压电式传感器实验报告
压电传感器的动态响应实验

压电传感器的动态响应实验压电传感器是一种常见的传感器,它利用压电效应来测量力、压力、加速度等物理量。
它的优点包括高灵敏度、快速响应、结构简单等。
在动态响应实验中,我们需要考虑压电传感器的频率响应,因为这关系到它能否正确地测量快速变化的物理量。
以下是一篇关于压电传感器动态响应实验的实验报告。
一、实验目的本实验的目的是探究压电传感器的动态响应特性,了解其在不同频率和振幅下的输出信号表现,以便在实际应用中选择合适的压电传感器,并确保测量结果的准确性。
二、实验原理压电传感器的工作原理是基于压电效应。
当压电传感器受到外力作用时,其内部晶体会发生形变,导致晶体内部电荷分布发生变化,从而产生电信号。
这个电信号与所受外力成正比。
在动态响应实验中,我们通常采用振动台对传感器施加正弦波形的外力,并测量其输出信号。
三、实验步骤1.准备实验器材:压电传感器、振动台、信号发生器、示波器、计算机等。
2.将压电传感器连接到振动台上,确保连接稳定且无松动。
3.通过信号发生器产生不同频率和振幅的正弦波形信号,输入到振动台上,使压电传感器受到不同程度的外力作用。
4.通过示波器实时监测压电传感器的输出信号,并将数据传输到计算机进行记录和分析。
5.重复步骤3和4,进行多次实验,以获取压电传感器在不同条件下的输出信号表现。
6.对实验数据进行整理和分析,绘制压电传感器的频率响应曲线和幅值响应曲线。
四、实验结果及分析1.实验数据整理在实验过程中,我们记录了不同频率和振幅下的压电传感器的输出信号数据。
以下是部分实验数据的表格:根据实验数据,我们绘制了压电传感器的频率响应曲线和幅值响应曲线。
从频率响应曲线中可以看出,随着频率的增加,压电传感器的输出信号逐渐减小。
这主要是因为高频信号会导致传感器的谐振频率发生变化,从而影响其灵敏度和响应速度。
在低频范围内,传感器的输出信号受频率影响较小,因此适用于低频测量。
幅值响应曲线则显示了压电传感器在不同振幅下的输出信号表现。
压电式传感器测振动实验.

实验二十一压电式传感器测振动实验一、实验目的:了解压电传感器的原理和测量振动的方法。
二、基本原理:压电式传感器是一和典型的发电型传感器,其传感元件是压电材料,它以压电材料的压电效应为转换机理实现力到电量的转换。
压电式传感器可以对各种动态力、机械冲击和振动进行测量,在声学、医学、力学、导航方面都得到广泛的应用。
1、压电效应:具有压电效应的材料称为压电材料,常见的压电材料有两类压电单晶体,如石英、酒石酸钾钠等;人工多晶体压电陶瓷,如钛酸钡、锆钛酸铅等。
压电材料受到外力作用时,在发生变形的同时内部产生极化现象,它表面会产生符号相反的电荷。
当外力去掉时,又重新回复到原不带电状态,当作用力的方向改变后电荷的极性也随之改变,如图21—1 (a) 、(b) 、(c)所示。
这种现象称为压电效应。
(a) (b) (c)图21—1 压电效应2、压电晶片及其等效电路多晶体压电陶瓷的灵敏度比压电单晶体要高很多,压电传感器的压电元件是在两个工作面上蒸镀有金属膜的压电晶片,金属膜构成两个电极,如图21—2(a)所示。
当压电晶片受到力的作用时,便有电荷聚集在两极上,一面为正电荷,一面为等量的负电荷。
这种情况和电容器十分相似,所不同的是晶片表面上的电荷会随着时间的推移逐渐漏掉,因为压电晶片材料的绝缘电阻(也称漏电阻)虽然很大,但毕竟不是无穷大,从信号变换角度来看,压电元件相当于一个电荷发生器。
从结构上看,它又是一个电容器。
因此通常将压电元件等效为一个电荷源与电容相并联的电路如21—2(b)所示。
其中e a=Q/C a。
式中,e a为压电晶片受力后所呈现的电压,也称为极板上的开路电压;Q为压电晶片表面上的电荷;C a为压电晶片的电容。
实际的压电传感器中,往往用两片或两片以上的压电晶片进行并联或串联。
压电晶片并联时如图21—2(c)所示,两晶片正极集中在中间极板上,负电极在两侧的电极上,因而电容量大,输出电荷量大,时间常数大,宜于测量缓变信号并以电荷量作为输出。
传感器检测实验报告

