(x, y);再统计两数的平方和小于l的数对(x, y)的个数m,最后再根据统计数m来估计π的值,已知某同学一次试验统计出m=156,则其试验估计π为________.【解答】由题意,两数的平方和小于1,对应的区域的面积为14π⋅12,从区间[0, 1]随机抽取横、纵坐标都小于l的对应面积为:1;∴14π1=156200⇒π=4×156200=3.12.函数y=sin(ωx+φ)(ω>0, |φ|<π2)的图象如图所示,则f(x)在区间[−π, π]上的零点之和为________.【解答】∵根据函数y=sin(ωx+φ)(ω>0, |φ|<π2)的图象,可得3T4=34⋅2πω=11π12−π6,求得ω=2.再根据五点法作图可得2×π6+φ=π2,∴φ=π6,故f(x)=sin(2x+π6).在区间[−π, π]上,2x+π6∈[−11π6, 13π6],f(x)共有4个零点:a、b、c、d,且a<b<c<d,则2a+π6+2b+π6=2×(−π2),2c+π6+2d+π6=2×(3π2),故它的所有零点之和为a +b +c +d =2π3,过点M(−1, 0)的直线,与抛物线C:y 2=4x 交于A ,B 两点(A 在M ,B 之间),F 是抛物线C 的焦点,点N 满足:NA →=5AF →,则△ABF 与△AMN 的面积之和的最小值是________. 【解答】焦点F(1, 0),由对称性,显然直线AB 的斜率不为0,设直线AB 的方程为:x =my −1,A(x ′, y ′),B(x, y),由题意知y >y ′,联立直线与抛物线的方程整理得:y 2−4my +4=0,△=(−4m)2−16>0,m 2>1,m >1解得:y +y ′=4m ,y ′=2m −2√m 2−1,设N(x 0, y 0)满足:NA →=5AF →,(x ′−x 0, y ′−y 0)=5(−x ′, −y ′),∴y 0=6y ′, S △ABF =S △BMF −S △AMF =12⋅MF ⋅(y −y ′),S △ANM =S △NMF −S △AMF =12⋅MF ⋅(y 0−y ′),MF =2∴S △ABF +S △AMN =12⋅MF ⋅(y +y 0−2y ′)=y +y ′+3y ′=10m −6√m 2−1(m >1),令f(m)=10m −6√m 2−1,f ′(m)=10−√m 2−1,令f ′(m)=0,m =54,m ∈(1,54),f ′(m)<0,f(m)单调递减,m >54,f ′(m)>0,f(m)单调递增,所以m =54时,f(m)最小,且为:10×54−6√(54)2−1=8,所以△ABF 与△AMN 的面积之和的最小值是8,三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.每年的4月23日为“世界读书日”,某调查机构对某校学生做了一个是否喜爱阅读的抽样调查:该调查机构从该校随机抽查了100名不同性别的学生(其中男生45名),统计了每个学生一个月的阅读时间,其阅读时间t(小时)的频率分布直方图如图所示:(1)求样本学生一个月阅读时间t的中位数m.(2)已知样本中阅读时间低于m的女生有30名,请根据题目信息完成下面的2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下认为阅读与性别有关.2×2列联表附表:.其中:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)【解答】由题意得,直方图中第一组、第二组的频率之和为:(0.04+0.06)×5=0.5,所以阅读时间的中位数为m=10;由题意得,男生人数为45人,因此女生人数为55人,由频率分布直方图得,阅读时长大于或等于m的人数为100×0.5=50人;所以填写列联表如下;由表中数据,计算K2=100×(25×30−25×20)250×50×45×55=10099≈1.01<2.706,所以不能在犯错误的概率不超过0.1的前提下认为“阅读与性别有关”.已知等差数列{a n}的前n项和为S n,且满足a1+a2=0,S6=24.各项均为正数的等比数列{b n}满足b1+b2=a4+1,b3=S4.(1)求a n和b n;(2)求和:T n=1+(1+b1)+(1+b1+b2)+...+(1+b1+b2+...+b n−1).【解答】设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由题意,得{2a1+d=06a1+6×52d=24,解得{a1=−1d=2.∴a n=2n−3,n∈N∗.∵等比数列{b n}的各项均为正数,由{b1+b1q=6b1q2=8,解得{b1=2q=2或{b1=18q=−23(舍去).∴b n=2n,n∈N∗.由(1),得1+b1+b2+...+b n−1=1+2+22+...+2n−1=2n−1.则T n=1+(1+b1)+(1+b1+b2)+...+(1+b1+b2+...+b n−1).=1+(22−1)+(23−1)+...+(2n−1)=(21−1)+(22−1)+(23−1)+...+(2n−1)=(21+22+23+...+2n)−n=2(1−2n)−n=2n+1−n−2.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知(sinA +sinB)(a −b)=c(sinC +sinB). (1)求A ;(2)若D 为BC 边上一点,且AD ⊥BC ,BC =2√3AD ,求sinB . 【解答】∵(sinA +sinB)(a −b)=c(sinC +sinB),∴由正弦定理可得:(a +b)(a −b)=c(c +b),即a 2=b 2+c 2+bc , ∴由余弦定理可得:cosA =b 2+c 2−a 22bc=−12,∵0<A <π, ∴A =2π3.∵在△ABC 中,S △ABC =12AB ⋅AC ⋅sin∠BAC =12BC ⋅AD ,即√32bc =a ⋅AD ,由已知BC =2√3AD ,可得AD =2√3,∴3bc =a 2,∴在△ABC 中,由余弦定理可得a 2=b 2+c 2−2bccos120∘, 即3bc =b 2+c 2+bc ,整理可得(b −c)2=0,即b =c , ∴B =C =π6, ∴sinB =sin π6=12. 已知椭圆C:x 22+y 2=1,直线l 交椭圆C 于A ,B 两点.(l)若点P(−1, 1)满足OA ¯+OB ¯+OP ¯=0→(O 为坐标原点),求弦AB 的长; 若直线l 的斜率不为0且过点(2, 0),M 为点A 关于x 轴的对称点,点N(n, 0)满足MN ¯=λNB ¯,求n 的值. 【解答】(1)设A(x, y),B(x ′, y ′),由OA →+OB →+OP →=0→,(O 为坐标原点),且P(−1, 1),得x +x ′=1,y +y ′=−1,所以线段AB 的中点坐标(12, −12),其在椭圆内部,由{x 22+y 2=1x ′22+y′2=1两式相减得:x ′2−x 22+y ′2−y 2=0,所以k AB =y ′−y x −x=x+x ′y+y ′(−12)=12,所 以直线AB 的方程为:y −(−12)=12(x −12),即2x −4y −3=0; 联立直线AB 与椭圆的方程整理得:24y 2+24y +1=0, ∴y +y ′=−1,yy ′=124,∴|AB|=√1+1k 2√(y +y ′)2−4yy ′=5√66; (2)由题意设直线AB 的方程为:x =ty +2,由题意得M(x, −y),联立直线AB 与椭圆的方程整理得:(2+t 2)y 2+4ty +2=0,∴y +y ′=−4t2+t 2,yy ′=22+t 2,由满足MN ¯=λNB ¯知,M ,N ,B 三点共线, 即k MN =k MB ,∴0−(−y)n−x=y ′−(−y)x ′−x,即yn−x =y ′+y x−x ′,解得:n =y(x ′−x)y ′+y+x ,将x =ty +2,x ′=ty ′+2代入得n =2tyy ′y+y +2=4t−4t +2=1,所以n 的值为1.己知函数f(x)=2lnx +12x 2−ax ,其中a ∈R . (1)讨论函数f(x)的单调性;(2)设函数f(x)有两个极值点x 1,x 2(其中x 2>x 1),若f(x 2)−f(x I )的最大值为2ln2−32,求实数a 的取值范围. 【解答】 f ′(x)=x 2−ax+2x,x >0,令g(x)=x 2−ax +2,△=a 2−8,①当a ≤0或△≤0即a ≤2√2时,f′(x)≥0恒成立,此时f(x)在(0, +∞)上单调递增;②当{a >0△>0 ,即a >2√2时,由f′(x)>0得,0<x <a−√a 2−82或x >a+√a 2+82;由f′(x)<0得,a−√a 2−82<x <a+√a 2−82;∴函数f(x)在(0,a−√a 2−82),(a+√a 2+82,+∞)上单调递增,在(a−√a 2−82,a+√a 2+82)上单调递减;综上所述,当a ≤2√2时,f(x)在(0, +∞)上单调递增;当a >2√2时,f(x)在(0,a−√a 2−82),(a+√a 2+82,+∞)上单调递增,在(a−√a 2−82,a+√a 2+82)上单调递减;由(1)知,当a >2√2时,f(x)有两极值点x 1,x 2(x 2>x 1),由(1)得x 1,x 2为g(x)=x 2−ax +2=0的两根,于是x 1+x 2=a ,x 1x 2=2,∴f(x 2)−f(x 1)=21n x 2x 1+12(x 22−x 12)−a(x 2−x 1)=21n x 2x 1−x 2x 1+x1x 2,令t =x 2x 1(t >1),则f(x 2)−f(x 1)=ℎ(t)=21nt −t +1t ,∵ℎ(t)=2t −1−1t 2=−(t−1)2t 2<0,∴ℎ(t)在(1, +∞)上单调递减,由已知ℎ(t)=f(x 2)−f(x I )的最大值为2ln2−32,而ℎ(2)=2ln2−32, 所以t =2,设t 的取值集合T ,则只要满足T ⊆[2, +∞)且T 中的最小元素为2的T 集合都满足题意, 又12a 2=(x 1+x 2)2x 1x 2=t +1t +2,易知φ(t)=t +1t +2在[2, +∞)上单调递增,结合a >2√2,可得a 与t 是一一对应关系,而当t =2,即x2x 1=2时,联合x 1x 2=2,解得x 2=2,x 1=1,进而可得a =3,∴实数a 的取值范围为[3, +∞)或[3, +∞)的任意最小元素为3的子集. (二)选考题:共10分.请考生在第22、23题申任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]在平面直角坐标系中,曲线C 1的参数方程为{x =1+rcosφy =rsinφ (r >0,φ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1经过点P(2, π3),曲线C 2的直角坐标方程为x 2−y 2=1. (1)求曲线C 1的普通方程,曲线C 2的极坐标方程;(2)若A(ρ1, α),B(ρ2, α−π6)是曲线C 2上两点,当α∈(0, π4)时,求1|OA|2+1|OB|2的取值范围.【解答】将曲线C 1的参数方程转化成普通方程为:(x −1)2+y 2=r 2, 由x =ρcosθ,y =ρsinθ,得点P(2, π3)的直角坐标为(1, √3),代入曲线C 1得r 2=3, ∴曲线C 1的普通方程为:(x −1)2+y 2=3, C 2可化为ρ2cos 2θ−ρ2sin 2θ=1, 即ρ2cos2θ=1,∴曲线C 2的极坐标方程ρ2cos2θ=1,将点A(ρ1, α),B(ρ2, α−π6)是曲线C 2的极坐标方程,得p 12cos2α=1,ρ22cos(2α−π3)=1,∴1|OA|2+1|OB|2=1ρ12+1ρ22=cos2α+cos(2α−π3)=32cos2α+√32sin2α=√3sin(2α+π3).当α∈(0, π4)时,2α+π3∈(π3,5π6),于是√3sin(2α+π3)∈(√32,√3]. 所以1|OA|+1|OB|的取值范围是(√32,√3]. [选修4-5:不等式选讲](10分)已知关于x 的不等式|x +1|−|2x −1|≤log 12a ,其中a >0.(1)当a =4时,求不等式的解集;(2)若该不等式对x ∈R 恒成立,求实数a 的取值范围. 【解答】当a =4时,关于x 的不等式|x +1|−|2x −1|≤log 12a =−2,当x ≥12时,x +1−(2x −1)≤−2,解得x ≥4,综合可得x ≥4; 当x ≤−1时,−x −1+(2x −1)≤−2,解得x ≤0,综合可得x ≤−1; 当−1<x <12时,x +1+(2x −1)≤−2,解得x ≤−23,综合可得−1<x ≤−23,综上可得原不等式的解集为(−∞, −23]∪[4, +∞);设函数f(x)=|x +1|−|2x −1|=|x +1|−|x −12|−|x −12|≤|x +1−(x −12)|−0=32,可得x =12时,f(x)取得最大值32, 若该不等式对x ∈R 恒成立,可得log 12a ≥32,解得0<a ≤√24.。

2020届四川省绵阳市高考数学二诊试卷(理科)(有答案)

2020届四川省绵阳市高考数学二诊试卷(理科)(有答案)

