高中数学 3.1.2空间向量的数乘运算导学案 人教A版选修2-1

合集下载

高中数学人教A版选修2-1导学案:3.1.2-空间向量的数乘运算(一)(学生版)

高中数学人教A版选修2-1导学案:3.1.2-空间向量的数乘运算(一)(学生版)

安阳县实验中学“四步教学法”导学案
Anyangxian shi yan zhongxue sibujiaoxuefa daoxuean
课题:3.1.2 空间向量的数乘运算(一)
制单人: 审核人:高二数学组
班级:________ 组名:________姓名:________ 时间:__
一. 自主学习
1学习目标
1. 掌握空间向量的数乘运算律,能进行简单的代数式化简;
2. 理解共线向量定理和共面向量定理及它们的推论;
3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题.
2学习指导
阅读教材回答下面问题:
一:空间向量的共线
问题:空间任意两个向量有几种位置关系?如何判定它们的位置关系?
新知:空间向量的共线:
1. 如果表示空间向量的 所在的直线互相 或 ,则这些向量叫共线向量,也叫平行向量.
2. 空间向量共线:
定理:对空间任意两个向量,a b (0b ≠), //a b 的充要条件是存在唯一实数λ,使得
推论:如图,l 为经过已知点A 且平行于已知非零向量的直线,对空间的任意一点O ,点P 在直线l 上的充要条件是
3自学检测
1. 已知5,28,AB a b BC a b =+=-+
()
3CD a b =- ,求证: A,B,C 三点共线.
112AD AB +-下列说法正确的是( )
C. 任意两个共线向量相等
11
222课堂反思。