一、实验目的1. 了解传感器的基本原理和检测方法。
2. 掌握不同类型传感器的应用和特性。
3. 通过实验,验证传感器检测的准确性和可靠性。
4. 培养动手能力和分析问题的能力。
二、实验原理传感器是将物理量、化学量、生物量等非电学量转换为电学量的装置。
本实验主要涉及以下几种传感器:1. 电阻应变式传感器:利用应变片将应变转换为电阻变化,从而测量应变。
2. 电感式传感器:利用线圈的自感或互感变化,将物理量转换为电感变化,从而测量物理量。
3. 电容传感器:利用电容的变化,将物理量转换为电容变化,从而测量物理量。
4. 压电式传感器:利用压电效应,将物理量转换为电荷变化,从而测量物理量。
三、实验仪器与设备1. 电阻应变式传感器实验装置2. 电感式传感器实验装置3. 电容传感器实验装置4. 压电式传感器实验装置5. 数字万用表6. 示波器7. 信号发生器8. 振动台四、实验步骤1. 电阻应变式传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
(3)观察数字万用表和示波器显示的应变值和电压值。
(4)分析应变值和电压值之间的关系,验证电阻应变式传感器的检测原理。
2. 电感式传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
(3)观察数字万用表和示波器显示的电感值和电压值。
(4)分析电感值和电压值之间的关系,验证电感式传感器的检测原理。
3. 电容传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
(3)观察数字万用表和示波器显示的电容值和电压值。
(4)分析电容值和电压值之间的关系,验证电容传感器检测原理。
4. 压电式传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
压电式传感器标定实验

2020/11/25
2、量程调节
量程调节
18
2020/11/25
3、触发方式调节
1.按“Trigger” 键
2.按照要求设 置触发方式
19
4、触发电平设置
2020/11/25
判断标准: (1)合适:“Stop”——“Armed”——“Ready”——“Trig’s”——“Stop” (2)噪声触发:“Stop”——“Armed”——“Trig’s”——“Stop”,需增大触发电压 (3)不能触发: “Stop”——“Armed”——“Ready”,需减小触发电压
2020/11/25
❖第三步:实验数据获取
记录曲线及压力跃起时间 打开激波管阀门破膜 示波器“Ready” 放大器置于“工作”
14
2020/11/25
❖15209882093 ❖小白楼201
15
2020/11/25
示波器
16
2020/11/25
1、开机
1.按下“运行/停止”
2.按下“强制触发”
激波管膜片安装
26
2020/11/25
充气及破膜
1.充气时两个 阀门均需拧紧 2.破膜时拧开 靠墙一端的阀 门,听见破膜 声后拧开另一 个阀门放气
27
❖ 第三步:实验数据测量
2.放大器置 于“工作”
1. 砝码 加载
3. 示波器 “运行”, 卸载、触
发
4.放大器“复 位”,光标测
出电压差
8
5.改变砝码, 重新测量
2020/11/25
2、动态标定
1.基本概念
Outline 2.实验设备
3.实验内容及步骤
9
2.1 基本概念
压电式力学传感器总结