四川省绵阳市高考数学二诊试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每个小题给出的四个选型中,只有一个是符合题目要求的.1.若集合A={x|y=2x},集合,则A∩B=()A.(0,+∞)B.(1,+∞)C.[0,+∞)D.(﹣∞,+∞)2.为了得到函数y=3sin(2x+),x∈R的图象,只需把函数y=3sin(x+),x∈R的图象上所有的点的()A.横坐标伸长到原来的2倍,纵坐标不变B.横坐标缩短到原来的倍,纵坐标不变C.纵坐标伸长到原来的2倍,横坐标不变D.纵坐标缩短到原来的倍,横坐标不变3.双曲线﹣=1(a>0,b>0)的一条渐近线方程是y=x,则该双曲线的离心率是()A.B.C.D.4.在复平面内,复数z=(|a|﹣1)+(a+1)i(a∈R,i为虚数单位)对应的点位于第四象限的充要条件是()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣15.已知直线2x+y﹣3=0的倾斜角为θ,则的值是()A.﹣3 B.﹣2 C.D.36.在闭区间[﹣4,6]上随机取出﹣个数x,执行如右图所示的程序框图,则输出的x不小于39的概率为()A.B.C.D.7.已知点M是边长为2的正方形ABCD的内切圆内(含边界)一动点,则•的取值范围是()A.[﹣1,0] B.[﹣1,2] C.[﹣1,3] D.[﹣1,4]8.已知正项等比数列{a n}满足a5+a4﹣a3﹣a2=8,则a6+a7的最小值为()A.4 B.16 C.24 D.329.已知f(x)=x2++c(b,c为常数)和g(x)=x+是定义在M={x|1≤x≤4}上的函数,对任意的x∈M,存在x0∈M使得f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),则f(x)在集合M上的最大值为()A.B.5 C.6 D.810.已知抛物线x2=4py(p>0)的焦点F,直线y=x+2与该抛物线交于A,B两点,M是线段AB的中点,过M作x轴的垂线,垂足为N,若•+(+)•=﹣1﹣5p2,则p的值为()A.B.C.1 D.2二、填空题:本大题共5小题,每小题5分,共25分.11.某小组4个同学的数学成绩的茎叶图如图,则该组同学的成绩的中位数是______.12.在x(x﹣1)5展开式中含x3项的系数是______(用数字作答).13.从数字0、1、2、3、4、5这6个数字中任选三个不同的数字组成的三位偶数有______个.(用数字作答)14.已知点P在单位圆x2+y2=1上运动,P到直线3x﹣4y﹣10=0与x=3的距离分为d1、d2,则d1+d2的最小值是______.15.现定义一种运算“⊕”:对任意实数a,b,a⊕b=,设f(x)=(x2﹣2x)⊕(x+3),若函数g(x)=f(x)+k的图象与x轴恰有两个公共点,则实数k的取值范围是______.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,原理毒品”的电视公益广告,期望让更多的市民知道毒品的危害性,禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段性在[10,20),[20,30),[30,40),[40,50),[50,60)的市民进行问卷调查,由此得到样本频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄段在[30,40)的人数;(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5人,求[50,60)年龄段抽取的人数;(Ⅲ)从(Ⅱ)中方式得到的5人中再抽取2人作为本次活动的获奖者,记X为年龄在[50,60)年龄段的人数,求X的分布列及数学期望.17.已知函数f(x)=cos4x﹣2sinxcosx﹣sin4x.(1)若x是某三角形的一个内角,且f(x)=﹣,求角x的大小;(2)当x∈[0,]时,求f(x)的最小值及取得最小值时x的集合.18.已知二次函数f(x)=x2+4x+m(m∈R,m为常数)的图象与坐标轴有三个交点,记过这三个交点的圆为圆C.(I)求m的取值范围;(Ⅱ)试证明圆C过定点(与m的取值无关),并求出该定点的坐标.19.已知等差数列{a n}的前n项和S n满足:S5=30,S10=110,数列{b n}的前n项和T n满足:b1=1,b n﹣2T n=1.+1(1)求S n与b n;(2)比较S n b n与2T n a n的大小,并说明理由.20.在平面直角坐标系中,动点M到定点F(﹣1,0)的距离和它到直线l:x=﹣2的距离之比是常数,记动点M的轨迹为T.(1)求轨迹T的方程;(2)过点F且不与x轴重合的直线m,与轨迹T交于A,B两点,线段AB的垂直平分线与x轴交于点P,与轨迹T是否存在点Q,使得四边形APBQ为菱形?若存在,请求出直线m的方程;若不存在,请说明理由.21.已知函数f(x)=lnx﹣mx(m∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当m≥时,设g(x)=2f(x)+x2的两个极值点x1,x2(x1<x2)恰为h(x)=lnx﹣cx2﹣bx的零点,求y=(x1﹣x2)h′()的最小值.四川省绵阳市高考数学二诊试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每个小题给出的四个选型中,只有一个是符合题目要求的.1.若集合A={x|y=2x},集合,则A∩B=()A.(0,+∞)B.(1,+∞)C.[0,+∞)D.(﹣∞,+∞)【考点】函数的定义域及其求法;交集及其运算.【分析】求出集合A中函数的定义域确定出A,求出集合B中函数的定义域确定出B,求出A与B的交集即可.【解答】解:集合A中的函数y=2x,x∈R,即A=R,集合B中的函数y=,x≥0,即B=[0,+∞),则A∩B=[0,+∞).故选C2.为了得到函数y=3sin(2x+),x∈R的图象,只需把函数y=3sin(x+),x∈R的图象上所有的点的()A.横坐标伸长到原来的2倍,纵坐标不变B.横坐标缩短到原来的倍,纵坐标不变C.纵坐标伸长到原来的2倍,横坐标不变D.纵坐标缩短到原来的倍,横坐标不变【考点】函数y=Asin(ωx+φ)的图象变换.【分析】得到函数的图象,只需把函数的图象上所有的点横坐标变为原来的一半【解答】解:由函数图象变换的规则函数的图象,可以由函数的图象上所有的点横坐标缩短到原来的倍,纵坐标不变得到故选B.3.双曲线﹣=1(a>0,b>0)的一条渐近线方程是y=x,则该双曲线的离心率是()A.B.C.D.【考点】双曲线的简单性质.【分析】根据双曲线=1(a>0,b>0)的渐近线的方程,得出=,再利用离心率e==计算.【解答】解:双曲线=1(a>0,b>0)的渐近线的方程为:y=±x,∵双曲线的一条渐近线方程是y=x,∴=,则离心率e=====.故选:B4.在复平面内,复数z=(|a|﹣1)+(a+1)i(a∈R,i为虚数单位)对应的点位于第四象限的充要条件是()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣1【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】由复数z的实部大于0,且虚部小于0联立不等式组求得答案.【解答】解:由z=(|a|﹣1)+(a+1)i对应的点位于第四象限,得,即a<﹣1.∴复数z=(|a|﹣1)+(a+1)i对应的点位于第四象限的充要条件是a<﹣1.故选:D.5.已知直线2x+y﹣3=0的倾斜角为θ,则的值是()A.﹣3 B.﹣2 C.D.3【考点】同角三角函数基本关系的运用;直线的倾斜角.【分析】由直线的倾斜角和斜率的关系可得tanθ=﹣2,要求的式子可化为,代入计算可得.【解答】解:∵直线2x+y﹣3=0的倾斜角为θ,∴tanθ=﹣2,∴===.故选:C.6.在闭区间[﹣4,6]上随机取出﹣个数x,执行如右图所示的程序框图,则输出的x不小于39的概率为()A.B.C.D.【考点】几何概型;程序框图.【分析】根据程序框图求出x的取值范围,结合几何概型的概率公式进行求解即可.【解答】解:由程序框图知,第一次循环,n=1,满足条件n≤3,y=2x+1,n=2,第二次循环,n=2,满足条件n≤3,y=2(2x+1)+1=4x+3,n=3,第三次循环,n=3,满足条件n≤3,y=2(4x+3)+1=8x+7,n=4,此时不满足条件n≤3输出y=8x+7,由8x+7≥39得x≥4,即4≤x≤6,则对应的概率P==,故选:A7.已知点M 是边长为2的正方形ABCD 的内切圆内(含边界)一动点,则•的取值范围是( ) A .[﹣1,0] B .[﹣1,2] C .[﹣1,3] D .[﹣1,4] 【考点】平面向量数量积的运算.【分析】如图所示,由题意可得:点M 所在的圆的方程为:(x ﹣1)2+(y ﹣1)2≤1(0≤x ≤2,0≤y ≤2).可设点M (x ,y )可得•=(x ﹣1)2+y 2﹣1,由∈[0,2],即可得出.【解答】解:如图所示,由题意可得:点M 所在的圆的方程为:(x ﹣1)2+(y ﹣1)2≤1(0≤x ≤2,0≤y ≤2). 可设点M (x ,y ) A (0,0),B (2,0).∴•=(﹣x ,﹣y )•(2﹣x ,﹣y )=﹣x (2﹣x )+y 2=(x ﹣1)2+y 2﹣1, 由∈[0,2],∴•∈[﹣1,3], 故选:C .8.已知正项等比数列{a n }满足a 5+a 4﹣a 3﹣a 2=8,则a 6+a 7的最小值为( ) A .4 B .16 C .24 D .32【考点】导数在最大值、最小值问题中的应用;等比数列的性质;数列与函数的综合.【分析】可判数列{a n +a n +1}也是各项均为正的等比数列,设数列{a n +a n +1}的公比为x ,a 2+a 3=a ,则x ∈(1,+∞),a 4+a 5=ax ,结合已知可得a=,代入可得y=a 6+a 7的表达式,x ∈(1,+∞),由导数求函数的最值即可.【解答】解:∵数列{a n }是各项均为正的等比数列, ∴数列{a n +a n +1}也是各项均为正的等比数列, 设数列{a n +a n +1}的公比为x ,a 2+a 3=a , 则x ∈(1,+∞),a 5+a 4=ax , ∴有a 5+a 4﹣a 3﹣a 2=ax ﹣a=8,即a=,∴y=a 6+a 7=ax 2=,x ∈(1,+∞),求导数可得y ′==,令y ′>0可得x >2, 故函数在(1,2)单调递减,(2,+∞)单调递增, ∴当x=2时,y=a 6+a 7取最小值:32. 故选:D .9.已知f(x)=x2++c(b,c为常数)和g(x)=x+是定义在M={x|1≤x≤4}上的函数,对任意的x∈M,存在x0∈M使得f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),则f(x)在集合M上的最大值为()A.B.5 C.6 D.8【考点】函数的最值及其几何意义.【分析】由基本不等式可得g(x)≥1(当且仅当x=,即x=2时,等号成立),从而可得c=﹣1﹣,求导f′(x)=x﹣=,从而可得b=8,c=﹣5,从而解得.【解答】解:∵g(x)=x+≥2=1,(当且仅当x=,即x=2时,等号成立),∴f(2)=2++c=g(2)=1,∴c=﹣1﹣,∴f(x)=x2+=x2+﹣1﹣,∴f′(x)=x﹣=,∵f(x)在x=2处有最小值,∴f′(2)=0,即b=8,故c=﹣5,故f(x)=x2+﹣5,f′(x)=,故f(x)在[1,2]上是减函数,在[2,4]上是增函数,而f(1)=+8﹣5=,f(4)=8+2﹣5=5,故f(x)的最大值为5,故选:B.10.已知抛物线x2=4py(p>0)的焦点F,直线y=x+2与该抛物线交于A,B两点,M是线段AB的中点,过M作x轴的垂线,垂足为N,若•+(+)•=﹣1﹣5p2,则p的值为()A.B.C.1 D.2【考点】抛物线的简单性质.【分析】设A(x1,y1),B(x2,y2),把y=x+2代入x2=4py得x2﹣4px﹣8p=0.利用韦达定理,结合向量的数量积公式,即可得出结论.【解答】解:设A(x1,y1),B(x2,y2),把y=x+2代入x2=4py得x2﹣4px﹣8p=0.由韦达定理得x1+x2=4p,x1x2=﹣8p,所以M(2p,2p+2),所以N点(2p,0).同理y1+y2=4p+4,y1y2=4∵•+(+)•=﹣1﹣5p2,∴(﹣x1,p﹣y1)•(﹣x2,p﹣y2)+(﹣x1﹣x2,2p﹣y1﹣y2)•(2p,﹣p)=﹣1﹣5p2,代入整理可得4p2+4p﹣3=0,∴p=.故选:B.二、填空题:本大题共5小题,每小题5分,共25分.11.某小组4个同学的数学成绩的茎叶图如图,则该组同学的成绩的中位数是127.【考点】众数、中位数、平均数.【分析】根据茎叶图中的数据,计算数据的中位数即可.【解答】解:根据茎叶图,得到4位同学的成绩为:114,126,128,132,所以中位数是=127.故答案为:127.12.在x(x﹣1)5展开式中含x3项的系数是﹣10(用数字作答).【考点】二项式定理的应用.【分析】把(x﹣1)5 按照二项式定理展开,可得x(x﹣1)5展开式中含x3项的系数.【解答】解:在x(x﹣1)5=x•[x5﹣5x4+10x3﹣10x2+5x﹣1]的开式中,含x3项的系数是﹣10,故答案为:﹣10.13.从数字0、1、2、3、4、5这6个数字中任选三个不同的数字组成的三位偶数有52个.(用数字作答)【考点】计数原理的应用.【分析】分两类,第一类,个位为0,第二类,个位是2或4,再利用分步计数原理求出每一类有多少个,然后相加.【解答】解:分两类,第一类,个位为0,有A52=20个;第二类,个位是2或4,有C21×C41×C41=32个,∴可组成没有重复数字的三位偶数有20+32=52个,故答案为:52.14.已知点P在单位圆x2+y2=1上运动,P到直线3x﹣4y﹣10=0与x=3的距离分为d1、d2,则d1+d2的最小值是5﹣.【考点】直线与圆的位置关系.【分析】设点P(cosu,sinu),求出P到直线3x﹣4y﹣10=0与x=3的距离分为d1、d2,即可求出d1+d2的最小值.【解答】解:设点P(cosu,sinu),P到直线3x﹣4y﹣l0=0的距离为d1=|3cosu﹣4sinu﹣10|=(10﹣3cosu+4sinu),d2=3﹣cosu,∴d1+d2=(10﹣3cosu+4sinu)+3﹣cosu=5+(4sinu﹣8cosu)=5+sin(u﹣t),∴它的最小值=5﹣.故答案为:5﹣.15.现定义一种运算“⊕”:对任意实数a,b,a⊕b=,设f(x)=(x2﹣2x)⊕(x+3),若函数g(x)=f(x)+k的图象与x轴恰有两个公共点,则实数k的取值范围是(﹣3,﹣2)∪(﹣8,﹣7]∪{1} .【考点】函数的图象;函数解析式的求解及常用方法.【分析】由条件根据新定义求得f(x)的解析式,由题意可得f(x)的图象和直线y=﹣k有2个交点,数形结合求得k的范围.【解答】解:令(x2﹣2x)﹣(x+3)=1,求得x=﹣1,或x=4,故当x≤﹣1或x≥4时,(x2﹣2x)﹣(x+3)≥1,f(x)=x+3;当x∈(﹣1,4)时,(x2﹣2x)﹣(x+3)<1,f(x)=x2﹣2x.函数g(x)=f(x)+k的图象与x轴恰有两个公共点,则f(x)的图象和直线y=﹣k有2个交点,如图所示:故有﹣k=﹣1,或2<﹣k<3,或7≤﹣k<8,求得实数k的取值范围为:(﹣3,﹣2)∪(﹣8,﹣7]∪{1}.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,原理毒品”的电视公益广告,期望让更多的市民知道毒品的危害性,禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段性在[10,20),[20,30),[30,40),[40,50),[50,60)的市民进行问卷调查,由此得到样本频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄段在[30,40)的人数;(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5人,求[50,60)年龄段抽取的人数;(Ⅲ)从(Ⅱ)中方式得到的5人中再抽取2人作为本次活动的获奖者,记X为年龄在[50,60)年龄段的人数,求X的分布列及数学期望.【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【分析】(I)由频率分布直方图求出随机抽取的市民中年龄段在[30,40)的频率,由此能求出随机抽取的市民中年龄段在[30,40)的人数.(II)由频率分布直方图得不小于40岁的人的频数是25人,由此能求出在[50,60)年龄段抽取的人数.(III)由已知X=0,1,2,分别求出相应的概率,由此能求出X的分布列及数学期望.【解答】解:(I)由频率分布直方图知,随机抽取的市民中年龄段在[30,40)的频率为:1﹣10×(0.020+0.025+0.015+0.010)=0.3,即随机抽取的市民中年龄段在[30,40)的人数为100×0.3=30人.…(II)由(I)知,年龄段在[40,50),[50,60)的人数分别为100×0.15=15人,100×0.1=10人,即不小于40岁的人的频数是25人,∴在[50,60)年龄段抽取的人数为10×=2人.…(III)由已知X=0,1,2,P(X=0)=,P(X=1)=,P(X=2)=,∴X的分布列为X 0 1 2P∴EX=0×+1×+2×=.…17.已知函数f(x)=cos4x﹣2sinxcosx﹣sin4x.(1)若x是某三角形的一个内角,且f(x)=﹣,求角x的大小;(2)当x∈[0,]时,求f(x)的最小值及取得最小值时x的集合.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用二倍角公式和两角和公式化简函数解析式,由题意可得cos(2x+)=﹣,根据x∈(0,π),利用余弦函数的性质即可得解.(2)由x∈[0,],可得2x+∈[,],利用余弦函数的图象和性质可得f(x)的最小值为﹣,此时2x+=π,即x=.【解答】解:(1)∵f(x)=cos4x﹣2sinxcosx﹣sin4x=(cos2x+sin2x)(cos2x﹣sin2x)﹣sin2x=cos2x﹣sin2x=(cos2x﹣sin2x)=cos(2x+),∴f(x)=cos(2x+)=﹣,可得:cos(2x+)=﹣.∵由题意可得:x∈(0,π),可得:2x+∈(,),可得:2x+=或,∴x=或.(2)∵x∈[0,],2x+∈[,],∴cos(2x+)∈[﹣1,],∴f(x)=cos(2x+)∈[﹣,1].∴f(x)的最小值为﹣,此时2x+=π,即x=.18.已知二次函数f (x )=x 2+4x +m (m ∈R ,m 为常数)的图象与坐标轴有三个交点,记过这三个交点的圆为圆C .(I )求m 的取值范围;(Ⅱ)试证明圆C 过定点(与m 的取值无关),并求出该定点的坐标.【考点】二次函数的性质.【分析】(Ⅰ)由二次函数图象与两坐标轴有三个交点,得到抛物线不过原点,再令y=0,得到关于x 的一元二次方程有两个不相等的实数根,得到根的判别式大于0,即可得到m 的范围;(Ⅱ)设所求圆方程为x 2+y 2+Dx +Ey +F=0,令y=0得到关于x 的方程,与已知方程为同一方程,确定出D 与F ,令x=0得到关于y 的方程,将y=m 代入表示出E ,将D 、E 、F 代入即可确定出圆C 的方程,进而可求圆C 经过定点.【解答】解:(I )令x=0,得抛物线与y 轴交点是(0,m );令f (x )=x 2+4x +m=0,由题意得:m ≠0且△>0,即m ≠0且16﹣4m >0解得:m <4且m ≠0;(Ⅱ)证明:设所求圆的一般方程为x 2+y 2+Dx +Ey +F=0,令y=0得:x 2+Dx +F=0这与x 2+4x +m=0=是同一个方程,故D=4,F=m ;令x=0得:y 2+Ey +F=0,此方程有一个根为m ,代入得出E=﹣m ﹣1,∴圆C 的方程为x 2+y 2+4x ﹣(m +1)y +m=0.∴x 2+y 2+4x ﹣y +(﹣y +1)m=0∴,∴或, ∴圆C 经过定点(0,1)和(﹣4,1).19.已知等差数列{a n }的前n 项和S n 满足:S 5=30,S 10=110,数列{b n }的前n 项和T n 满足:b 1=1,b n +1﹣2T n =1. (1)求S n 与b n ;(2)比较S n b n 与2T n a n 的大小,并说明理由.【考点】数列的求和;数列递推式.【分析】(1)由等差数列前n 项和公式列出方程组求出首项与公差,由此能求出S n 与b n ;由,能求出数列{b n }的通项公式.(2)推导出S n b n =(n 2+n )•3n ﹣1,2T n a n =2n •(3n ﹣1),由此利用作差法能比较S n b n 与2T n a n 的大小.【解答】解:(1)设等差数列{a n }的首项为a 1,公差为d ,∵S 5=30,S 10=110,∴,解得∴a n =2+(n ﹣1)×2=2n ,S n ==n 2+n .…对数列{b n },由已知有b 2﹣2T 1=1,即b 2=2b 1+1=3,∴b 2=3b 1,(*)又由已知b n +1﹣2T n =1,可得b n ﹣2T n ﹣1=1(n ≥2,n ∈N*),两式相减得b n +1﹣b n ﹣2(T n ﹣T n ﹣1)=0,即b n +1﹣b n ﹣2b n =0(n ≥2,n ∈N*),整理得b n +1=3b n (n ≥2,n ∈N*),结合(*)得(常数),n ∈N*,∴数列{b n }是以b 1=1为首项1,3为公比的等比数列,∴b n=3n﹣1.…﹣1=3n﹣1,(2)2T n=b n+1∴S n b n=(n2+n)•3n﹣1,2T n a n=2n•(3n﹣1),于是S n b n﹣2T n a n=(n2+n)•3n﹣1﹣2n•(3n﹣1)=n[3n﹣1(n﹣5)+2],…当n≤4(n∈N*)时,S n b n﹣2T n a n<0,即S n b n<2T n a n;当n≥5(n∈N*)时,S n b n﹣2T n a n>0,即S n b n>2T n a n.∴当n≤4(n∈N*)时,S n b n<2T n a n;当n≥5(n∈N*)时,S n b n>2T n a n.…20.在平面直角坐标系中,动点M到定点F(﹣1,0)的距离和它到直线l:x=﹣2的距离之比是常数,记动点M的轨迹为T.(1)求轨迹T的方程;(2)过点F且不与x轴重合的直线m,与轨迹T交于A,B两点,线段AB的垂直平分线与x轴交于点P,与轨迹T是否存在点Q,使得四边形APBQ为菱形?若存在,请求出直线m的方程;若不存在,请说明理由.【考点】直线与圆锥曲线的综合问题.【分析】(1)设动点M(x,y),由点到直线的距离公式和两点间距离公式列出方程,能求出轨迹T的方程.(2)假设存在Q(x0,y0)满足条件.设依题意设直线m为x=ky﹣1,联立,消去x,得(k2+2)y2﹣2ky﹣1=0,由此利用韦达定理、椭圆性质、直线方程,结合已知条件能求出直线m的方程.【解答】解:(1)设动点M(x,y),∵动点M到定点F(﹣1,0)的距离和它到直线l:x=﹣2的距离之比是常数,∴由题意,得,化简整理得C的方程为.∴轨迹T的方程为=1.…(2)假设存在Q(x0,y0)满足条件.设依题意设直线m为x=ky﹣1,联立,消去x,得(k2+2)y2﹣2ky﹣1=0,令M(x1,y1),N(x2,y2),则y1+y2=,x1+x2=k(y1+y2)﹣2=,…∴AB的中点N的坐标为(,).∵PQ⊥l,∴直线PQ的方程为y﹣=﹣k(x+),令y=0,解得x=,即P(,0).…∵P、Q关于N点对称,∴=(x0),=(y0+0),解得x0=,y0=,即Q(,).…∵点Q在椭圆上,∴()2+2()2=2,解得k2=,∴,∴=±,∴m的方程为y=x+或y=﹣x﹣.…21.已知函数f(x)=lnx﹣mx(m∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当m≥时,设g(x)=2f(x)+x2的两个极值点x1,x2(x1<x2)恰为h(x)=lnx﹣cx2﹣bx的零点,求y=(x1﹣x2)h′()的最小值.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(I)求出函数f(x)的导数,讨论m的取值,利用导数判断函数f(x)的单调性与单调区间;(II)对函数g(x)求导数,利用极值的定义得出g'(x)=0时存在两正根x1,x2;再利用判别式以及根与系数的关系,结合零点的定义,构造函数,利用导数即可求出函数y的最小值.【解答】解:(I)∵函数f(x)=lnx﹣mx,∴,x>0;当m>0时,由1﹣mx>0解得x<,即当0<x<时,f'(x)>0,f(x)单调递增;由1﹣mx<0解得x>,即当x>时,f'(x)<0,f(x)单调递减;当m=0时,f'(x)=>0,即f(x)在(0,+∞)上单调递增;当m<0时,1﹣mx>0,故f'(x)>0,即f(x)在(0,+∞)上单调递增;∴当m>0时,f(x)的单调递增区间为(0,),单调递减区间为(,+∞);当m≤0时,f(x)的单调递增区间为(0,+∞);…(II)g(x)=2f(x)+x2=2lnx﹣2mx+x2,则,∴g'(x)的两根x1,x2即为方程x2﹣mx+1=0的两根;又∵m≥,∴△=m2﹣4>0,x1+x2=m,x1x2=1;…又∵x1,x2为h(x)=lnx﹣cx2﹣bx的零点,∴lnx1﹣cx12﹣bx1=0,lnx2﹣cx22﹣bx2=0,两式相减得﹣c(x1﹣x2)(x1+x2)﹣b(x1﹣x2)=0,得b=,而,∴y==]==,…令(0<t<1),由(x1+x2)2=m2得x12+x22+2x1x2=m2,因为x1x2=1,两边同时除以x1x2,得t++2=m2,∵m≥,故t+≥,解得t≤或t≥2,∴0<t≤;…设G(t)=,∴G'(t)=,则y=G(t)在(0,]上是减函数,∴G(t)min=G()=﹣+ln2,即的最小值为﹣+ln2.…。