高中数学第三章 3.1.2空间向量的数乘运算学案含解析新人教A版选修2_1

高中数学第三章 3.1.2空间向量的数乘运算学案含解析新人教A版选修2_1

3.1.2 空间向量的数乘运算内容标准学科素养1.掌握空间向量数乘运算的定义及运算律.2.理解向量共线、向量共面的定义.3.掌握共线向量定理和共面向量定理,会证明空间三点共线、四点共面.提升逻辑推理发展直观想象授课提示:对应学生用书第54页[基础认识]知识点一空间向量的数乘运算预习教材P86-87,思考并完成以下问题平面向量的数乘运算是什么?满足哪些运算律?提示:(1)实数λ和向量a的乘积仍是一个向量.(2)|λa|=|λ||a|.(3)λa的方向.当λ>0时,λa的方向与a方向相同;当λ<0时,λa的方向与a的方向相反.(4)数乘运算的运算律λ(μa)=(λμ)a;λ(a+b)=λa+λb.知识梳理空间向量的数乘运算(1)定义:实数λ与空间向量a的乘积λa仍然是一个向量,称为向量的数乘运算.(2)向量a与λa的关系λ的范围方向关系模的关系λ>0方向相同λa的模是a的模的|λ|倍λ=0λa=0,其方向是任意的λ<0方向相反若λ,μ是实数,a,b是空间向量,则有①分配律:λ(a+b)=λa+λb;(λ+μ)a=λa+μa;②结合律:λ(μa)=(λμ)a.知识点二共线向量与共面向量思考并完成以下问题(1)在学习平面向量时,共线向量是怎样定义的?如何规定0与任何向量的关系?提示:方向相同或相反的两向量称为共线向量;0与任何向量是共线向量.(2)对空间任意两个向量a与b,如果a=λb,a与b有什么位置关系?反过来,a与b有什么位置关系时,a=λb?提示:类似于平面向量共线的充要条件,对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a=λb(b≠0).(3)对空间任意两个不共线的向量a,b,如果p=x a+y b,那么向量p与向量a,b有什么位置关系?反过来,向量p与向量a,b有什么位置关系时,p=x a+y b?提示:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在惟一的有序实数对(x,y),使p=x a+y b.知识梳理共线向量与共面向量共线(平行)向量共面向量定义表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量平行于同一平面的向量叫做共面向量充要条件对于空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ使a=λb若两个向量a,b不共线,则向量p与a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b推论如果l为经过点A且平行于已知非零向量a的直线,那么对于空间任一点O,点P在直线l上的充要条件是存在实数t,使OP→=OA→+t a①,其中a叫做直线l的方向向量,如图所示.若在l上取AB→=a,则①式可化为OP→=OA→+tAB→如图,空间一点P位于平面MAB内的充要条件是存在有序实数对(x,y),使MP→=xMA→+yMB→或对空间任意一点O来说,有OP→=OM→+xMA→+yMB →1.已知空间四边形ABCD ,M ,G 分别是BC ,CD 的中点,连接AM ,AG ,MG ,则AB →+12(BD →+BC →)等于( ) A.AG →B.CG →C.BC →D.12BC → 答案:A2.满足下列条件,能说明空间不重合的A ,B ,C 三点共线的是( ) A.AB →+BC →=AC → B.AB →-BC →=AC → C.AB →=BC → D .|AB →|=|BC →| 答案:C3.对于空间的任意三个向量a ,b,2a -b ,它们一定是( ) A .共面向量 B .共线向量 C .不共面向量D .既不共线也不共面的向量 答案:A授课提示:对应学生用书第55页 探究一 空间向量的数乘运算[教材P 89练习2]如图,已知正方体ABCD -A ′B ′C ′D ′,点E ,F 分别是上底面A ′C ′和侧面CD ′的中心.求下列各式中x ,y 的值:(1)AC ′→=x (AB →+BC →+CC ′→); (2)AE →=AA ′→+xAB →+yAD →;(3)AF →=AD →+xAB →+yAA ′→.解析:(1)在正方体中,AC ′→=AB →+BC →+CC ′→, ∴x =1.(2)AE →=AA ′→+12A ′C ′=AA ′→+12AC →=AA ′→+12(AB →+AD →)∴x =y =12.(3)AF →=AD →+DF →=AD →+12DC ′→=AD →+12(DD ′→+DC →)=AD →+12AA ′→+12AB →,∴x =y =12.[例1] 已知ABCD 为正方形,P 是ABCD 所在平面外的一点,P 在平面ABCD 上的射影恰好是正方形ABCD 的中心O ,Q 是CD 的中点,求下列各式中x ,y 的值.(1)OQ →=PQ →+xPC →+yP A →; (2)P A →=xPO →+yPQ →+PD →.[解析] (1)如图所示,OQ →=PQ →+OP →,由向量加法的平行四边形法则可得PO →=12(PC →+P A →),∴OP →=-12PC →-12P A →,∴OQ →=PQ →+OP →=PQ →-12PC →-12P A →.∴x =-12,y =-12.(2)∵P A →=PD →+DA →=PD →+2QO → =PD →+2(PO →-PQ →)=PD →+2PO →-2PQ →. ∴x =2,y =-2.方法技巧 1.对向量进行分解或对向量表达式进行化简时,要准确运用空间向量加法、减法的运算法则,要熟悉数乘向量运算的几何意义,同时还要注意将相关向量向选定的向量进行转化.2.在△ABC 中,若D 为BC 边的中点,则AD →=12(AB →+AC →),这一结论可视为向量形式的中点公式,应用非常广泛,应熟练掌握.跟踪探究 1.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.(1)化简:A 1O →-12AB →-12AD →;(2)设E 是棱DD 1上的点,且DE →=23DD 1→,若EO →=xAB →+yAD →+zAA 1→,试求实数x ,y ,z 的值.解析:(1)A 1O →-12(AB →+AD →)=A 1O →-AO →=A 1A →.(2)EO →=AO →-AE →=12(AB →+AD →)-AD →-23AA 1→=12AB →-12AD →-23AA 1→, 所以x =12,y =-12,z =-23.