发展趋势:压电式力学传感器的 发展趋势是智能化、微型化、集 成化,未来市场前景广阔
06
压电式力学传感器的选用建议
明确需求与预算
确定传感器的测量范围和 精度要求
考虑传感器的安装环境和 使用条件
评估传感器的成本和维护 费用
考虑传感器的供货周期和 售后服务
考虑精度与稳定性要求
精度要求:根 据实际应用场 景选择合适的
04
压电式力学传感器的应用实例
在医疗诊断中的应用
血压计:测量血压,辅助诊 断高血压等疾病
心电图机:检测心脏活动, 诊断心律失常等疾病
呼吸机:监测呼吸频率和深 度,辅助诊断呼吸系统疾病
超声波诊断仪:检测人体内 部结构,辅助诊断肿瘤等疾
病
在环境监测中的应用
空气质量监测:检测空气中的PM2.5、PM10等污染物浓度 水质监测:检测水中的COD、BOD、重金属等污染物浓度 土壤监测:检测土壤中的重金属、农药残留等污染物浓度 噪声监测:检测环境中的噪声强度,评估噪声污染程度
快速响应
压电式力学传感器具有较高的响应速度,能够快速捕捉到微小的力学变化。
压电式力学传感器的响应时间通常在毫秒级别,可以满足大多数应用场景的需求。
压电式力学传感器的响应速度不受温度、湿度等环境因素的影响,稳定性好。
压电式力学传感器的响应速度可以通过调整传感器的尺寸和材料来优化,以满足不同应用场景的 需求。
动反馈等
智能家居设备: 用于触摸屏、压
力感应等
05
压电式力学传感器的挑战与展望
面临的挑战
精度问题:如何 提高传感器的测 量精度
稳定性问题:如 何保证传感器在 恶劣环境下的稳 定性
成本问题:如何 降低传感器的生 产成本
【实验报告】压电式传感器测振动实验报告

压电式传感器测振动实验报告篇一:压电式传感器实验报告一、实验目的:了解压电传感器的测量振动的原理和方法。
二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。
(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。
三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。
双踪示波器。
四、实验步骤:1、压电传感器装在振动台面上。
2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。
3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。
将压电传感器实验模板电路输出端Vo1,接R6。
将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。
3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。
4、改变低频振荡器的频率,观察输出波形变化。
光纤式传感器测量振动实验一、实训目的:了解光纤传感器动态位移性能。
二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。
三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。
四、实训内容与操作步骤1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。
2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。
3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi 相接,低通输出Vo接到示波器。
4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。
5、将频率档选在6~10Hz左右,逐步增大输出幅度,注意不能使振动台面碰到传感器。
压电传感器的动态响应实验

三、实验效果分析(包过仪器设备等使用效果)三、实验效果分析:1.由低通滤波器的输出电压知,Vpp最大(达到共振)时的频率也就是振动台的自激频率:15HZ。
2.压电式传感器是一种基于压电效应的传感器,具有灵敏度高,压电材料受力后表面产生电荷,此电荷将电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出,它具有灵敏度高,信噪比高,结构简单,工作可靠和重量轻等特点。
教师评语指导教师年月日江西师范大学物理与通信电子学院教学实验报告专业:电子信息工程2010年5月5日实验名称压电式传感器的动态响应实验指导老师姓名年级08级学号成绩一、预习部分1、实验目的2、实验基本原理3、主要仪器设备(包含必要的元器件、工具)一、实验目的:了解压电式传感器的原理、结构及应用。
二、实验基本原理:压电式传感器是一种典型的有源传感器(发电型传感器)。
压电传感器元件是力敏感元件,在压力、应力、加速等外力作用下,在电介质表面产生电荷,从而实验非电量的电测。
三、主要仪器设备:低频振荡器、电荷放大器、低通滤波器、单芯屏蔽线、压电传感器、双线示波器、激振线圈、磁电传感器、F/V表、主、副电源、振动平台。
二、实验操作步骤1.实验数据、表格及数据处理2.实验操作过程(可以用图表示)3.结论1.实验数据、表格及数据处理如下:MATLAB程序及图形:x=[5,7,12,14,15,17,20,25];y=[0.05,0.1,0.2,1,2.4,1.12,0.52,0.32];plot(x,y,'go','MarkerEdgeColor','r','MarkerFaceColor','r','MarkerSize',3) xlabel('频率F/Hz','fontsize',10);ylabel('电压Vp-p/v','fontsize',10);axis([5 25 0 2.5])hold ongrid onplot(x,y) 2、实验操作过程如下:(1)观察压电式传感器的结构,根据图26的电路结构,将压电式传感器,电荷放大器,低通滤波器,双线示波器连接起来,组成一个测量线路。
压电式传感器实验报告