2020届四川省绵阳市高三第二次诊断性测试数学(文)试题(解析版)

 2020届四川省绵阳市高三第二次诊断性测试数学(文)试题(解析版)

2020届四川省绵阳市高三第二次诊断性测试数学(文)试题一、单选题1.设全集{}|0U x x =>,{}2|1xM x e e=<<,则UCM =( )A .()1,2B .()2,+∞C .(][)0,12,+∞UD .[)2,+∞【答案】D【解析】先确定集合M 的元素,再由补集定义求解. 【详解】由题意2{|1}{|02}x M x e e x x =<<=<<,∴{|2}U C M x x =≥.故选:D . 【点睛】本题考查补集的运算,解题时需确定集合的元素后才能进行集合的运算.本题还考查了指数函数的单调性.2.已知i 为虚数单位,复数z 满足12z i i ⋅=+,则z =( ) A .2i - B .2i + C .12i - D .2i -【答案】A【解析】由除法计算出复数z . 【详解】 由题意122iz i i+==-. 故选:A . 【点睛】本题考查复数的除法运算,属于基础题.3.已知高一(1)班有学生45人,高一(2)班有50人,高一(3)班有55人,现在要用分层抽样的方法从这三个班中抽30人参加学校“遵纪守法好公民”知识测评,则高一(2)班被抽出的人数为( ) A .10 B .12C .13D .15【答案】A【解析】分层抽样是按比例抽取人数. 【详解】设高一(2)被抽取x 人,则5030455055x =++,解得10x =. 故选:A . 【点睛】本题考查分层抽样,属于基础题.4.已知向量()1,2a =r ,()1,b x =-r ,若//a b r r,则b =r ( )A B .52C D .5【答案】C【解析】根据向量平行的坐标运算计算出x ,再由模的坐标表示求模. 【详解】∵//a b r r ,∴12(1)0x ⨯-⨯-=,2x =-,∴b ==r .故选:C . 【点睛】本题考查向量平行的坐标表示,考查向量模的坐标表示.属于基础题.5.已知α为任意角,则“1cos 23α=”是“sin α=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要【答案】B【解析】说明命题1cos 23α=⇒sin 3α=和sin 3α=⇒1cos 23α=是否为真即可. 【详解】21cos 212sin 3a α=-=,则sin α=,因此“1cos 23α=”是“sin α=”的必要不充分条件. 故选:B . 【点睛】本题考查充分必要条件的判断,只要命题p q ⇒为真,则p 是q 的充分条件,q 是p 的必要条件.6.已知()2,0M ,P 是圆N :224320x x y ++-=上一动点,线段MP 的垂直平分线交NP 于点Q ,则动点Q 的轨迹方程为( )A .22195x y +=B .22159x y -=C . ,? a c ==D .22195x y -=【答案】A【解析】利用6QM QN QP QN PN +=+==,确定M 点轨迹是椭圆,从而易求得其方程. 【详解】由题意圆标准方程为22(2)36x y ++=,圆心为(2,0)N -,半径为6,∵线段MP 的垂直平分线交NP 于点Q ,∴QP QM =, ∴6QM QN QP QN PN +=+==4MN >=, ∴Q 点轨迹是以,M N 为焦点,长轴长为6的椭圆,∴3,2a c ==,b =∴其轨迹方程为22195x y +=.故选:A . 【点睛】本题考查用椭圆的定义求轨迹方程,属于基础题.根据椭圆定义确定动点轨迹是椭圆,然后求出,a b 得标准方程,要注意所求轨迹方程是不是圆锥曲线的标准方程. 7.已知某产品的销售额y 与广告费用x 之间的关系如下表:若根据表中的数据用最小二乘法求得y 对x 的回归直线方程为 6.59y x =+,则下列说法中错误的是( )A.产品的销售额与广告费用成正相关B.该回归直线过点()2,22C.当广告费用为10万元时,销售额一定为74万元D.m的值是20【答案】C【解析】根据回归直线方程中x系数为正,说明两者是正相关,求出x后,再由回归方程求出y,然后再求得m,同样利用回归方程可计算出10x=时的预估值.【详解】因为回归直线方程中x系数为6.5>0,因此,产品的销售额与广告费用成正相关,A正确;又0123425x++++==,∴ 6.52922y=⨯+=,回归直线一定过点(2,22),B正确;10x=时, 6.510974y=⨯+=,说明广告费用为10万元时,销售额估计为74万元,不是一定为74万元,C错误;由10153035225my++++==,得20m=,D正确.故选:C.【点睛】本题考查回归直线方程,回归直线方程中x系数的正负说明两变量间正负相关性,回归直线一定过中心点(,)x y,回归直线方程中计算的值是预估值,不是确定值.8.甲、乙、丙三位客人在参加中国(绵阳)科技城国际科技博览会期间,计划到绵阳的九皇山、七曲山大庙两个景点去参观考察,由于时间关系,每个人只能选择一个景点,则甲、乙、丙三人恰好到同一景点旅游参观的概率为()A.18B.14C.38D.12【答案】B【解析】可用列举法写出三人选择景点的各种情形.然后计数后可概率.【详解】两景点用1,2表示,三人选择景点的各种情形为:甲1乙1丙1 ,甲1乙1丙2 ,甲1乙2丙1 ,甲2乙1丙1 ,甲2乙2丙1 ,甲2乙1丙2 ,甲1乙2丙2 ,甲2乙2丙2 共8种,其中三人去同一景点的有甲1乙1丙1 和甲2乙2丙2两种,所以概率为2184P==.故选:B . 【点睛】本题考查古典概型,解题时可用列举法写出所有的基本事件.9.双曲线()222210,0x y a b a b-=>>的右焦点为F ,过F 作与双曲线的两条渐近线平行的直线且与渐近线分别交于A ,B 两点,若四边形OAFB (O 为坐标原点)的面积为bc ,则双曲线的离心率为( ) A. B .2CD .3【答案】B【解析】把四边形OAFB 面积用,,a b c 表示出来,它等于bc ,变形后可求得离心率. 【详解】由题意(c,0)F ,渐近线方程为by x a =±,不妨设AF 方程为()b y x c a=--, 由()b y x c a b y x a ⎧=--⎪⎪⎨⎪=⎪⎩,得22c x bcy a ⎧=⎪⎪⎨⎪=⎪⎩,即(,)22c bc A a ,同理(,)22c bc B a -, ∴21(2)222OAFBbc bc S c a a =⨯⨯⨯=,由题意22bc bc a=,∴2c a =.故选:B . 【点睛】本题考查求双曲线的离心率.求离心率关键是找到关于,,a b c 的一个等式,本题中四边形OAFB 的面积是bc 就是这个等式,因此只要按部就班地求出其面积即可得. 10.已知圆C :22280x y x +--=,直线l 经过点()2,2M,且将圆C 及其内部区域分为两部分,则当这两部分的面积之差的绝对值最大时,直线l 的方程为( ) A .220x y -+= B .260x y +-= C .220x y --= D .260x y +-=【答案】D【解析】如图,设设AOB θ∠=(0)θπ<≤,求出直线l 分圆所成两部分面积之差的绝对值9(sin )S πθθ=-+,利用导数确定函数的单调性,确定出当θ最小时S 最大,由圆的性质知θ最小时,CM AB ⊥,从而可求得直线方程. 【详解】圆C 标准方程为22(1)9x y -+=,圆心为(1,0)C ,半径为3r =,直线l 交圆于,A B 两点,设AOB θ∠=(0)θπ<≤,如图,则直线l 分圆所成两部分中较小部分面积为22111sin 22S r r θθ=-,较大部分面积为22211(2)sin 22S r r πθθ=-+,∴这两部分面积之差的绝对值为22221sin 9(sin )S S S r r r πθθπθθ=-=-+=-+,'9(1cos )0S θ=-+≤,∴9(sin )S πθθ=-+是减函数,θ最小时,S 最大.在CAB ∆中,2222218cos 218r AB AB rθ--==,∴AB 最小时,cos θ最大,从而θ最小.∵AB 经过点M ,∴由圆的性质知当CM AB ⊥时,AB 取得最小值.此时112AB CM k k =-=-,∴直线l 方程为12(2)2y x -=--,即260x y +-=.故选:D . 【点睛】本题考查直线与圆相交问题,解题关键是引入AOB θ=∠,借助于扇形面积公式用θ表示出两个弓形面积之差的绝对值,再利用导数确定这个绝对值最大时的θ值,从而确定直线l 的位置,求得其方程.本题考查了函数思想的应用. 11.已知()f x 为偶函数,且当0x ≥时,()31cos sin 3x x x f x x =-+,则满足不等式()()212log log 21f m f m f ⎛⎫+< ⎪⎝⎭的实数m 的取值范围为( )A .1,22⎛⎫ ⎪⎝⎭B .()0,2C .()10,1,22⎛⎫⎪⎝⎭UD .()2,+∞【答案】A【解析】由偶函数性质把不等式()()212log log 21f m f m f ⎛⎫+< ⎪⎝⎭化为2(log )(1)f m f <,由导数确定函数()f x 在[0,)+∞上的单调性,利用单调性解不等式. 【详解】∵()f x 是偶函数,∴12222(log )(log )(log )(log )f m f m f m f m =-==,则不等式()()212log log 21f m f m f ⎛⎫+< ⎪⎝⎭可化为22(log )2(1)f m f <,即2(log )(1)f m f <,0x ≥时,31()cos sin 3f x x x x x =-+,2'()cos sin cos (sin )f x x x x x x x x x =--+=-,令()sin g x x x =-,则'()1cos 0g x x =-≥,∴()g x 是R 上的增函数,∴当0x >时,()(0)0g x g >=,∴0x ≥时,'()0f x ≥,∴()f x 在[0,)+∞上是增函数, ∴由2(log )(1)f m f <得2log 1m <,即21log 1m -<<,122m <<. 故选:A . 【点睛】本题考查函数的奇偶性与单调性,考查解对数不等式.此各种类型不等式的解法是:本题这种类型的不等式有两种,一种是奇函数,不等式为12()()0f x f x +>,转化为12()()f x f x >-,一种是偶函数,不等式为12()()f x f x >,转化为12()()f x f x >,然后由单调性去函数符号“f ”.12.函数()()()221log 2a a f x ax x =--+在区间10,a ⎡⎤⎢⎥⎣⎦上恰有一个零点,则实数a 的取值范围是( )A .11,32⎛⎫ ⎪⎝⎭B .(][)1,23,+∞UC .()[)1,23,+∞UD .[)2,3【答案】D【解析】由零点存在定理1(0)()0f f a <得23a <<,但还要验证此时在1(0,)a上是否只有一个零点,然后讨论(0)0f =和1()0f a=两种情形是否符合题意. 【详解】(1)若由1(0)()0f f a<得(1log 2)(1log 3)0a a --<,lg 2lg 3(1)(1)0lg lg a a--<, (lg lg 2)(lg lg3)0a a --<,lg 2lg lg3a <<,∴23a <<.设2()(21)g x ax =-,()log (2)a h x ax =+,∵23a <<,∴()h x 在定义域内是增函数,作出()g x ,()h x 的示意图,如图.1(0)()1g g a ==,(0)log 21a h =<,1()log 31a h a =>,∴()g x 与()h x 的图象在1[0,]a 上只有一个交点,即()f x 在1[0,]a上只有一个零点,符合题意.(2)若(0)0f =,则1log 20a -=,2a =.如(1)中示意图,2()log (22)h x x =+是增函数,只是(0)(0)1h g ==,而11()(0)1()h h g a a>==,∴()g x 与()h x 的图象在1[0,]a 上只有一个交点,即()f x 在1[0,]a上只有一个零点,符合题意.(3)若1()0f a=,则1log 30a -=,3a =,如(1)中示意图,3()log (32)h x x =+是增函数,此时11()()1h g a a==,但(0)1g =,而3(0)log 21(0)h g =<=,因此在1(0,)2a 上()g x 与()h x 的图象还有一个交点,即()f x 在1[0,]a上有两个零点,不合题意.综上,a 的取值范围是[2,3). 故选:D . 【点睛】本题考查函数零点分布问题.()f x 在闭区间[,]m n 上只有一个零点,首先由零点存在定理()()0f m f n <确定参数范围,但是此种情形下必须验证在(,)m n 上是否是一个零点,零点存在定理只说明有零点,没有说明有几个零点.其次分别讨论()0f m =和()0f n =两种情形是否满足题意.二、填空题13.直线l :()110ax a y -+-=与直线4630x y -+=平行,则实数a 的值是______. 【答案】2.【解析】由两直线平行的条件判断. 【详解】 由题意(1)1463a a -+-=≠-,解得2a =. 故答案为:2. 【点睛】本题考查两直线平行的充要条件,两直线1110A x B y C ++=和2220A x B y C ++=平行,条件12210A B A B -=是必要条件,不是充分条件,还必须有12210AC A C -≠或12210B C B C -≠,但在2220A B C ≠时,两直线平行的充要条件是111222A B C A B C =≠. 14.某同学在最近的五次模拟考试中,其数学成绩的茎叶图如图所示,则该同学这五次数学成绩的方差是______.【答案】30.8.【解析】写出茎叶图中的5个数据,计算均值后再计算方差. 【详解】五个数据分别是:110,114,119,121,126,其平均值为1101141191211261185x ++++==,方差为2222221[(110118)(114118)(119118)(121118)(126118)]5s =-+-+-+-+-30.8=故答案为:30.8 【点睛】本题考查茎叶图,考查方差的计算.读懂茎叶图是解题基础.15.函数()sin 0,2y x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,则()f x 在区间[],ππ-上的零点之和为______.【答案】23π. 【解析】先求出周期,确定ω,再由点(,1)6π确定ϕ,得函数解析式,然后可求出[,]-ππ上的所有零点. 【详解】 由题意411()3126T πππ=⨯-=,∴22πωπ==,又sin(2)16πϕ⨯+=且2πϕ<,∴6π=ϕ, ∴()sin(2)6f x x π=+.由sin(2)06x π+=得26x k ππ+=,212k x ππ=-,k Z ∈, 在[,]-ππ内有:7511,,,12121212ππππ--,它们的和为23π.【点睛】本题考查三角函数的零点,由三角函数图象求出函数解析式,然后解方程()0f x =得出零点,就可确定在已知范围内的零点.本题也可用对称性求解,由函数周期是π,区间[,]-ππ含有两个周期,而区间端点不是函数零点,因此()f x 在[,]-ππ上有4个零点,它们关于直线6x π=对称,由此可得4个零点的和.16.过点()1,0M -的直线l与抛物线C :24y x =交于A ,B 两点(A 在M ,B 之间),F 是抛物线C 的焦点,若4MBF MAF S S ∆∆=,则ABF ∆的面积为______. 【答案】3.【解析】不妨设,A B 在第一象限且由设1122(,),(,)A x y B x y ,由4MBF MAF S S ∆∆=,得2111422MF y MF y =⨯,从而214y y =.