探究二 空间共线向量定理及其应用[教材P 99习题3.1B 组2题改编]如图,已知空间四边形OABC 中,OA =OB ,CA =CB ,点E ,F ,G ,H 分别是OA ,OB ,BC ,CA 的中点.求证:四边形EFGH 是平行四边形. 证明:∵E ,F ,G ,H 分别为OA ,OB ,BC ,CA 的中点, ∴OE →=12OA →,OF →=12OB →,CG →=12CB →,CH →=12CA →.∵AB →=OB →-OA →=2OF →-2OE → =2(OF →-OE →)=2EF →, ∴AB ∥EF ,且|AB →|=2|EF →|. 同理HG ∥AB ,且|AB →|=2|HG →|,∴四边形EFGH 是平行四边形.[例2] 如图所示,在正方体ABCD -A 1B 1C 1D 1中,点E 在A 1D 1上,且A 1E →=2ED 1→,点F 在对角线A 1C 上,且A 1F →=23FC →.求证:E ,F ,B 三点共线.[证明] 设AB →=a ,AD →=b ,AA 1→=c . 因为A 1E →=2ED 1→,A 1F →=23FC →,所以A 1E →=23A 1D 1→,A 1F →=25A 1C →,所以A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c .所以EF →=A 1F →-A 1E →=25a -415b -25c =25⎝⎛⎭⎫a -23b -c . 又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c ,所以EF →=25EB →.因为EF →与EB →有公共点E ,所以E ,F ,B 三点共线.方法技巧 1.本题利用向量的共线证明了线线平行,解题时应注意向量共线与两直线平行的区别.2.判断或证明两向量a ,b (b ≠0)共线,就是寻找实数λ,使a =λb 成立,为此常结合题目图形,运用空间向量的线性运算法则将目标向量化简或用同一组向量表达.跟踪探究 2.如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.解析:∵M ,N 分别是AC ,BF 的中点,且四边形ABCD ,ABEF 都是平行四边形,∴MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,∴2MN →=12CA →+AF →+12FB →-12CA →+CE →-AF →-12FB →=CE →,即CE →=2MN →.∴CE →与MN →共线.探究三 空间共面向量定理及其应用[阅读教材P 88例1]如图,已知平行四边形ABCD ,过平面AC 外一点O 作射线OA ,OB ,OC ,OD ,在四条射线上分别取点E ,F ,G ,H ,并且使OE OA =OF OB =OG OC =OHOD =k ,求证:E ,F ,G ,H 四点共面.题型:空间四点共面的判定方法步骤:(1)由数乘运算表示出向量OE →,OF →,OG →,OH →. (2)由向量减法运算得出EG →.(3)由AB →、AC →、AD →的关系得出EG →、EF →、EH →的关系,从而判定E ,F ,G ,H 四点共面. [例3] 已知A ,B ,C 三点不共线,平面ABC 外的一点M 满足OM →=12OA →+13OB →+16OC →.(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. [解析] (1)因为OM →=12OA →+13OB →+16OC →,所以6OM →=3OA →+2OB →+OC →,所以3OA →-3OM →=(2OM →-2OB →)+(OM →-OC →), 因此3MA →=2BM →+CM →=-2MB →-MC →. 故向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,三个向量又有公共点M ,故M ,A ,B ,C 共面,即点M 在平面ABC 内.方法技巧 1.证明空间三个向量共面,常用如下方法:(1)设法证明其中一个向量可以表示成另两个向量的线性组合,即若a =x b +y c ,则向量a ,b ,c 共面;(2)寻找平面α,证明这些向量与平面α平行.2.对空间四点P ,M ,A ,B 可通过证明下列结论成立来证明四点共面:(1)MP →=xMA →+yMB →;(2)对空间任一点O ,OP →=OM →+xMA →+yMB →; (3)PM →∥AB →(或P A →∥MB →,或PB →∥AM →).跟踪探究 3.已知A ,B ,M 三点不共线,对于平面ABM 外的任意一点O ,确定在下列条件下,点P 是否与A ,B ,M 一定共面.(1)OM →+OB →=3OP →-OA →;(2)OP →=4OA →-OB →-OM →. 解析:(1)∵OM →+OB →=3OP →-OA →, ∴OP →=OM →+(OA →-OP →)+(OB →-OP →) =OM →+P A →+PB →, ∴OP →-OM →=P A →+PB →, ∴MP →=P A →+PB →,∴MP →,P A →,PB →为共面向量, ∴P 与A ,B ,M 共面.(2)OP →=2OA →+(OA →-OB →)+(OA →-OM →)=2OA →+BA →+MA →,根据空间向量共面的推论,点P 位于平面ABM 内的充要条件是OP →=OA →+xBA →+yMA →, ∴P 与A ,B ,M 不共面.授课提示:对应学生用书第56页[课后小结]利用向量的数乘运算可以判定两个向量共线、三个向量共面问题,进而解决几何中的点共线、点共面、线面平行等问题.[素养培优]混淆共面向量与共线向量的相关结论致误已知e 1,e 2是两个非零空间向量,如果AB →=e 1-2e 2,AC →=3e 1+4e 2,AD →=-e 1-8e 2,则下列结论正确的是( )A .A ,B ,C ,D 四点共线 B .A ,B ,C ,D 四点共面C .A ,B ,C ,D 不一定共面D .无法确定A ,B ,C ,D 四点的位置关系易错分析 由已知条件,AC →与AD →不共线,且AC →+AD →=2e 1-4e 2=2(e 1-2e 2)=2AB →,由此得(AC →+AD →)∥AB →.若设AC →+AD →=AE →,则A ,B ,E 三点共线,并不是A ,B ,C ,D 四点共线.考查逻辑推理的学科素养.自我纠正 因为AC →+AD →=2e 1-4e 2=2(e 1-2e 2)=2AB →,即AB →=12AC →+12AD →,所以由共面向量定理可知AB →,AC →,AD →三个向量共面.又因为A 是公共点,所以A ,B ,C ,D 四点共面,故选B. 答案:B。