压电式传感器实验报告压电式传感器实验报告引言压电式传感器是一种常见的传感器类型,利用压电效应来测量物理量。
本实验旨在通过实际操作和数据分析,探索压电式传感器的工作原理和应用。
实验目的1. 了解压电效应的基本原理;2. 掌握压电式传感器的工作原理;3. 学习使用实验仪器和测量设备;4. 分析压电式传感器在不同应用场景下的特点和限制。
实验器材与方法1. 实验器材:压电式传感器、信号放大器、示波器、电源等;2. 实验方法:将压电式传感器与信号放大器和示波器连接,通过施加外力或改变环境条件,观察传感器输出信号的变化。
实验过程与结果1. 实验一:压力测量将压电式传感器连接到信号放大器和示波器,施加不同的压力到传感器上,并记录示波器上的输出信号。
结果显示,当施加压力时,传感器输出的电压信号随之增加,表明压电式传感器能够准确测量外部压力。
2. 实验二:温度测量将压电式传感器暴露在不同温度环境下,记录示波器上的输出信号。
结果显示,传感器输出的电压信号随温度的升高而增加,说明压电式传感器对温度变化敏感,并可用于温度测量。
3. 实验三:振动测量将压电式传感器固定在振动源上,记录示波器上的输出信号。
结果显示,传感器输出的电压信号随振动频率和振幅的变化而变化,表明压电式传感器能够测量振动的特征。
讨论与分析1. 压电效应是压电式传感器工作的基础,其原理是施加压力或改变温度会使压电材料产生电荷分离和极化,进而产生电压信号。
2. 压电式传感器的优点包括高灵敏度、快速响应和广泛的应用领域。
然而,它也存在一些限制,如温度和湿度对传感器性能的影响,以及易受机械冲击和振动的干扰。
3. 在实际应用中,压电式传感器可用于压力、温度、振动等物理量的测量,如工业自动化、医疗设备、环境监测等领域。
结论通过本实验,我们深入了解了压电式传感器的工作原理和应用。
压电式传感器具有广泛的应用前景,但在实际使用中需要考虑其特点和限制。
通过进一步的研究和改进,可以提高压电式传感器的性能和可靠性,推动其在各个领域的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压电式传感器测振动实验
一、实验目的:了解压电传感器的测量振动的原理与方法。
二、基本原理:压电式传感器由惯性质量块与受压的压电片等组成。
(观察实验用压电加速
度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。
三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感
器实验模板。
双踪示波器。
四、实验步骤:
1、压电传感器装在振动台面上。
2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。
3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。
将压电传感器实验模板电路输出端V o1,接R6。
将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。
3、合上主控箱电源开关,调节低频振荡器的频率与幅度旋钮使振动台振动,观察示波器波
形。
4、改变低频振荡器的频率,观察输出波形变化。
光纤式传感器测量振动实验
一、实训目的: 了解光纤传感器动态位移性能。
二、实训仪器: 光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件) 。
三、相关原理:利用光纤位移传感器的位移特性与其较高的频率响应,用合适的测量电路即可测量振动。
四、实训内容与操作步骤
1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。
2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。
3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi相接,低通输出Vo接到示波器。
4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。
5、将频率档选在6~10Hz左右,逐步增大输出幅度,注意不能使振动台面碰到传感器。
保持振动幅度不变,改变振动频率,观察示波器波形及锋-峰值。
保持频率振动不变,改变振动幅度,观察示波器波形及锋-峰值。