由,,A B M 共线及,A B 在抛物线上,可求得12,y y . 【详解】不妨设,A B 在第一象限,如图,设1122(,),(,)A x y B x y ,由题意(1,0)F ,∵4MBF MAF S S ∆∆=,∴2111422MF y MF y =⨯,∴214y y =. 又,,M A B 共线,∴121211y y x x =++,即122212111144y y y y =++,把214y y =代入得: 112211414114y yy y =++,显然10y ≠,解得11y =,∴24y =, ∴12112MAF S ∆=⨯⨯=,4MBF S ∆=,∴413FAB MBF MAF S S S ∆∆∆=-=-=.故答案为:3.【点睛】本题考查直线与抛物线相交的面积问题.解题关键是善于发现MAF ∆和MBF ∆有共同的底MF ,从而由面积比得出,A B 两点的纵坐标比,再由,,M A B 共线及,A B 在抛物线上,求得,A B 的纵坐标,从而得三角形面积.三、解答题17.每年的4月23日为“世界读书日”,某调查机构对某校学生做了一个是否喜爱阅读的抽样调查.该调查机构从该校随机抽查了100名不同性别的学生(其中男生45名),统计了每个学生一个月的阅读时间,其阅读时间t (小时)的频率分布直方图如图所示:(1)求样本学生一个月阅读时间t 的中位数m .(2)已知样本中阅读时间低于m 的女生有30名,请根据题目信息完成下面的22⨯列联表,并判断能否在犯错误的概率不超过0.1的前提下认为阅读与性别有关.22⨯列联表男 女 总计 t m ≥<t m总计附表:()20P K k ≥ 0.15 0.10 0.050k2.072 2.7063.841其中:()()()()()22n ad bc K a b c d a c b d -=++++. 【答案】(1)10;(2)不能在犯错误的概率不超过0.1的前提下认为阅读与性别有关. 【解析】(1)频率为0.5对应的点的横坐标为中位数;(2)100名学生中男生45名,女生55名,由频率分布直方图知,阅读时长大于等于m 的人数为50人,小于m 的也有50人,阅读时间低于m 的女生有30名,这样可得列联表中的各数,得列联表,依据2K 公式计算2K ,对照附表可得结论.【详解】(1)由题意得,直方图中第一组,第二组的频率之和为0.0450.0650.5⨯+⨯=.所以阅读时间的中位数10m =.(2)由题意得,男生人数为45人,因此女生人数为55人,由频率分布直方图知,阅读时长大于等于m 的人数为1000.550⨯=人, 故列联表补充如下:2K 的观测值()2100253025201005050455599k ⨯⨯-⨯==⨯⨯⨯ 1.01 2.706≈<,所以不能在犯错误的概率不超过0.1的前提下认为阅读与性别有关. 【点睛】本题考查频率分布直方图,考查独立性检验.正确认识频率分布直方图是解题基础.18.已知等差数列{}n a 的公差2d =,30a >,且-4a 与7a 的等比中项.数列{}n b 的通项公式为32n a n b +=.(1)求数列{}n b 的通项公式;(2)记)*n n c a n N=∈,求数列{}nc 的前n 项和nS.【答案】(1)222n n b -=;(2)2241n n S n n =+--.【解析】(1)由等差数列的通项公式表示出47,a a ,由等比中项定义求得1a ,注意30a >可确定只有一解,从而中得n a ,也即得n b ;(2)由(1)得1252n n c n -=-+,用分组求和法可求得n S .【详解】(1)由题意得41136a a d a =+=+,711612a a d a =+=+.∴(()()211612a a -=+⋅+,解得13a =-或115a =-.又31220a a =+⨯>,得14a >-,故13a =-. ∴()32125n a n n =-+⋅-=-. ∴32222n a n n b +-==.(2)由(1)可知,1252n n n c a n -==-+.12n n S c c c =+++L()123112512nn -=--+++-+⎡⎤⎣⎦-L ()325212n n n -+-=+-2241n n n =+--.【点睛】本题考查等差数列的通项公式,考查等比中项的定义,考查分组求和法以及等差数列和等比数列前n 项和公式,掌握等差数列与等比数列的通项公式和前n 项和公式是解题基础.19.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知()()()sin sin sin sin A B a b c C B +-=+.(1)求A ;(2)若D 为BC 边上一点,且AD BC ⊥,BC =,求sin B . 【答案】(1)23A π=;(2)12.【解析】(1)由正弦定理把角的关系转化为边的关系,再由余弦定理可求得A ; (2)把ABC ∆的面积用两种方法表示建立AD 与三角形各边的关系,由BC =,即即AD =23a bc =,再代入余弦定理2222cos a b c bc A =+-中可求得b c =,从而可得6B C π==,于是得sin B 的值.【详解】(1)在ABC ∆中,由正弦定理得()()()a b a b c c b +-=+,即222ab c bc =++.由余弦定理得2221cos 22b c a A bc +-==-, 结合0A π<<,可知23A π=.(2)在ABC ∆中,11sin 22ABC S AB AC BAC BC AD ∆=⋅∠=⋅a AD =⋅.由已知BC =,可得AD =在ABC ∆中,由余弦定理得2222cos120a b c bc =+-︒, 即223bc b c bc =++,整理得()20b c -=,即b c =, ∴6A B π==.∴1sin sin 62B π==. 【点睛】本题考查正弦定理、余弦定理、三角形面积公式,第(2)问解题关键是把三角形面积用两种方法表示而建立等式:11sin 22ABC S bc A BC AD ∆==⋅. 20.已知椭圆C :2212x y +=,动直线l 过定点()2,0且交椭圆C 于A ,B 两点(A ,B 不在x 轴上).(1)若线段AB 中点Q 的纵坐标是23-,求直线l 的方程; (2)记A 点关于x 轴的对称点为M ,若点(),0N n 满足MN NB λ=u u u u r u u u r,求n 的值.【答案】(1)220x y --=;(2)1n =.【解析】(1)设()11,A x y ,()22,B x y ,直线AB :2x ty =+,直线方程与椭圆方程联立消元得y 的二次方程,由判别式得t 的取舍范围,由韦达定理得1212,y y y y +,利用AB 中点纵坐标是23-可求得t ,只要满足>0∆即可; (2)由题意()11,M x y -,MN NB λ=u u u u r u u u r,说明M ,N ,B 三点共线,即MN MB k k =.这样可求出n ,化为只含12,y y 的式子后代入(1)中的1212,y y y y +就可求得n . 【详解】(1)设()11,A x y ,()22,B x y ,直线AB :2x ty =+.由22222x ty x y =+⎧⎨+=⎩消去x 得()222420t y ty +++=. 220t ∆=->,解得t >t <由韦达定理得12242t y y t -+=+,12222y y t =+.① ∵AB 中点Q 的纵坐标是23-,∴1243y y +=-,代入①解得1t =或2t =.又t >t <2t =. ∴直线l 的方程为220x y --=. (2)由题意得()11,M x y -,由MN NB λ=u u u u r u u u r,知M ,N ,B 三点共线,即MN MB k k =. ∴()()1211210y y y n x x x ----=--,即121121y y y n x x x +=--, 解得()121121y x x n x y y -=++.将112x ty =+,222x ty =+,代入得121222ty y n y y =++.②由①有12242t y y t -+=+,12222y y t =+.③ 将③代入②得到1n =. 【点睛】本题考查直线与椭圆相交问题,解题方法是“设而不求”的思想方法,解题时注意体会. 21.已知函数()212ln 2x f x ax x =+-,其中a R ∈. (1)讨论函数()f x 的单调性;(2)若3a ≥,记函数()f x 的两个极值点为1x ,2x (其中21x x >),求()()21f x f x -的最大值.【答案】(1)当a ≤时,()f x 在()0,∞+上单调递增;当a >函数()f x在0,2a ⎛⎫- ⎪ ⎪⎝⎭和2a ⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,在22a a ⎛⎫-+⎪ ⎪⎝⎭上单调递减; (2)32ln 22-. 【解析】(1)求出导函数'()f x ,由'()0f x >得增区间,由'()0f x <得减区间,注意题中函数定义域是(0,)+∞,因此对二次三项式28x ax -+分类情况为第一类:0a ≤或0∆≤,第二类0a >且>0∆.(2)与极值点有关的问题,不是直接代入极值点,而是用12,x x 表示极值点,由12,x x 是方程220x ax -+=的解,得12x x a +=,122x x =.2212221()()2ln 2f x f x x x ax -=+-21111(2ln )2x x ax -+-()()2222121112ln 2x x x a x x x =+---2222112ln 2x x x x -=-222211122ln x x x x x x -=-2211122lnx x x x x x =-+.不妨设12x x <,引入变量21xt x =,则1t >,21()()f x f x -就转化为t 的函数,由3a ≥求得t 的范围,由导数知识可得所求最大值. 【详解】(1)()()2'220x ax x a x x xf x -+=+-=>.令()22g x x ax =-+,则28a ∆=-.①当0a ≤或0∆≤,即a ≤时,得()'0f x ≥恒成立, ∴()f x 在()0,∞+上单调递增.②当00a >⎧⎨∆>⎩,即a >由()'0f x >,得0x <<x >由()'0f x <x <<.∴函数()f x在0,2a ⎛ ⎪⎝⎭和,2a ⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在⎝⎭上单调递减.综上所述,当a ≤()f x 在()0,∞+上单调递增;当a >()f x在⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减. (2)由(1)得,当a >()f x 有两极值点1x ,2x (其中21x x >). 则1x ,2x 为()220x a g x x =-+=的两根,∴12x x a +=,122x x =.()()()()222212121112ln2x f x f x x x a x x x -=+--- 222222122111122ln 2ln 2x x x x x x x x x x --=-=-2211122lnx x x x x x =-+. 令()211x t t x =>, 则()()()2112ln f x f x h t t t t-==-+.由3a ≥,得()22121219222x x a t x x t +==++≥,即22520t t -+≥,解得2t ≥.∵()()22222121211'0t t t t t t th t ---+-=--==<, ∴()h t 在[)2,+∞上单调递减, ∴()()max 322ln 22h t h ==-. 即()()21f x f x -的最大值为32ln 22-.【点睛】本题考查用导数研究函数的单调性,函数的极值点以及与极值点有关的最值.在求单调区间时要注意分类讨论.在研究极值点有关的最值问题时,常常设极值点为12,x x ,由极值点的定义得出函数中参数与12,x x 的关系,即用12,x x 表示参数,并代入待求(证)式,同时设21x t x =(本题),可把待求(证)式转化为t 的函数式,从而再利用导数的知识确定这个函数得出结论.这类题难度较大,对学生的思维能力、推理论证能力、转化与化归能力要求较高.22.在平面直角坐标系中,曲线1C 的参数方程为1cos sin x r y r ϕϕ=+⎧⎨=⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 经过点2,3P π⎛⎫ ⎪⎝⎭,曲线2C 的直角坐标方程为221x y -=.(1)求曲线1C 的普通方程,曲线2C 的极坐标方程;(2)若()1,A ρα,2,6B πρα⎛⎫- ⎪⎝⎭是曲线2C 上两点,当0,4πα⎛⎫∈ ⎪⎝⎭时,求2211OA OB +的取值范围.【答案】(1)()2213x y -+=,2cos 21ρθ=;(2)2⎛⎝. 【解析】(1)由22cos sin 1ϕϕ+=消元后得普通方程,由cos sin x y ρθρθ=⎧⎨=⎩代入直角坐标方程可得极坐标方程;(2)直接把,A B 两点的极坐标代入曲线2C 的极坐标方程,得2212,ρρ,这样2211OAOB+就可转化为三角函数式,利用三角函数知识可得取值范围.【详解】(1)将1C 的参数方程化为普通方程为()2221x y r -+=. 由cos x ρθ=,sin y ρθ=, 得点2,3P π⎛⎫ ⎪⎝⎭的直角坐标为(,代入1C ,得23r =,∴曲线1C 的普通方程为()2213x y -+=.2C 可化为2222cos sin 1ρθρθ-=,即()222cos sin 1ρθθ-=,∴曲线2C 的极坐标方程为2cos 21ρθ=. (2)将点()1,A ρα,2,6B πρα⎛⎫-⎪⎝⎭代入曲线2C 的极坐标方程, 得21cos 21ρα=,22cos 213πρα⎛⎫-= ⎪⎝⎭, ∴22222111cos 2cos 1123OAOBπααρρ⎛⎫=++-+= ⎪⎝⎭3cos 222223πααα⎛⎫=+=+ ⎪⎝⎭. 由已知0,4πα⎛⎫∈ ⎪⎝⎭,可得52,336πππα⎛⎫+∈ ⎪⎝⎭,23πα⎛⎫+∈ ⎪⎝⎭⎝. 所以2211OAOB +的取值范围是2⎛ ⎝. 【点睛】本题考查极坐标方程与直角坐标方程的互化,考查参数方程与普通方程的互化.消元法和公式法是解决此类问题的常用方法.23.已知关于x 的不等式12121log x x a +--≤,其中0a >.(1)当4a =时,求不等式的解集;(2)若该不等式对x ∈R 恒成立,求实数a 的取值范围. 【答案】(1)2|43x x x ⎧⎫≤-≥⎨⎬⎩⎭或;(2)04a <≤. 【解析】(1)用分类讨论的方法去绝对值符号后再解不等式,最后要合并(求并集); (2)设()121f x x x =+--,同样用分类讨论去绝对值符号化函数为分段函数,求得()f x 的最大值,解相应不等式可得a 的范围. 【详解】(1)由4a =时,12log 2a =-.原不等式化为1212x x +--≤-,当12x≥时,()1212x x+--≤-,解得4x≥,综合得4x≥;当112x-<<时,1212x x++-≤-,解得23x≤-,综合得213x-<≤-;当1x≤-时,()1212x x-++-≤-,解得0x≤,综合得1x≤-.∴不等式的解集为2|43x x x⎧⎫≤-≥⎨⎬⎩⎭或.(2)设函数()2,111213,1212,2x xf x x x x xx x⎧⎪-<-⎪⎪=+--=-≤<⎨⎪⎪-+≥⎪⎩,画图可知,函数()f x的最大值为32.由123log2a≤,解得24a<≤.【点睛】本题考查解含绝对值的不等式,解题方法是根据绝对值定义去掉绝对值符号,用分类讨论的方法分段解不等式.第 21 页共 21 页。