人教版高中数学选修2-1第三章3.1.2空间向量的数乘运算

人教版高中数学选修2-1第三章3.1.2空间向量的数乘运算

导入新课复习上一节课,我们借助“类比思想”把平面向量的有关概念及加减运算扩展到了空间.(1) 加法法则及减法法则平行四边形法则或三角形法则. (2) 运算律加法交换律及结合律.两个空间向量的加、减法与两个平面向量的加、减法实质是一样的.因为:空间任意两个向量都可平移到同一个平面内,成为同一平面内的向量.因此凡是涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们.我们知道平面向量还有数乘运算及相应的运算律.借助类比思想,同样可以定义空间向量的数乘运算及相应的运算律.教学目标知识目标正确理解共线、方向向量等基本概念;初步掌握数乘运算,理解运算律;熟练掌握共线向量基本定理、推论及应用.能力目标经历知识形成探索过程,体验“类比”思想,并逐步学会“分析、归纳、抽象、概括等思维方法.情感目标1. 通过自主探究与合作交流,不断体验“成功”,激发学习热情和求知欲,充分体现学生的主体地位;2. 通过类比思想和方法的应用,感受和体会数学思想的魅力,培养学“做数学”的习惯和热情.教学重难点重点共线向量概念、基本定理及推论.难点共线概念的正确理解及较复杂的三点共线判定.知识要点1. 空间向量数乘运算的定义与平面向量一样,实数λ与空间向量a的乘积λa仍然是一个向量,称为向量的数乘(multiplication of vetor by salar)运算.(1)结果仍然是一个向量;(2)方向:当λ>0时,λa与a方向相同;当λ<0时,λa与a方向相反;当λ=0时,λa是零向量0; (3)大小: λa的长度是a长度的|λ|倍.aλa(λ<0)a λa(λ>0)2.数乘运算的运算律显然,空间向量的数乘运算满足分配律及结合律()λ(a +b )=λa +λbλ+μa =λa +μaλ(μa )=(λμ)a 即:知识要点(1) λa与a 之间是什么关系?(2) λa 与a 所在直线之间的关系?对于空间向量的数乘运算的运算律的证明,方法与证明平面向量数乘运算的运算律类似.知识要点3.共线向量(或平行向量)的定义表示空间向量的有向线段所在直线互相平行或重合,则称这些向量叫共线向量(colliner vectors)或平行向量(parallel vectors)记作a//b(1)向量平行与直线平行的比较;(2)关注零向量; (3)对空间任意两个向量a 与b ,如果 ,那么a 与b 有什么相等关系?反过来呢?b //a 零向量与任何向量平行(1)当我们说a,b共线时,表示a,b的两条有向线段所在直线既可能是同一直线,也可能是平行线;(2)当我们说a // b时,也具有同样的意义.知识要点4.共线向量基本定理对于空间任意两个向量a ,b(b≠0),a // b的充要条件是存在实数λ,使a = λb(1)b≠0的理解.若b=0,则a任意,λ不唯一;(2)若a // b,b // c,则a一定平行于c吗?(不一定,考虑中间向量为零向量)5.共线向量基本定理的推论如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对于空间任意一点像O ,点P 在直线l 上的充要条件是存在实数t ,使 OP = OA + ta. (1) AaOP B其中向量a叫做直线l的方向向量(direction vector)在l上取AB=a,则(1)式可化为OP = (1- t)OA + t OB.(2)说明: (1),(2)都叫做空间直线的向量参数表示式.由此可知,空间任意直线由空间一点及直线的方向向量唯一确定.知识要点6.共面向量定义平行于同一平面的向量,叫做共面向量(coplanar vectors).空间任意两个向量总是共面的,但空间任意三个向量既可能是共面的,也可能是不共面的.7.共面向量的定理如果两个向量a、b不共线,则向量p与向量a、b共面的充要条件是存在唯一的有序实数对(x、y),使p = x a + y b8.共面向量的定理的推论空间一点P位于平面MAB内的充分必要条件是存在有序实数对x、y,使MP = xMA + yMB或对空间任一定点O,有OP = OM + xMA + yMB.Ma AbB A' p P对空间任意一点O 和不共线的三点A 、B 、C ,试问满足向量关系式(其中x+y+z=1)的四点P 、A 、B 、 C 是否共面?OP =xOA+yOB +zOC解答原式可以变形为OP=(1-y-z)OA+yOB+zOC,OP-OA=y(OB-OA)+z(OC-OA), AP=y AB+z AC,所以,点P与点A,B,C共面.例题如下图,已知平行四边形ABCD,过平面AC外一点O作射线OA、OB、OC、OD,在四条射线上分别取点E、F、G、H,并且使OE OF OG OH====kOA OB OC OD求证:四点E、F、G、H共面.D'A'B'C'DA B CO分析:欲证E,F,G,H四点共面,只需证明EH,EF,EG共面.下面我们利用AD,AB,AC共面来证明.证明:因为 所以 OE=kOA ,OF=kOB , OG=kOC ,OH=kOD. 由于四边形ABCD 是平行四边形,所以AC=AB+AD. 解答OE OFOGOH====kOA OB OC OD继续因此EG=OG-OE=kOC-kOA=k AC=k(AB+AD)=k(OB-OA+OD-OA)=OF-OE+OH-OE=EF+EH.由向量共面的充要条件知E,F,G,H四点共面.课堂小结1.空间向量的数乘运算.2.空间向量的数乘运算的运算律.满足分配律及结合律.3.共线向量与共面向量共线向量 共面向量 定义 向量所在直线互相平行或重合. 平行于同一平面的向量,叫做共面向量. 定理 推论 运用 判断三点共线,或两直线平行 判断四点共线,或直线平行于平面)0a (b //a ≠b λa =p b a b y αx p +=ABt OA OP +=AC y AB x OA OP ++=共面1)y (x OBy OA x OP =++=1)z y (x 0OC z OB y OA x OP =++=++=高考链接1.(2006年福建卷)已知|OA|=1,|OB|= ,OA·OB=0,点C 在∠AOB 内,且∠AOC=30°,设OC=mOA+nOB (m 、n ∈R),则 等于_______. 3nm 3D. 33 C. 3B. 31 A. BOA =1,OB =3,OA.OB =0,解析: 点C 在AB 上,且∠AOC=30°设A 点坐标为(1,0),B 点的坐标为(0, )C 点的坐标为(x ,y)=( , ) OC =mOA+nOB(m,n R)∈33434则∴ 3n m ,41,n 43m ===课堂练习1.选择(1)若对任一点O 和不共线的三A,B,C,且有 则x+y+z=1是四点P 、A 、B 、C 共面的() A. 必要不充分条件 B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件 R),z y,(x,OC z OB y OA x OP ∈++= C(2)对于空间任意一点O ,下列命题正确的是(). A.若 ,则P 、A 、B 共线 B.若 ,则P 是AB 的中点C.若 ,则P 、A 、B 不共线D.若 ,则P 、A 、B 共线 OP =OA+t AB3OP =OA+AB OP=OA -t AB OP=-OA+AB A(3)下列命题正确的是()CA.若a与b共线,b与c共线,则a与c共线B.向量a,b,c共面就是它们所在的直线共面C.零向量没有确定的方向D.若a // b,则存在唯一的实数λ使得a = λb解答A.中向量b为零向量时要注意,B.中向量的共线、共面与直线的共线、共面不一样,D.中需保证b不为零向量.答案C.点评:零向量是一个特殊的向量,时刻想着零向量这一特殊情况对解决问题有很大用处.像零向量与任何向量共线等性质,要兼顾 .2.解答题已知:且m,n,p不共面.若a∥b,求x,y的值.,p2yn8m1)(xb0,p4n2m3a+++=≠--=空间向量在运算时,注意到如何利用空间向量共线定理.解答 ∵a // b,且a ≠0, ∴b= λ a ,即 又∵m ,n ,p 不共面,∴.p 4λn 2λm 3λp 2y n 8m 1)(x --=+++8.y 13,x ,42y 2831x =-=∴-=-=+习题答案1. (1)AD; (2)AG;(3)MG2. (2)x=1; (2)x=y=1/2; (3) x=y=1/2;3.CA QBRPSO。