绵阳市高三第二次诊断性考试数学(理)试题含答案

绵阳市高三第二次诊断性考试数学(理)试题含答案

保密 ★ 启用前 【考试时间:20XX 年1月26日15:00—17:00】绵阳市高中20XX 级第二次诊断性考试数 学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷1至2页,第II 卷3至4页。

满分150分。

考试时间120分钟。

注意事项:1.答题前,考生务必将自己的姓名、考号用0.5毫米的黑色签字笔填写在答题卡上,并将条形码粘贴在答题卡的指定位置。

2.选择题使用2B 铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米的黑色签字笔书写在答题卡的对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

3.考试结束后,将答题卡收回。

第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1+y -1=0的倾斜角是A .30°B .60°C .120°D .150°2.计算:1+i+i 2+i 3+…+i 100(i 为虚数单位)的结果是A .0B .1C .iD .i+1 3.已知a 、b ∈R ,那么“ab <0”是“方程ax 2+by 2=1表示双曲线”的A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分又不必要条件4.为了得到函数3sin(2)5y x π=+的图象,只需把函数3sin()5y x π=+图象上所有点的A .横坐标缩短到原来的12倍,纵坐标不变 B .横坐标伸长到原来的2倍,纵坐标不变 C .纵坐标缩短到原来的12倍,横坐标不变 D .纵坐标伸长到原来的2倍,横坐标不变 5.一个正三棱柱(底面为正三角形的直棱柱)的三视图如右图所示,则这个正三棱柱的体积为 AB.C.D.6.若log a (a 2+1)<log a 2a <0,则a 的取值范围是A .(0,21)B .(21,1)正视图侧视图俯视图C .(0,1)D .(0,1)∪(1,+∞)7.现有1位老师、2位男学生、3位女学生共6人站成一排照相,若男学生站两端,3位女学生中有且只有两位相邻,则不同排法的种数是 A .12种B .24种C .36种D .72种8.已知椭圆22221x y a b +=(a >b >0)的半焦距为c (c >0),左焦点为F ,右顶点为A ,抛物线215()8y a c x =+与椭圆交于B 、C 两点,若四边形ABFC 是菱形,则椭圆的离心率是 A .815B .415C .23D .129.已知关于x 的一元二次方程x 2-2x +b -a +3=0,其中a 、b 为常数,点(a ,b )是区域Ω:0404a b ≤≤⎧⎨≤≤⎩,内的随机点.设该方程的两个实数根分别为x 1、x 2,则x 1、x 2满足0≤x 1≤1≤x 2的概率是 A .332B .316C .532D .91610.一只小球放入一长方体容器内,且与共点的三个面相接触.若小球上一点到这三个面的距离分别为4、5、5,则这只小球的半径是 A .3或8B .8或11C .5或8D .3或11第Ⅱ卷 (非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.《人再囧途之泰囧》首映结束,为了了解观众对该片的看法,决定从500名观众中抽取10%进行问卷调查,在这500名观众中男观众占40%,若按性别用分层抽样的方法抽取采访对象,则抽取的女观众人数为 人.12.右图表示的程序所输出的结果是.13.51(21)(1)x x+-的展开式的常数项是__________.(填写具体数字) 14.我们把离心率之差的绝对值小于12的两条双曲线称为“相近双曲线”.已知双曲线221412x y -=与双曲线221x y m n-=是“相近双曲线”,则nm的取值范围是 .15.已知函数()f x ,若对给定的三角形ABC ,它的三边的长a 、b 、c 均在函数()f x 的定义域内,都有()f a 、()f b 、()f c 也为某三角形的三边的长,则称()f x 是△ABC 的“三角形函数”.下面给出四个命题:①函数1()((0))f x x =∈+∞,是任意三角形的“三角形函数”;②若定义在(0)+∞,上的周期函数2()f x 的值域也是(0)+∞,,则2()f x 是任意三角形的“三角形函数”;③若函数33()3f x x x m =-+在区间2433(,)上是某三角形的“三角形函数”,则m 的取值范围是62+27∞(,); ④若a 、b 、c 是锐角△ABC 的三边长,且a 、b 、c ∈N +,则24()+ln (0)f x x x x =>是△ABC 的“三角形函数”.以上命题正确的有 .(写出所有正确命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知函数f (x )=(sin x +cos x )2-2sin 2x .(Ⅰ)求f (x )的单调递减区间;(Ⅱ)A 、B 、C 是△ABC 的三内角,其对应的三边分别为a 、b 、c .若()8A f =,AB AC ⋅=12,a =,且b <c ,求b 、c 的长.17.(本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,点E 是PC 的中点,作EF ⊥PB 交PB 于F . (Ⅰ)求证:P A ∥平面EDB ; (Ⅱ)求证:PB ⊥平面EFD ; (Ⅲ)求二面角C -PB -D 的大小.18.(本小题满分12分)甲、乙两位同学练习三分球定点投篮,规定投中得三分,未投中得零分,甲每次投中的概率为13,乙每次投中的概率为14. (Ⅰ)求甲投篮三次恰好得三分的概率; (Ⅱ)假设甲投了一次篮,乙投了两次篮,设X 是甲这次投篮得分减去乙这两次投篮得分总和的差,求随机变量X 的分布列.19.(本小题满分12分)已知各项均不为零的数列{a n }的首项134a =,2a n +1a n =ka n -a n +1(n ∈N +,k 是不等于1的正常数). (Ⅰ)试问数列12{}1n a k --是否成等比数列,请说明理由; (Ⅱ)当k =3时,比较a n 与3435n n ++的大小,请写出推理过程. 20.(本小题满分13分)动点M (x ,y )与定点F (1,0)的距离和它到直线l :x =4的距离之比是常数12,O 为坐标原点.(Ⅰ)求动点M 的轨迹E 的方程,并说明轨迹E 是什么图形?(Ⅱ)已知圆C,是否存在圆C 的切线m ,使得m 与圆C 相切于点P ,与轨迹E 交于A 、B 两点,且使等式2AP PB OP ⋅=成立?若存在,求出m 的方程;若不存在,请说明理由.21.(本小题满分14分)已知函数f (x )=x ln x (x ∈(0,+∞)).D AB CPF E(Ⅰ)求(+1)()+1f xg x x x =-(x ∈(-1,+∞))的单调区间与极大值; (Ⅱ)任取两个不等的正数x 1、x 2,且x 1<x 2,若存在x 0>0使21021()()()f x f x f x x x -'=-成立,求证:x 1<x 0<x 2;(Ⅲ)已知数列{a n }满足a 1=1,1211(1)2n n n a a n+=++(n ∈N +),求证:114n a e <(e 为自然对数的底数).绵阳市高中20XX 级第二次诊断性考试数学(理)参考解答及评分标准一、选择题:本大题共10小题,每小题5分,共50分.CBCAA BBDAD二、填空题:本大题共5小题,每小题5分,共25分.11.30 12.3013.-9 14.44[]215,∪521[]44, 15.①④ 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.解:(Ⅰ)f (x )=1+sin2x -1+cos2xsin(2x+4π), ∴ 当22k ππ+≤2x+4π≤322k ππ+时,f (x )单调递减, 解得8k ππ+≤x ≤58k ππ+, 即f (x )的单调递减区间为[8k ππ+,58k ππ+](k ∈Z ). ……………………6分 (Ⅱ)f (8Asin(4A +4πsin(4A +4π,∴4A +4π=3π或23π,即A=3π或53π(舍).由AB AC ⋅=c ·b ·cos A =12,cos A =12,得bc =24.① 又cos A=222122b c a a bc +-==,,得b 2+c 2=52.∵ b 2+c 2+2bc =(b+c )2 =100,b >0,c >0, ∴ b+c=10,②联立①②,且b <c ,解得b =4,c =6. ………12分17.解:如图所示建立空间直角坐标系,设DC =1.(Ⅰ)连结AC ,交BD 于G ,连结EG .依题意得A (1,0,0),P (0,0,1),E (0,12,12).∵ 底面ABCD 是正方形,所以G 是此正方形的中心, 故点G 的坐标为(12,12,0), 且11(101)(0)22PA EG =-=-,,,,,.∴ 2=,这表明P A //EG .而EG ⊂平面EDB 且P A ⊄平面EDB , ∴ P A //平面EDB . ……………………………………………………………4分 (Ⅱ)依题意得B (1,1,0),PB =(1,1,-1).又11(0)22DE =,,, 故110022PB DE ⋅=+-=.∴DE PB ⊥.由已知PB EF ⊥,且E DE EF = ,∴ ⊥PB 平面EFD .…………………………………………………………8分 (Ⅲ)由(Ⅱ)知PB EF ⊥,PB DF ⊥,故EFD ∠是所求二面角的平面角. 设点F 的坐标为(x 0,y 0,z 0),PF k PB =,则(x 0,y 0,z 0-1)=k (1,1,-1),从而x 0=k ,y 0=k ,z 0=1-k , ∵ PB FD ⋅=0,所以(1,1,-1)·(k ,k ,1-k )=0,解得13k =, ∴ 点F 的坐标为112()333,,,且111()366FE =--,,,112()333FD =---,,∴ 1cos 2||||FE FD EFD FE FD ⋅∠==,得3π=∠EFD .∴ 二面角C -PB -D 的大小为3π.…………………………………………12分 18.解:(Ⅰ)甲投篮三次恰好得三分即1次投中2次不中,∵ 甲投篮三次中的次数x ~B (3,13), ∴ P (x =1)=123114(1)339C ⋅⋅-=, 甲投篮三次恰好得三分的概率为49.…………………………………………4分 (Ⅱ)设甲投中的次数为m ,乙投中的次数为n , ①当m =0,n =2时,X =-6,∴ P (X =-6)=222211()3424C ⋅⋅=. ②当m =1,n =2或m =0,n =1时,X =-3, ∴ P (X =-3)=2121121313()3434448C ⋅+⋅⋅⋅=. ③当m =1,n =1或m =0,n =0时,X =0,∴ P (X =0)=10222113231()344342C C ⋅⋅⋅+⋅⋅=. ④当m =1,n =0时,X =3,∴ P (X =3)=022139()3448C ⋅⋅=. ∴X 的分布列为…………………………………12分19.解:(Ⅰ)由 2a n +1a n =ka n -a n +1,可得11n a +=12n nka a +, ∴11n a +21k --=12n nka a +21k --=112()1n k a k --,首项为11242131a k k -=---. 若42031k -=-,即k=52时,数列12{}1n a k --为零数列,不成等比数列. 若42031k -≠-,即k>0,k ≠1且k ≠52时, 数列12{}1n a k --是以4231k --为首项,1k为公比的等比数列. ∴ 综上所述,当k=52时,数列12{}1n a k --不成等比数列;当k>0,k ≠1且k ≠52时,数列12{}1n a k --是等比数列.……………………………………6分 (Ⅱ)当k =3时,数列1{1}n a -是以13为首项,13为公比的等比数列. ∴ 111()3n n a -=,即a n =331nn +=1-131n +, ∴ a n -3435n n ++=1-131n +-(1-135n +)=135n +-131n +=334(35)(31)n nn n --++, 令F (x ) =3x -3x -4(x ≥1),则()F x '=3x ln3-3≥(1)F '>0, ∴ F (x )在[1)+∞,上是增函数. 而F (1)=-4<0,F (2)=-1<0,F (3)=14>0, ∴ ①当n =1和n =2时, a n <3435n n ++; ②当n ≥3时,3n +1>3n +5,即135n +>131n +,此时a n >3435n n ++. ∴ 综上所述,当n =1和n =2时,a n <3435n n ++;当n ≥3时,a n >3435n n ++.…12分 20.解:12=,化简得:22143x y +=,即轨迹E 为焦点在x 轴上的椭圆. ………………5分(Ⅱ)设A (x 1,x 2),B (x 2,y 2).∵ OA OB ⋅=(OP PA +)۰(OP PB +)=2OP +OP PB ⋅+PA OP ⋅+PA PB ⋅, 由题知OP ⊥AB ,故OP PB ⋅=0,PA OP ⋅=0. ∴ OA OB ⋅=2OP +PA PB ⋅=2OP -AP PB ⋅=0. 假设满足条件的直线m 存在,①当直线m 的斜率不存在时,则m 的方程为x=代入椭圆22143x y +=,得y=. ∴ OA OB ⋅=x 1x 2+y 1y 2=-2-64≠0,这与OA OB ⋅=0矛盾,故此时m 不存在. ②当直线m 的斜率存在时,设直线m 的方程为y =kx +b , ∴|OP|==b 2=2k 2+2.联立22143x y +=与y =kx+b 得,(3+4k 2)x 2+8kbx +4b 2-12=0,∴ x 1+x 2=2348kb k-+,x 1x 2=2241234k b -+, y 1y 2=(kx 1+b )(kx 2+b )=k 2x 1x 2+kb (x 1+x 2)+b 2=22231234b k k+-, ∴OA OB ⋅=x 1x 2+y 1y 2=2241234k b -++22231234b k k+-=0. ∴ 7b 2-12k 2-12=0, 又∵ b 2=2k 2+2,∴ 2k 2+2=0,该方程无解,即此时直线m 也不存在.综上所述,不存在直线m 满足条件.………………………………………13分 21.解:(Ⅰ)由已知有(+1)()+1f xg x x x =-=ln(+1)x x -, 于是1()1=+11xg x x x '=--+. 故当x ∈(-1,0)时,()g x '>0;当x ∈(0,+∞)时,()g x '<0.所以g (x )的单调递增区间是(-1,0),单调递减区间是(0,+∞),g (x )的极大值是g (0)=0. ……………………………………………………………………4分 (Ⅱ)因为()ln +1f x x '=,所以0ln +1x =2121()()f x f x x x --,于是02ln ln x x -=21221()()ln 1f x f x x x x ----=2211221ln ln ln 1x x x x x x x ----=121121ln ln 1x x x x x x ---=2121ln11x x x x --,令21x x =t (t >1),ln ln 1()111t t t h t t t -+-=--=, 因为10t ->,只需证明ln +10t t -<.令ln +1t t t ϕ=-(),则110t tϕ'=-<(),∴ t ϕ()在(1+)t ∈∞,递减,所以10t ϕϕ<()()=, 于是h (t )<0,即02ln ln x x <,故02x x <.仿此可证10x x <,故102x x x <<.……………………………………………10分 (Ⅲ)因为11a =,1211(1)2n n n n a a a n +=++>,所以{}n a 单调递增,n a ≥1. 于是1222111111(1)(1)=(1)222n n n n n n n n a a a a a n n n +=++≤++++, 所以1211ln ln ln(1)2n n n a a n +≤+++. (*) 由(Ⅰ)知当x >0时,ln 1+x ()<x . 所以(*)式变为1211ln ln 2n n n a a n +<++. 即11211ln ln 2(1)k k k a a k ---<+-(k ∈N ,k ≥2), 令k =2,3,…,n ,这n -1个式子相加得1121222111111ln ln +++)[]22212(1)n n a a n --<++++-(1221111111)[]2122334(2)(1)n n n -<++++++⨯⨯--(-=1111111111)[1()()()]24233421n n n -+++-+-++---(- =111111)1)2421n n -+++--(-( 1111111=4214n n --<--, 即11111ln ln 44n a a <+=,所以114n a e <.……………………………………14分。

2020届四川省绵阳市高三第二次诊断性测试数学(文)试题(解析版)

 2020届四川省绵阳市高三第二次诊断性测试数学(文)试题(解析版)