高中数学人教A版选修(2-1)3.1.2《空间向量的数乘运算》word导学案

高中数学人教A版选修(2-1)3.1.2《空间向量的数乘运算》word导学案

3.1.2 空间向量的数乘运算【学习目标】理解空间向量共线、共面的充要条件 【自主学习】 1.共线向量与平面向量类似,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,记作b a //.当向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线位置关系如何?2.共线向量定理及其推论:类比平面向量共线定理,请写出空间向量共线定理.______________________________________________________________________. 请证明下面的推论:推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对于任意一点O ,点P在直线l 上的充要条件是存在实数t 满足等式 t +=a .其中向量a叫做直线l 的方向向量.由此可见,与利用平面向量判断三点共线一样,可以利用空间向量之间的关系判断空间三点共线.3. 共面向量:一般地,能平移到同一个平面内的向量叫共面向量. 探究:对空间任意两个不共线的向量b a ,,如果b y x p +=,那么p b α与,有什么位置关系?反过来,p b α与,有什么位置关系时,y x +=?由此得:共面向量定理 : 如果两个向量,不共线,那么向量与向量,共面的充要条件是存在有序实数组),(y x ,使得y x +=α.4.回答课本88页的思考。

【典例分析】例1如图,已知平行四边形ABCD ,过平面AC 外一点O 作射线OA,OB,OC,OD ,在四条射线上分别取点E ,F ,G ,H ,并且使,k ODOHOCOG OB OF OA OE ====求证:E,F,G,H 四点共面。

D【目标检测】已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M,N 分别在对角线BD,AE 上,且AE AN BD BM 31,31==.求证:MN//平面CDE证明:______________MN =______________= ______________= ______________= ______________= ______________=又与不共线,,,MN CD DE ∴共面.由于MN ⊄平面CDE ,所以________________.【总结提升】特别注意共面向量: 若,为不共线且同在平面α内,则与,共面的意义是p 在α内或//p α.。

高中数学 3.1.2空间向量的数乘运算(1)导学案 人教A版选修2-1

高中数学 3.1.2空间向量的数乘运算(1)导学案 人教A版选修2-1

3.1.2 空间向量的数乘运算(一)【学习目标】1. 掌握空间向量的数乘运算律,能进行简单的代数式化简;2. 理解共线向量定理和共面向量定理及它们的推论;3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题.【重点难点】向量的数乘运算律,能进行简单的代数式化简;用空间向量的运算意义及运算律解决简单的立体几何中的问题【学习过程】一、 自主预习(预习教材P 86~ P 87,找出疑惑之处)复习1:化简:⑴ 5()+4();⑵ .复习2:在平面上,什么叫做两个向量平行?在平面上有两个向量, 若是非零向量,则与平行的充要条件是二、合作探究 归纳展示探究任务一:空间向量的共线问题:空间任意两个向量有几种位置关系?如何判定它们的位置关系?三、讨论交流 点拨提升新知:空间向量的共线:32a b -23b a -()()63a b c a b c -+--+-,a b b a b1. 如果表示空间向量的 所在的直线互相 或,则这些向量叫共线向量,也叫平行向量.2. 空间向量共线:定理:对空间任意两个向量(), 的充要条件是存在唯一实数,使得推论:如图,l 为经过已知点A 且平行于已知非零向量的直线,对空间的任意一点O ,点P在直线l 上的充要条件是试试:已知 ,求证: A,B,C 三点共线.反思:充分理解两个向量共线向量的充要条件中的,注意零向量与任何向量共线.四、学能展示 课堂闯关例1 已知直线AB ,点O 是直线AB 外一点,若,且x +y =1,试判断A,B,P三点是否共线?变式:已知A,B,P 三点共线,点O 是直线AB 外一点,若,那么t =例2 已知平行六面体,点M 是棱AA 的中点,点G 在对角线A C 上,且CG:GA =2:1,设=,,试用向量表示向量.,a b 0b ≠//a b λ5,28,AB a b BC a b =+=-+()3CD a b =-,a b 0b ≠OP xOA yOB =+12OP OA tOB =+''''ABCD A B C D -'''CD a ',CB b CC c ==,,a b c ',,,CA CA CM CG变式1:已知长方体,M 是对角线AC 中点,化简下列表达式:⑴ ;⑵⑶变式2:如图,已知不共线,从平面外任一点,作出点,使得: ⑴⑵⑶⑷.小结:空间向量的化简与平面向量的化简一样,加法注意向量的首尾相接,减法注意向量要共起点,并且要注意向量的方向.※ 动手试试练1. 下列说法正确的是( )A. 向量与非零向量共线,与共线,则与 共线;B. 任意两个共线向量不一定是共线向量;C. 任意两个共线向量相等;D.若向量与共线,则.2. 已知,,若,求实数''''ABCD A B C D -''AA CB -'''''AB B C C D ++'111222AD AB A A +-,,A B C ABC O ,,,P Q R S 22OP OA AB AC =++32OQ OA AB AC =--32OR OA AB AC =+-23OS OA AB AC =+-a b b c a c a b a b λ=32,(1)8a m n b x m n =-=++0a ≠//a b .x五、学后反思※学习小结1. 空间向量的数乘运算法则及它们的运算律;2. 空间两个向量共线的充要条件及推论.※知识拓展平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.课后作业:。