2020届四川省绵阳市高三第二次诊断性测试数学(文)试题一、单选题1.设全集{}|0U x x =>,{}2|1xM x e e=<<,则UCM =( )A .()1,2B .()2,+∞C .(][)0,12,+∞D .[)2,+∞【答案】D【解析】先确定集合M 的元素,再由补集定义求解. 【详解】由题意2{|1}{|02}x M x e e x x =<<=<<,∴{|2}U C M x x =≥.故选:D . 【点睛】本题考查补集的运算,解题时需确定集合的元素后才能进行集合的运算.本题还考查了指数函数的单调性.2.已知i 为虚数单位,复数z 满足12z i i ⋅=+,则z =( ) A .2i - B .2i + C .12i - D .2i -【答案】A【解析】由除法计算出复数z . 【详解】 由题意122iz i i+==-. 故选:A . 【点睛】本题考查复数的除法运算,属于基础题.3.已知高一(1)班有学生45人,高一(2)班有50人,高一(3)班有55人,现在要用分层抽样的方法从这三个班中抽30人参加学校“遵纪守法好公民”知识测评,则高一(2)班被抽出的人数为( ) A .10 B .12C .13D .15【答案】A【解析】分层抽样是按比例抽取人数. 【详解】设高一(2)被抽取x 人,则5030455055x =++,解得10x =. 故选:A . 【点睛】本题考查分层抽样,属于基础题.4.已知向量()1,2a =r ,()1,b x =-,若//a b ,则b =( )A B .52C D .5【答案】C【解析】根据向量平行的坐标运算计算出x ,再由模的坐标表示求模. 【详解】∵//a b ,∴12(1)0x ⨯-⨯-=,2x =-,∴2(1)b =-=.故选:C . 【点睛】本题考查向量平行的坐标表示,考查向量模的坐标表示.属于基础题.5.已知α为任意角,则“1cos 23α=”是“sin α=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要【答案】B【解析】说明命题1cos 23α=⇒sin 3α=和sin 3α=⇒1cos 23α=是否为真即可. 【详解】21cos 212sin 3a α=-=,则sin α=,因此“1cos 23α=”是“sin α=”的必要不充分条件. 故选:B . 【点睛】本题考查充分必要条件的判断,只要命题p q ⇒为真,则p 是q 的充分条件,q 是p 的必要条件.6.已知()2,0M ,P 是圆N :224320x x y ++-=上一动点,线段MP 的垂直平分线交NP 于点Q ,则动点Q 的轨迹方程为( )A .22195x y +=B .22159x y -=C . ,? a c ==D .22195x y -=【答案】A【解析】利用6QM QN QP QN PN +=+==,确定M 点轨迹是椭圆,从而易求得其方程. 【详解】由题意圆标准方程为22(2)36x y ++=,圆心为(2,0)N -,半径为6,∵线段MP 的垂直平分线交NP 于点Q ,∴QP QM =, ∴6QM QN QP QN PN +=+==4MN >=, ∴Q 点轨迹是以,M N 为焦点,长轴长为6的椭圆,∴3,2a c ==,b =∴其轨迹方程为22195x y +=.故选:A . 【点睛】本题考查用椭圆的定义求轨迹方程,属于基础题.根据椭圆定义确定动点轨迹是椭圆,然后求出,a b 得标准方程,要注意所求轨迹方程是不是圆锥曲线的标准方程. 7.已知某产品的销售额y 与广告费用x 之间的关系如下表:若根据表中的数据用最小二乘法求得y 对x 的回归直线方程为 6.59y x =+,则下列说法中错误的是( )A.产品的销售额与广告费用成正相关B.该回归直线过点()2,22C.当广告费用为10万元时,销售额一定为74万元D.m的值是20【答案】C【解析】根据回归直线方程中x系数为正,说明两者是正相关,求出x后,再由回归方程求出y,然后再求得m,同样利用回归方程可计算出10x=时的预估值.【详解】因为回归直线方程中x系数为6.5>0,因此,产品的销售额与广告费用成正相关,A正确;又0123425x++++==,∴ 6.52922y=⨯+=,回归直线一定过点(2,22),B正确;10x=时, 6.510974y=⨯+=,说明广告费用为10万元时,销售额估计为74万元,不是一定为74万元,C错误;由10153035225my++++==,得20m=,D正确.故选:C.【点睛】本题考查回归直线方程,回归直线方程中x系数的正负说明两变量间正负相关性,回归直线一定过中心点(,)x y,回归直线方程中计算的值是预估值,不是确定值.8.甲、乙、丙三位客人在参加中国(绵阳)科技城国际科技博览会期间,计划到绵阳的九皇山、七曲山大庙两个景点去参观考察,由于时间关系,每个人只能选择一个景点,则甲、乙、丙三人恰好到同一景点旅游参观的概率为()A.18B.14C.38D.12【答案】B【解析】可用列举法写出三人选择景点的各种情形.然后计数后可概率.【详解】两景点用1,2表示,三人选择景点的各种情形为:甲1乙1丙1 ,甲1乙1丙2 ,甲1乙2丙1 ,甲2乙1丙1 ,甲2乙2丙1 ,甲2乙1丙2 ,甲1乙2丙2 ,甲2乙2丙2 共8种,其中三人去同一景点的有甲1乙1丙1 和甲2乙2丙2两种,所以概率为2184P==.故选:B . 【点睛】本题考查古典概型,解题时可用列举法写出所有的基本事件.9.双曲线()222210,0x y a b a b-=>>的右焦点为F ,过F 作与双曲线的两条渐近线平行的直线且与渐近线分别交于A ,B 两点,若四边形OAFB (O 为坐标原点)的面积为bc ,则双曲线的离心率为( ) A. B .2CD .3【答案】B【解析】把四边形OAFB 面积用,,a b c 表示出来,它等于bc ,变形后可求得离心率. 【详解】由题意(c,0)F ,渐近线方程为by x a =±,不妨设AF 方程为()b y x c a=--, 由()b y x c a b y x a ⎧=--⎪⎪⎨⎪=⎪⎩,得22c x bcy a ⎧=⎪⎪⎨⎪=⎪⎩,即(,)22c bc A a ,同理(,)22c bc B a -, ∴21(2)222OAFBbc bc S c a a =⨯⨯⨯=,由题意22bc bc a=,∴2c a =.故选:B . 【点睛】本题考查求双曲线的离心率.求离心率关键是找到关于,,a b c 的一个等式,本题中四边形OAFB 的面积是bc 就是这个等式,因此只要按部就班地求出其面积即可得. 10.已知圆C :22280x y x +--=,直线l 经过点()2,2M,且将圆C 及其内部区域分为两部分,则当这两部分的面积之差的绝对值最大时,直线l 的方程为( ) A .220x y -+= B .260x y +-= C .220x y --= D .260x y +-=【答案】D【解析】如图,设设AOB θ∠=(0)θπ<≤,求出直线l 分圆所成两部分面积之差的绝对值9(sin )S πθθ=-+,利用导数确定函数的单调性,确定出当θ最小时S 最大,由圆的性质知θ最小时,CM AB ⊥,从而可求得直线方程. 【详解】圆C 标准方程为22(1)9x y -+=,圆心为(1,0)C ,半径为3r =,直线l 交圆于,A B 两点,设AOB θ∠=(0)θπ<≤,如图,则直线l 分圆所成两部分中较小部分面积为22111sin 22S r r θθ=-,较大部分面积为22211(2)sin 22S r r πθθ=-+,∴这两部分面积之差的绝对值为22221sin 9(sin )S S S r r r πθθπθθ=-=-+=-+,'9(1cos )0S θ=-+≤,∴9(sin )S πθθ=-+是减函数,θ最小时,S 最大.在CAB ∆中,2222218cos 218r AB AB rθ--==,∴AB 最小时,cos θ最大,从而θ最小.∵AB 经过点M ,∴由圆的性质知当CM AB ⊥时,AB 取得最小值.此时112AB CM k k =-=-,∴直线l 方程为12(2)2y x -=--,即260x y +-=.故选:D . 【点睛】本题考查直线与圆相交问题,解题关键是引入AOB θ=∠,借助于扇形面积公式用θ表示出两个弓形面积之差的绝对值,再利用导数确定这个绝对值最大时的θ值,从而确定直线l 的位置,求得其方程.本题考查了函数思想的应用. 11.已知()f x 为偶函数,且当0x ≥时,()31cos sin 3x x x f x x =-+,则满足不等式()()212log log 21f m f m f ⎛⎫+< ⎪⎝⎭的实数m 的取值范围为( )A .1,22⎛⎫ ⎪⎝⎭B .()0,2C .()10,1,22⎛⎫ ⎪⎝⎭D .()2,+∞【答案】A【解析】由偶函数性质把不等式()()212log log 21f m f m f ⎛⎫+< ⎪⎝⎭化为2(log )(1)f m f <,由导数确定函数()f x 在[0,)+∞上的单调性,利用单调性解不等式. 【详解】∵()f x 是偶函数,∴12222(log )(log )(log )(log )f m f m f m f m =-==,则不等式()()212log log 21f m f m f ⎛⎫+< ⎪⎝⎭可化为22(log )2(1)f m f <,即2(log )(1)f m f <,0x ≥时,31()cos sin 3f x x x x x =-+,2'()cos sin cos (sin )f x x x x x x x x x =--+=-,令()sin g x x x =-,则'()1c o s 0g x x =-≥,∴()g x 是R 上的增函数,∴当0x >时,()(0)0g x g >=,∴0x ≥时,'()0f x ≥,∴()f x 在[0,)+∞上是增函数, ∴由2(log )(1)f m f <得2log 1m <,即21log 1m -<<,122m <<. 故选:A . 【点睛】本题考查函数的奇偶性与单调性,考查解对数不等式.此各种类型不等式的解法是:本题这种类型的不等式有两种,一种是奇函数,不等式为12()()0f x f x +>,转化为12()()f x f x >-,一种是偶函数,不等式为12()()f x f x >,转化为12()()f x f x >,然后由单调性去函数符号“f ”.12.函数()()()221log 2a a f x ax x =--+在区间10,a ⎡⎤⎢⎥⎣⎦上恰有一个零点,则实数a 的取值范围是( )A .11,32⎛⎫ ⎪⎝⎭B .(][)1,23,+∞C .()[)1,23,+∞D .[)2,3【答案】D【解析】由零点存在定理1(0)()0f f a <得23a <<,但还要验证此时在1(0,)a上是否只有一个零点,然后讨论(0)0f =和1()0f a=两种情形是否符合题意. 【详解】(1)若由1(0)()0f f a<得(1log 2)(1log 3)0a a --<,lg 2lg 3(1)(1)0lg lg a a--<, (lg lg 2)(lg lg3)0a a --<,lg 2lg lg3a <<,∴23a <<.设2()(21)g x ax =-,()log (2)a h x ax =+,∵23a <<,∴()h x 在定义域内是增函数,作出()g x ,()h x 的示意图,如图.1(0)()1g g a ==,(0)log 21a h =<,1()log 31a h a =>,∴()g x 与()h x 的图象在1[0,]a 上只有一个交点,即()f x 在1[0,]a上只有一个零点,符合题意.(2)若(0)0f =,则1log 20a -=,2a =.如(1)中示意图,2()log (22)h x x =+是增函数,只是(0)(0)1h g ==,而11()(0)1()h h g a a>==,∴()g x 与()h x 的图象在1[0,]a 上只有一个交点,即()f x 在1[0,]a上只有一个零点,符合题意.(3)若1()0f a=,则1log 30a -=,3a =,如(1)中示意图,3()log (32)h x x =+是增函数,此时11()()1h g a a==,但(0)1g =,而3(0)log 21(0)h g =<=,因此在1(0,)2a 上()g x 与()h x 的图象还有一个交点,即()f x 在1[0,]a上有两个零点,不合题意.综上,a 的取值范围是[2,3). 故选:D . 【点睛】本题考查函数零点分布问题.()f x 在闭区间[,]m n 上只有一个零点,首先由零点存在定理()()0f m f n <确定参数范围,但是此种情形下必须验证在(,)m n 上是否是一个零点,零点存在定理只说明有零点,没有说明有几个零点.其次分别讨论()0f m =和()0f n =两种情形是否满足题意.二、填空题13.直线l :()110ax a y -+-=与直线4630x y -+=平行,则实数a 的值是______. 【答案】2.【解析】由两直线平行的条件判断. 【详解】 由题意(1)1463a a -+-=≠-,解得2a =. 故答案为:2. 【点睛】本题考查两直线平行的充要条件,两直线1110A x B y C ++=和2220A x B y C ++=平行,条件12210A B A B -=是必要条件,不是充分条件,还必须有12210AC A C -≠或12210B C B C -≠,但在2220A B C ≠时,两直线平行的充要条件是111222A B C A B C =≠. 14.某同学在最近的五次模拟考试中,其数学成绩的茎叶图如图所示,则该同学这五次数学成绩的方差是______.【答案】30.8.【解析】写出茎叶图中的5个数据,计算均值后再计算方差. 【详解】五个数据分别是:110,114,119,121,126,其平均值为1101141191211261185x ++++==,方差为2222221[(110118)(114118)(119118)(121118)(126118)]5s =-+-+-+-+-30.8=故答案为:30.8 【点睛】本题考查茎叶图,考查方差的计算.读懂茎叶图是解题基础.15.函数()sin 0,2y x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,则()f x 在区间[],ππ-上的零点之和为______.【答案】23π. 【解析】先求出周期,确定ω,再由点(,1)6π确定ϕ,得函数解析式,然后可求出[,]-ππ上的所有零点. 【详解】 由题意411()3126T πππ=⨯-=,∴22πωπ==,又sin(2)16πϕ⨯+=且2πϕ<,∴6π=ϕ, ∴()sin(2)6f x x π=+.由sin(2)06x π+=得26x k ππ+=,212k x ππ=-,k Z ∈, 在[,]-ππ内有:7511,,,12121212ππππ--,它们的和为23π.【点睛】本题考查三角函数的零点,由三角函数图象求出函数解析式,然后解方程()0f x =得出零点,就可确定在已知范围内的零点.本题也可用对称性求解,由函数周期是π,区间[,]-ππ含有两个周期,而区间端点不是函数零点,因此()f x 在[,]-ππ上有4个零点,它们关于直线6x π=对称,由此可得4个零点的和.16.过点()1,0M -的直线l 与抛物线C :24y x =交于A ,B 两点(A 在M ,B 之间),F 是抛物线C 的焦点,若4MBF MAF S S ∆∆=,则ABF ∆的面积为______. 【答案】3.【解析】不妨设,A B 在第一象限且由设1122(,),(,)A x y B x y ,由4MBF MAF S S ∆∆=,得2111422MF y MF y =⨯,从而214y y =.由,,A B M 共线及,A B 在抛物线上,可求得12,y y . 【详解】不妨设,A B 在第一象限,如图,设1122(,),(,)A x y B x y ,由题意(1,0)F ,∵4MBF MAF S S ∆∆=,∴2111422MF y MF y =⨯,∴214y y =. 又,,M A B 共线,∴121211y y x x =++,即122212111144y y y y =++,把214y y =代入得: 112211414114y yy y =++,显然10y ≠,解得11y =,∴24y =, ∴12112MAF S ∆=⨯⨯=,4MBF S ∆=,∴413FAB MBF MAF S S S ∆∆∆=-=-=.故答案为:3.【点睛】本题考查直线与抛物线相交的面积问题.解题关键是善于发现MAF ∆和MBF ∆有共同的底MF ,从而由面积比得出,A B 两点的纵坐标比,再由,,M A B 共线及,A B 在抛物线上,求得,A B 的纵坐标,从而得三角形面积.三、解答题17.每年的4月23日为“世界读书日”,某调查机构对某校学生做了一个是否喜爱阅读的抽样调查.该调查机构从该校随机抽查了100名不同性别的学生(其中男生45名),统计了每个学生一个月的阅读时间,其阅读时间t(小时)的频率分布直方图如图所示:(1)求样本学生一个月阅读时间t的中位数m.(2)已知样本中阅读时间低于m的女生有30名,请根据题目信息完成下面的22⨯列联表,并判断能否在犯错误的概率不超过0.1的前提下认为阅读与性别有关.22⨯列联表附表:其中:()()()()()22n ad bcKa b c d a c b d-=++++.【答案】(1)10;(2)不能在犯错误的概率不超过0.1的前提下认为阅读与性别有关. 【解析】(1)频率为0.5对应的点的横坐标为中位数;(2)100名学生中男生45名,女生55名,由频率分布直方图知,阅读时长大于等于m 的人数为50人,小于m的也有50人,阅读时间低于m的女生有30名,这样可得列联表中的各数,得列联表,依据2K公式计算2K,对照附表可得结论.【详解】(1)由题意得,直方图中第一组,第二组的频率之和为0.0450.0650.5⨯+⨯=.所以阅读时间的中位数10m =.(2)由题意得,男生人数为45人,因此女生人数为55人,由频率分布直方图知,阅读时长大于等于m 的人数为1000.550⨯=人, 故列联表补充如下:2K 的观测值()2100253025201005050455599k ⨯⨯-⨯==⨯⨯⨯ 1.01 2.706≈<,所以不能在犯错误的概率不超过0.1的前提下认为阅读与性别有关. 【点睛】本题考查频率分布直方图,考查独立性检验.正确认识频率分布直方图是解题基础.18.已知等差数列{}n a 的公差2d =,30a >,且-4a 与7a 的等比中项.数列{}n b 的通项公式为32n a n b +=.(1)求数列{}n b 的通项公式;(2)记)*n n c a n N=∈,求数列{}nc 的前n 项和nS.【答案】(1)222n n b -=;(2)2241n n S n n =+--.【解析】(1)由等差数列的通项公式表示出47,a a ,由等比中项定义求得1a ,注意30a >可确定只有一解,从而中得n a ,也即得n b ;(2)由(1)得1252n n c n -=-+,用分组求和法可求得n S .【详解】(1)由题意得41136a a d a =+=+,711612a a d a =+=+.∴(()()211612a a -=+⋅+,解得13a =-或115a =-.又31220a a =+⨯>,得14a >-,故13a =-. ∴()32125n a n n =-+⋅-=-. ∴32222n a n n b +-==.(2)由(1)可知,1252n n n c a n -==-+.12n n S c c c =+++()123112512nn -=--+++-+⎡⎤⎣⎦-()325212n n n -+-=+-2241n n n =+--.【点睛】本题考查等差数列的通项公式,考查等比中项的定义,考查分组求和法以及等差数列和等比数列前n 项和公式,掌握等差数列与等比数列的通项公式和前n 项和公式是解题基础.19.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知()()()sin sin sin sin A B a b c C B +-=+.(1)求A ;(2)若D 为BC 边上一点,且AD BC ⊥,BC =,求sin B . 【答案】(1)23A π=;(2)12.【解析】(1)由正弦定理把角的关系转化为边的关系,再由余弦定理可求得A ; (2)把ABC ∆的面积用两种方法表示建立AD 与三角形各边的关系,由BC =,即即AD =23a bc =,再代入余弦定理2222cos a b c bc A =+-中可求得b c =,从而可得6B C π==,于是得sin B 的值.【详解】(1)在ABC ∆中,由正弦定理得()()()a b a b c c b +-=+,即222ab c bc =++.由余弦定理得2221cos 22b c a A bc +-==-, 结合0A π<<,可知23A π=.(2)在ABC ∆中,11sin 22ABC S AB AC BAC BC AD ∆=⋅∠=⋅a AD =⋅.由已知BC =,可得AD =在ABC ∆中,由余弦定理得2222cos120a b c bc =+-︒, 即223bc b c bc =++,整理得()20b c -=,即b c =, ∴6A B π==.∴1sin sin 62B π==. 【点睛】本题考查正弦定理、余弦定理、三角形面积公式,第(2)问解题关键是把三角形面积用两种方法表示而建立等式:11sin 22ABC S bc A BC AD ∆==⋅. 20.已知椭圆C :2212x y +=,动直线l 过定点()2,0且交椭圆C 于A ,B 两点(A ,B 不在x 轴上).(1)若线段AB 中点Q 的纵坐标是23-,求直线l 的方程; (2)记A 点关于x 轴的对称点为M ,若点(),0N n 满足MN NB λ=,求n 的值. 【答案】(1)220x y --=;(2)1n =.【解析】(1)设()11,A x y ,()22,B x y ,直线AB :2x ty =+,直线方程与椭圆方程联立消元得y 的二次方程,由判别式得t 的取舍范围,由韦达定理得1212,y y y y +,利用AB 中点纵坐标是23-可求得t ,只要满足>0∆即可; (2)由题意()11,M x y -,MN NB λ=,说明M ,N ,B 三点共线,即MN MB k k =.这样可求出n ,化为只含12,y y 的式子后代入(1)中的1212,y y y y +就可求得n . 【详解】(1)设()11,A x y ,()22,B x y ,直线AB :2x ty =+.由22222x ty x y =+⎧⎨+=⎩消去x 得()222420t y ty +++=. 220t ∆=->,解得t >t <由韦达定理得12242t y y t -+=+,12222y y t =+.① ∵AB 中点Q 的纵坐标是23-,∴1243y y +=-,代入①解得1t =或2t =.又t >t <2t =. ∴直线l 的方程为220x y --=. (2)由题意得()11,M x y -,由MN NB λ=,知M ,N ,B 三点共线, 即MN MB k k =. ∴()()1211210y y y n x x x ----=--,即121121y y y n x x x +=--, 解得()121121y x x n x y y -=++.将112x ty =+,222x ty =+,代入得121222ty y n y y =++.②由①有12242t y y t -+=+,12222y y t =+.③ 将③代入②得到1n =. 【点睛】本题考查直线与椭圆相交问题,解题方法是“设而不求”的思想方法,解题时注意体会. 21.已知函数()212ln 2x f x ax x =+-,其中a R ∈. (1)讨论函数()f x 的单调性;(2)若3a ≥,记函数()f x 的两个极值点为1x ,2x (其中21x x >),求()()21f x f x -的最大值.【答案】(1)当a ≤时,()f x 在()0,∞+上单调递增;当a >函数()f x在0,2a ⎛⎫- ⎪ ⎪⎝⎭和2a ⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,在22a a ⎛⎫-+⎪ ⎪⎝⎭上单调递减; (2)32ln 22-. 【解析】(1)求出导函数'()f x ,由'()0f x >得增区间,由'()0f x <得减区间,注意题中函数定义域是(0,)+∞,因此对二次三项式28x ax -+分类情况为第一类:0a ≤或0∆≤,第二类0a >且>0∆.(2)与极值点有关的问题,不是直接代入极值点,而是用12,x x 表示极值点,由12,x x 是方程220x ax -+=的解,得12x x a +=,122x x =.2212221()()2ln 2f x f x x x ax -=+-21111(2ln )2x x ax -+-()()2222121112ln 2x x x a x x x =+---2222112ln 2x x x x -=-222211122ln x x x x x x -=-2211122lnx x x x x x =-+.不妨设12x x <,引入变量21xt x =,则1t >,21()()f x f x -就转化为t 的函数,由3a ≥求得t 的范围,由导数知识可得所求最大值. 【详解】(1)()()2'220x ax x a x x xf x -+=+-=>.令()22g x x ax =-+,则28a ∆=-.①当0a ≤或0∆≤,即a ≤时,得()'0f x ≥恒成立, ∴()f x 在()0,∞+上单调递增.②当00a >⎧⎨∆>⎩,即a >由()'0f x >,得0x <<x >由()'0f x <x <<.∴函数()f x在0,2a ⎛ ⎪⎝⎭和,2a ⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在⎝⎭上单调递减.综上所述,当a ≤()f x 在()0,∞+上单调递增;当a >()f x在⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减. (2)由(1)得,当a >()f x 有两极值点1x ,2x (其中21x x >). 则1x ,2x 为()220x a g x x =-+=的两根,∴12x x a +=,122x x =.()()()()222212121112ln2x f x f x x x a x x x -=+--- 222222122111122ln 2ln 2x x x x x x x x x x --=-=-2211122lnx x x x x x =-+. 令()211x t t x =>, 则()()()2112ln f x f x h t t t t-==-+.由3a ≥,得()22121219222x x a t x x t +==++≥,即22520t t -+≥,解得2t ≥.∵()()22222121211'0t t t t t t th t ---+-=--==<, ∴()h t 在[)2,+∞上单调递减, ∴()()max 322ln 22h t h ==-. 即()()21f x f x -的最大值为32ln 22-.【点睛】本题考查用导数研究函数的单调性,函数的极值点以及与极值点有关的最值.在求单调区间时要注意分类讨论.在研究极值点有关的最值问题时,常常设极值点为12,x x ,由极值点的定义得出函数中参数与12,x x 的关系,即用12,x x 表示参数,并代入待求(证)式,同时设21x t x =(本题),可把待求(证)式转化为t 的函数式,从而再利用导数的知识确定这个函数得出结论.这类题难度较大,对学生的思维能力、推理论证能力、转化与化归能力要求较高.22.在平面直角坐标系中,曲线1C 的参数方程为1cos sin x r y r ϕϕ=+⎧⎨=⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 经过点2,3P π⎛⎫ ⎪⎝⎭,曲线2C 的直角坐标方程为221x y -=.(1)求曲线1C 的普通方程,曲线2C 的极坐标方程;(2)若()1,A ρα,2,6B πρα⎛⎫- ⎪⎝⎭是曲线2C 上两点,当0,4πα⎛⎫∈ ⎪⎝⎭时,求2211OA OB +的取值范围.【答案】(1)()2213x y -+=,2cos 21ρθ=;(2)⎝. 【解析】(1)由22cos sin 1ϕϕ+=消元后得普通方程,由cos sin x y ρθρθ=⎧⎨=⎩代入直角坐标方程可得极坐标方程;(2)直接把,A B 两点的极坐标代入曲线2C 的极坐标方程,得2212,ρρ,这样2211OAOB+就可转化为三角函数式,利用三角函数知识可得取值范围.【详解】(1)将1C 的参数方程化为普通方程为()2221x y r -+=. 由cos x ρθ=,sin y ρθ=, 得点2,3P π⎛⎫ ⎪⎝⎭的直角坐标为(,代入1C ,得23r =,∴曲线1C 的普通方程为()2213x y -+=.2C 可化为2222cos sin 1ρθρθ-=,即()222cos sin 1ρθθ-=,∴曲线2C 的极坐标方程为2cos 21ρθ=.(2)将点()1,A ρα,2,6B πρα⎛⎫- ⎪⎝⎭代入曲线2C 的极坐标方程,得21cos 21ρα=,22cos 213πρα⎛⎫-= ⎪⎝⎭, ∴22222111cos 2cos 1123OAOBπααρρ⎛⎫=++-+= ⎪⎝⎭3cos 222223πααα⎛⎫=+=+ ⎪⎝⎭. 由已知0,4πα⎛⎫∈ ⎪⎝⎭,可得52,336πππα⎛⎫+∈ ⎪⎝⎭,23πα⎛⎫+∈ ⎪⎝⎭⎝. 所以2211OAOB +的取值范围是⎝. 【点睛】本题考查极坐标方程与直角坐标方程的互化,考查参数方程与普通方程的互化.消元法和公式法是解决此类问题的常用方法.23.已知关于x 的不等式12121log x x a +--≤,其中0a >.(1)当4a =时,求不等式的解集;(2)若该不等式对x ∈R 恒成立,求实数a 的取值范围. 【答案】(1)2|43x x x ⎧⎫≤-≥⎨⎬⎩⎭或;(2)04a <≤. 【解析】(1)用分类讨论的方法去绝对值符号后再解不等式,最后要合并(求并集); (2)设()121f x x x =+--,同样用分类讨论去绝对值符号化函数为分段函数,求得()f x 的最大值,解相应不等式可得a 的范围. 【详解】 (1)由4a =时,12log 2a =-.原不等式化为1212x x +--≤-,第 21 页 共 21 页 当12x ≥时,()1212x x +--≤-,解得4x ≥,综合得4x ≥; 当112x -<<时,1212x x ++-≤-,解得23x ≤-,综合得213x -<≤-; 当1x ≤-时,()1212x x -++-≤-,解得0x ≤,综合得1x ≤-.∴不等式的解集为2|43x x x ⎧⎫≤-≥⎨⎬⎩⎭或. (2)设函数()2,111213,1212,2x x f x x x x x x x ⎧⎪-<-⎪⎪=+--=-≤<⎨⎪⎪-+≥⎪⎩, 画图可知,函数()f x 的最大值为32. 由123log 2a ≤,解得04a <≤. 【点睛】本题考查解含绝对值的不等式,解题方法是根据绝对值定义去掉绝对值符号,用分类讨论的方法分段解不等式.。

四川省绵阳市高中高三第二次诊断性考试(数学理)

四川省绵阳市高中高三第二次诊断性考试(数学理)

保密 ★ 启用前 【考试时间:1月15日下午15:00 — 17:00】绵阳市高中第二次诊断性考试数 学(理科)本试卷分为试题卷和答题卷两部分,其中试题卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)组成,共4页;答题卷共4页.全卷满分150分.考试结束后将答题卡和答题卷一并交回.第Ⅰ卷(选择题,共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案,不能答在试题卷上.参考公式:如果事件A 、B 互斥,那么P (A + B )= P (A )+ P (B ); 如果事件A 、B 相互独立,那么P (A ·B )= P (A )·P (B );如果事件A 在一次试验中发生的概率为P ,那么在n 次独立重复试验中恰好发生k 次的概率:k n k kn n P P C k P --⋅⋅=)1()(.一、选择题:本大题共12个小题,每个小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,把它选出来填涂在答题卡上.1.设集合I = { x ︱︱x -2︱≤2,x ∈N *},P = { 1,2,3 },Q = { 2,3,4 },则 I (P ∩Q )=A .{ 1,4 }B .{ 2,3 }C .{ 1 }D .{ 4 } 2.若向量a 、b 、c 满足 a + b + c = 0,则a 、b 、cA .一定能构成一个三角形B .一定不能构成一个三角形C .都是非零向量时一定能构成一个三角形D .都是非零向量时也可能无法构成一个三角形 3.将直线x -3y -2 = 0绕其上一点逆时针方向旋转60︒得直线l ,则直线l 的斜率为A .33 B .3 C .不存在 D .不确定4.已知f (x ) = sin (x +2π),g (x ) = cos (x -2π),则下列命题中正确的是 A .函数y = f (x ) · g (x ) 的最小正周期为2πB .函数y = f (x ) · g (x ) 是偶函数C .函数y = f (x ) + g (x ) 的最小值为-1D .函数y = f (x ) + g (x ) 的一个单调增区间是]4,43[ππ-5.为了得到函数)62sin(π-=x y 的图象,可以将函数y = cos 2x 的图象A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向左平移3π个单位长度6.设双曲线的焦点为F 1、F 2,过点F 2作垂直于实轴的弦PQ ,若∠PF 1Q = 90︒,则双曲线的离心率e 等于A .2+ 1B .2C .3D .3+ 17.已知x ,y 满足线性约束条件:2302902690x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,若目标函数z =-x + my 取最大值的最优解有无数个,则m =A .-3或-2B .21-或31 C .2或-3 D .218.已知焦点(设为F 1,F 2)在x 轴上的双曲线上有一点P (x 0,23),直线x y 3= 是双曲线的一条渐近线,当021=⋅PF PF 时,该双曲线的一个顶点坐标是 A .(2,0) B .(3,0) C .(2,0) D .(1,0) 9.若不等式︱x -a ︱-︱x ︱< 2-a 2 当x ∈R 时总成立,则实数a 的取值范围是 A .(-2,2) B .(-2,1) C .(-1,1) D .(-∞,-1)∪(1,+∞)10.已知抛物线C :y 2 = 8x 的焦点为F ,准线与x 轴的交点为Q ,点P (x 0,y 0)在C 上且||||0QF y =,则︱y 0︱=A .2B .4C .6D .8 11.已知等腰三角形的面积为23,顶角的正弦值是底角正弦值的3倍,则该三角形一腰的长为 A .2 B .3 C .2 D .612.设函数f (x )的定义域为A ,若存在非零实数t ,使得对于任意x ∈C (C ⊆ A ),有x + t ∈A ,且f(x + t )≤ f (x ),则称f (x )为C 上的t 低调函数.如果定义域为 [ 0,+∞)的函数f (x )=-︱x -m 2︱+ m 2,且 f (x )为 [ 0,+∞)上的10低调函数,那么实数m 的取值范围是 A .[-5,5 ] B .[-5,5] C .[-10,10] D .]25,25[-第Ⅱ卷 (非选择题 共90分)注意事项:答第Ⅱ卷前,考生务必将自己的姓名、准考证号用钢笔或圆珠笔(蓝、黑色)写在答题卷密封线内相应的位置.答案写在答题卷上,请不要答在试题卷上.二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.不等式 13>x的解是 .14.已知函数f (x )= sin x -cos (6-πx ),x ∈[ 0,2π),则满足f (x )>0的x 值的集合为 .15.设a >2b >0,则29()(2)a b b a b -+-的最小值是 .16.给出下列命题:① “sin α-tan α>0”是“α 是第二或第四象限角”的充要条件;② 平面直角坐标系中有三个点A (4,5)、B (-2,2)、C (2,0),则直线AB 到直线BC 的角为4arctan3; ③ 函数xx x f 22cos 3cos )(+=的最小值为32; ④ 设[m ] 表示不大于m 的最大整数,若x ,y ∈R ,那么[x + y ]≥[x ] + [y ] . 其中所有正确命题的序号是 .(将你认为正确的结论序号都写上) 三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分12分)设△ABC 三个角A ,B ,C 的对边分别为a ,b ,c ,向量)2,(b a p =,)1,(sin A q =,且//.(Ⅰ)求角B 的大小;(Ⅱ)若△ABC 是锐角三角形,)tan cos sin ,1(),cos ,(cos B A A n B A m -==,求⋅的取值范围. 18.(本题满分12分)如图,在平面直角坐标系xOy 中, AB 是半圆⊙O :x 2 + y 2= 1(y ≥0)的直径,C 是半 圆O (除端点A 、B )上的任意一点,在线段AC 的 延长线上取点P ,使︱PC ︱=︱BC ︱,试求动点P 的轨迹方程. 19.(本题满分125,若累计摸到两个白球就停止摸球,否则直到将盒子里的球摸完才停止.规定:在球摸停止时,只有摸出红球才获得奖金,奖金数为摸出红球个数的1000倍(单位:元). (Ⅰ)求该幸运观众摸三次球就停止的概率;(Ⅱ)设ξ 为该幸运观众摸球停止时所得的奖金数(元),求ξ 的分布列和数学期望E ξ.本题满分12分)已知函数223)(ax x f =,g (x ) =-6x + ln x 3(a ≠0).(Ⅰ)若函数h (x ) = f (x )-g (x ) 有两个极值点,求实数a 的取值范围;(Ⅱ)是否存在实数a >0,使得方程g (x ) = x f ′(x )-3(2a + 1)x 无实数解?若存在,求出a 的取值范围?若不存在,请说明理由. 21.(本题满分12分)设椭圆C 的中心在坐标原点O ,焦点在x 轴上,短轴长为212,左焦点到左准线的距离为73.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆C 上有不同两点P 、Q ,且OP ⊥OQ ,过P 、Q 的直线为l ,求点O 到直线l 的距离.22.(本题满分14分)已知{ a n }是等差数列,{ b n }是等比数列,S n 是{ a n }的前n 项和,a 1 = b 1 = 1,2212b S =.(Ⅰ)若b 2是a 1,a 3的等差中项,求a n 与b n 的通项公式; (Ⅱ)若a n ∈N *,{n a b }是公比为9的等比数列,求证:351111321<++++n S S S S . 绵阳市高中第二次诊断性考试数学(理科)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分.ADCD BACD CBAB二、填空题:本大题共4小题,每小题4分,共16分.13.{ x ︱0<x <3 } 14.(34,3ππ)或 }343|{ππ<<x x 15.12 16.①④三、解答题:本大题共6小题,共74分.17.解 (Ⅰ)∵ )2,(b a =,)1,(sin A =,//,∴ a -2b sin A = 0,由正弦定理得 sin A -2sin B sin A = 0. ………… 3分 ∵ 0<A ,B ,C <π,∴ 21sin =B ,得 6π=B 或56B π=. …………………… 6分 (Ⅱ)∵ △ABC 是锐角三角形,∴ 6π=B ,)cos 33sin ,1(),23,(cos A A n A m -==, 于是 )cos 33(sin 23cos A A A n m -+=⋅=A A sin 23cos 21+=)6sin(π+A .9分由 65ππ=-=+B C A 及 0<C <2π,得 )65,3(65πππ∈-=C A . 结合0<A <2π,∴ 23ππ<<A ,得 3262πππ<+<A , ∴1)6sin(23<+<πA ,即 123<⋅<n m .… 12分 18.解 连结BP ,由已知得∠APB = 45︒.… 2分 设P (x ,y ),则 1+=x yk PA ,1-=x y k PB ,由PA 到PB 的角为45︒, 得1111145tan +⋅-++--=︒x y x y x y x y ,化简得 x 2 +(y -1)2= 2.… 10分由已知,y >0且1+=x y k PA >0,故点P 的轨迹方程为x 2 +(y -1)2= 2(x >-1,y >0). 12分法二 连结BP ,由已知可得∠APB = 45︒,∴ 点P 在以AB 为弦,所对圆周角为45︒的圆上.设该圆的圆心为D ,则点D 在弦AB 的中垂线上,即y 轴上,且∠ADB = 90︒,∴ D (0,1),︱DA ︱=2,圆D 的方程为x 2+(y -1)2= 2.由已知,当点C 趋近于点B 时,点P 趋近于点B ;当点C 趋近于点A 时,点P 趋近于点(-1,2),所以点P 的轨迹方程为x 2 +(y -1)2= 2(x >-1,y >0).19.解 (Ⅰ)记“该幸运观众摸球三次就停止”为事件A ,则112232351()5C C A P A A ==. …………………… 5分 (Ⅱ)ξ 的可能值为0,1000,.…… 7分21222223551(0)6A C A P A A ξ==+=,31)1000(4533121235221212=+==A A C C A A C C P ξ, 21331422332445551(2000)2C C A C C A P A A ξ==+=.…………… 10分所以 11140000100020006323E ξ=⨯+⨯+⨯=.…… 12分答:略.(Ⅰ)∵ h (x ) = f (x )-g (x ) =223ax + 6x -3 ln x (x >0),∴ xax x h 363)(-+='. ………………… 2分∵ 函数h (x ) 有两个极值点,∴ 方程0)12(3363)(2=-+=-+='xx ax x ax x h ,即ax 2+ 2x -1 = 0应有两个不同的正数根,于是 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>-=>-=+>+=∆,01,02,04221212a x x a x x a⇒ -1<a <0.……………… 6分(Ⅱ)方程 g (x ) = x f ′(x )-3(2a + 1)x 即为 -6x + 3 ln x = 3ax 2-3(2a + 1)x ,等价于方程 ax 2+(1-2a )x -ln x = 0.设 H (x )= ax 2+(1-2a )x -ln x ,转化为关于函数H (x )在区间(0,+∞)内的零点问题(即函数H (x )图象与x 轴有无交点的问题). …………………… 8分∵ H ′(x ) = 2ax +(1-2a )-xx ax x x a ax x )1)(12(1)21(212-+=--+=, 且a >0,x >0,则当x ∈(0,1)时,H ′(x )<0,H (x )是减函数; 当x ∈(1,+∞)时,H ′(x )>0,H (x )是增函数.…… 10分 因为 x → 0(或者x →+∞)时,H (x )→ +∞, ∴ 要使H (x )图象与x 轴有无交点,只需H (x )min = H (1)= a +(1-2a )= 1-a >0,结合a >0得 0<a <1,为所求.12分21.解 (1)设椭圆C 的方程为12222=+bb a x (a >b >0),则 2122=b ,21=b .由 73)(2=---ca c ,即73222==-c b c c a ,得 7=c . 于是 a 2= b 2+ c 2= 21 + 7 = 28,椭圆C 的方程为1212822=+y x .…… 5分(2)若直线l 的斜率不存在,即l ⊥x 轴时,不妨设l 与x 正半轴交于点M ,将x = y 代入1212822=+y x 中,得32±==y x ,则点P (32,32),Q (32,32-),于是点O 到l 的距离为32.……… 7分若直线l 的斜率存在,设l 的方程为y = kx + m (k ,m ∈R ),则点P (x 1,y 1),Q (x 2,y 2)的坐标是方程组⎪⎩⎪⎨⎧=++=1212822y x mkx y 的两个实数解,消去y ,整理,得(3 + 4k 2)x 2 + 8kmx + 4m 2-84 = 0,∴ △ =(8km )2-4(3 + 4k 2)(4m 2-84)= 12(28k 2-m 2+ 21)>0, ①221438k kmx x +-=+,222143844k m x x +-=. ② 9分∵ OP ⊥OQ ,∴ k OP · k OQ =-1,即12211-=⋅x y x y ,x 1x 2 + y 1y 2 = 0. 于是 x 1x 2 +(kx 1 + m )(kx 2 + m )=(1 + k 2)x 1x 2 + km (x 1 + x 2)+ m 2= 0. ③将 x 1 + x 2,x 1x 2 代入上式,得 043843844)1(22222=++-+-⋅+m kkm km k m k , ∴(k 2 + 1)(4m 2-84)-8k 2m 2 + m 2(4k 2+ 3)= 0,化简,得 m 2 = 12(k 2+ 1). ④ ④代入①满足,因此原点O 到直线l 的距离 32121||2==+-=k m d .…… 12分22.解 设等差数列{ a n }的公差为d ,等比数列{ b n }公比为q . (Ⅰ)∵ 2212b S =,∴ qb d a a 11112=++,而 a 1 = b 1 = 1,则 q (2 + d )= 12.① 又 ∵ b 2是a 1,a 3的等差中项,∴ a 1 + a 3 = 2b 2,得1 + 1 + 2d = 2q ,即 1 + d = q . ②联立①,②,解得 ⎩⎨⎧==,3,2q d 或 ⎩⎨⎧-=-=.4,5q d …………………… 4分所以 a n = 1 +(n -1)· 2 = 2n -1,b n = 3n -1;或 a n = 1 +(n -1)·(-5)= 6-5n ,b n =(-4)n -1. …………………… 6分 (Ⅱ) ∵ a n ∈N *,d n d n a a q q q b b n n )1(1)1(111---+-===,∴9)1(1===-+d dn nd a a q qq b b nn ,即 q d = 32. ① … 8分由(Ⅰ)知 q ( 2 + d ) = 12,得 dq +=212. ② ∵ a 1 = 1,a n ∈N *,∴ d 为正整数,从而根据①②知q >1且q 也为正整数, ∴ d 可为1或2或4,但同时满足①②两个等式的只有d = 2,q = 3,∴ a n = 2n -1,22)121(n n n S n =-+=.…… 10分 ∴ )121121(2)5.0)(5.0(1112+--=-+<=n n n n n S n (n ≥2). 当n ≥2时,2222211312111111nS S S n ++++=+++ <)121121(2)7151(2)5131(21+--++-+-+n n =12135)]121121()7151()5131[(21+-=+--++-+-+n n n <35.显然,当n = 1时,不等式成立.故n ∈N *,3511121<+++n S S S .…… 14分思路2 或者和文科题的解法相同,前两项不变,从第三项213开始缩小: 当n ≥2时,21211111111111111()()()2224235211n S S S n n +++<++-+-++--+ 111111111[()()()]42243511n n =++-+-++--+1111111()42231n n =+++--+51131n n =--+53<.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绵阳市高中2017级第二次诊断性考试
理科数学
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
3.考试结束后,将答题卡交回.
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设全集{}|0U x x =>,{
}2
|1x
M x e e
=<<,则U
C
M =( )
A. ()1,2
B. ()2,+∞
C. (][)0,12,+∞U
D. [)2,+∞
2.已知i 虚数单位,复数z 满足12z i i ⋅=+,则z =( )
A. 2i -
B. 2i +
C. 12i -
D. 2i -
3.已知两个力()11
,2F =u u r ,()22,3F =-u u r
作用于平面内某静止物体的同一点上,为使该物体仍保持静止,还需给该物体同一点上再加上一个力3F u u r
,则3F =u u r ( )
A. ()1,5-
B. ()1,5-
C. ()5,1-
D. ()5,1-
4.甲、乙、丙三位客人在参加中国(绵阳)科技城国际科技博览会期间,计划到绵阳的九皇山、七曲山大庙两个景点去参观考察,由于时间关系,每个人只能选择一个景点,则甲、乙、丙三人恰好到同一景点旅游参观的概率为( ) A.
18
B.
14
C.
38
D.
12
5.已知α为任意角,则“1cos 23α=”是“sin 3
α=”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件
D. 既不充分也不必要
6.若5
1ax x ⎛⎫- ⎪⎝
⎭的展开式中各项系数的和为1,则该展开式中含3x 项的系数为( ) A. -80
B. -10
C. 10
D. 80
7.已知某产品
的销售额y 与广告费用x 之间的关系如下表:
若根据表中的数据用最小二乘法求得y 对x 的回归直线方程为 6.59y
x =+,则下列说法中错误的是( )
A. 产品的
销售额与广告费用成正相关 B. 该回归直线过点()2,22
C. 当广告费用为10万元时,销售额一定为74万元
D. m 的值是20
8.双曲线()22
2210,0x y a b a b
-=>>的右焦点为F ,过F 作与双曲线的两条渐近线平行的直线且与渐近线分
别交于A ,B 两点,若四边形OAFB (O 为坐标原点)的面积为bc ,则双曲线的离心率为( ) A.
B. 2
C.
D. 3
9.小明与另外2名同学进行“手心手背”游戏,规则是:3人同时随机等可能选择手心或手背中的一种手势,规定相同手势人数多者每人得1分,其余每人得0分.现3人共进行了4次游戏,记小明4次游戏得分之和为X ,则X 的期望为( ) A. 1
B. 2
C. 3
D. 4
10.已知圆C :2268110x y x y +---=,点M ,N 在圆C 上,平面上一动点P 满足PM PN =且
PM PN ⊥,则PC 的最大值为( )
A. 4
B. C. 6
D. 11.已知()f x 为偶函数,且当0x ≥时,()3
1cos sin 3
x x x f x x =-+
,则满足不等式()()212log log 21f m f m f ⎛⎫
+< ⎪⎝⎭
的实数m 的取值范围为( )
A. 1,22⎛⎫
⎪⎝⎭
B. ()0,2
C. ()10,
1,22⎛⎫
⎪⎝⎭
U D. ()2,+∞
12.函数()()()2
21log 2a a f x ax x =--+在区间10,a ⎡⎤⎢⎥⎣⎦
上恰有一个零点,则实数a

取值范围是( )
A. 11,
32⎛⎫
⎪⎝⎭
B. [)3,+∞
C. ()[)1,23,+∞U
D. [)2,3
二、填空题:本大题共4小题,每小题5分,共20分.
13.直线l :()110ax a y -+-=与直线4630x y -+=平行,则实数a 的值是______.
14.法国数学家布丰提出一种计算圆周率π的方法——随机投针法,受其启发,我们设计如下实验来估计π的值:先请200名同学每人随机写下一个横、纵坐标都小于1的正实数对(),x y ;再统计两数的平方和小于1的数对(),x y 的个数m ;最后再根据统计数m 来估计π的值.已知某同学一次试验统计出156m =,则其试验估计π为______.
15.函数()sin 0,2y x πωϕωϕ⎛

=+><
⎪⎝

的图象如图所示,
则()f x 在区间[],ππ-上的零点之和为______.
16.过点()1,0M -的直线l 与抛物线C :24y x =交于A ,B 两点(A 在M ,B 之间),F 是抛物线C 的焦点,点N 满足:5NA AF =u u u r u u u r
,则ABF ∆与AMN ∆的面积之和的最小值是______.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.
17.每年的4月23日为“世界读书日”,某调查机构对某校学生做了一个是否喜爱阅读的抽样调查.该调查机构从该校随机抽查了100名不同性别的学生(其中男生45名),统计了每个学生一个月的阅读时间,其阅读时间t (小时)的频率分布直方图如图所示:
(1)求样本学生一个月阅读时间t 的中位数m .
(2)已知样本中阅读时间低于m 的女生有30名,请根据题目信息完成下面的22⨯列联表,并判断能否在犯错误的概率不超过0.1的前提下认为阅读与性别有关.
22⨯列联表
男 女 总计 t m ≥
<t m
总计
附表:
()20P K k ≥ 0.15 0.10 0.05
0k
2.072 2.706
3.841
其中:()()()()()
2
2
n ad bc K a b c d a c b d -=
++++. 18.已知等差数列{}n a 的前n 项和为n S ,且满足120a a +=,624S =.各项均为正数的等比数列{}n b 满足
1241b b a +=+,34b S =.
(1)求n a 和n b ;
(2)求和:()()()1121211111n n T b b b b b b -=+++++++++++L L .
19.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知()()()sin sin sin sin A B a b c C B +-=+. (1)求A ;
(2)若D 为BC 边上一点,且AD BC ⊥,BC =,求sin B .
20.已知椭圆C :2
212
x y +=,直线l 交椭圆C 于A ,B 两点.
(1)若点()1,1P -满足0OA OB OP ++=u u u r u u u r u u u r r
(O 为坐标原点),求弦AB 的长;
(2)若直线l 的斜率不为0且过点()2,0,M 为点A 关于x 轴的对称点,点(),0N n 满足MN NB λ=u u u u r u u u r
,求n 的值.
21.已知函数()2
12ln 2
x f x ax x =+
-,其中a R ∈. (1)讨论函数()f x 的单调性;
(2)若3a ≥,记函数()f x 的两个极值点为1x ,2x (其中21x x >),当()()21f x f x -的最大值为32ln 22
-时,求实数a 的取值范围.
(二)选考题:共10分.请考生在第22、23题中任选一题做答.如果多做,则按所做的第一题记分.
22.在平面直角坐标系中,曲线1C 的参数方程为1cos sin x r y r ϕ
ϕ
=+⎧⎨
=⎩(0r >,ϕ为参数),以坐标原点O 为极点,
x 轴正半轴为极轴建立极坐标系,曲线1C 经过点2,3P π⎛⎫
⎪⎝⎭
,曲线2C 的直角坐标方程为221x y -=.
(1)求曲线1C 的普通方程,曲线2C 的极坐标方程;
(2)若()1,A ρα,2,6B πρα⎛⎫- ⎪⎝⎭是曲线2C 上两点,当0,4πα⎛⎫∈ ⎪⎝⎭
时,求2211OA OB +的取值范围. 23.已知关于x 的不等式12
121log x x a +--≤,其中0a >.
(1)当4a =时,求不等式的解集; (2)若该不等式对x ∈R 恒成立,求实数a 取值范围.。

相关文档
最新文档