高中数学 3.1.2空间向量的数乘运算(2)导学案(无答案)新人教A版选修2-1

高中数学 3.1.2空间向量的数乘运算(2)导学案(无答案)新人教A版选修2-1

3.1.2 空间向量的数乘运算(二)【学习目标】1. 掌握空间向量的数乘运算律,能进行简单的代数式化简;2. 理解共线向量定理和共面向量定理及它们的推论;3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题.【重点难点】空间向量的数乘运算律用空间向量的运算意义及运算律解决简单的立体几何中的问题.【学习过程】一、自主预习(预习教材P86~ P87,找出疑惑之处)复习1:什么叫空间向量共线?空间两个向量,a b,若b是非零向量,则a与b平行的充要条件是复习2:已知直线AB,点O是直线AB外一点,若1233OP OA OB=+,试判断A,B,P三点是否共线?二、合作探究归纳展示探究任务一:空间向量的共面问题:空间任意两个向量不共线的两个向量,a b有怎样的位置关系?空间三个向量又有怎样的位置关系?新知:共面向量:同一平面的向量.2. 空间向量共面:定理:对空间两个不共线向量,a b,向量p与向量,a b共面的充要条件是存在,使得 .推论:空间一点P与不在同一直线上的三点A,B,C共面的充要条件是:⑴存在,使⑵ 对空间任意一点O ,有试试:若空间任意一点O 和不共线的三点A,B,C 满足关系式111236OP OA OB OC =++,则点P 与 A,B,C 共面吗?三、讨论交流 点拨提升若空间任意一点O 和不共线的三点A,B,C 满足关系式OP xOA yOB zOC =++,且点P 与A,B,C 共面,则x y z ++= .四、学能展示 课堂闯关例1 下列等式中,使M ,A ,B ,C 四点共面的个数是( ) ①;OM OA OB OC =--②111;532OM OA OB OC =++③0;MA MB MC ++= ④0OM OA OB OC +++=.A. 1B. 2C. 3D. 4变式:已知A,B,C 三点不共线,O 为平面ABC 外一点,若向量()17,53OP OA OB OC R λλ=++∈则P,A,B,C 四点共面的条件是λ=例2 如图,已知平行四边形ABCD,过平面AC 外一点O 作射线OA,OB,OC,OD,在四条射线上分别取点E,,F,G,H,并且使,OE OF OG OHk OA OB OC OD ====求证:E,F,G,H 四点共面.变式:已知空间四边形ABCD 的四个顶点A,B,C,D 不共面,E,F,G,H 分别是AB,BC,CD,AD 的中点,求证:E,F,G,H 四点共面.小结:空间向量的化简与平面向量的化简一样,加法注意向量的首尾相接,减法注意向量要共起点,并且要注意向量的方向.※ 动手试试练1. 已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC =++,试判断:点P 与,,A B C 是否一定共面?A BCD FE GH练2. 已知32,(1)8a m n b x m n =-=++,0a ≠,若//a b ,求实数.x五、学后反思 ※ 学习小结1. 空间向量的数乘运算法则及它们的运算律;2. 空间两个向量共线的充要条件及推论.※ 知识拓展平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移. 【课后作业】:1. 若324,(1)82a m n p b x m n yp =--=+++, 0a ≠,若//a b ,求实数,x y .2.已知两个非零向量21,e e 不共线,12,AB e e =+ 121228,33AC e e AD e e =+=-. 求证:,,,A B C D 共面.。

导学设计高中数学人教A版选修2-1配套课件3.1.2空间向量的数乘运算

导学设计高中数学人教A版选修2-1配套课件3.1.2空间向量的数乘运算

本 专 题 栏 目 开 关
填一填· 知识要点、记下疑难点
1.空间向量的数乘运算 (1)向量的数乘: 实数 λ 与空间向量 a 的乘积仍然是一个
λa 向量的数乘运算 . 向量, 记作 _______ , 称为 _______________ 当 λ>0 时,
本 专 题 栏 目 开 关
相同 ;当 λ<0 时, λa 与向量 a 方 λa 与向量 a 方向 ________
2.共线向量 (1)共线向量定义 表示空间向量 a,b 的有向线段所在的直线
本 专 题 栏 目 开 关
互相平行或重合 ,则向量 a, b 叫做 __________ 共线向量 或 __________________
a∥b . __________ 平行向量 ,记作 ________
(2)两向量共线的充要条件 对于空间任意两个向量 a, b (b≠ 0), a∥ b 的充要条件
探究点二 问题 1
向量共线问题
(1)两向量共线时,它们的方向有什么关系?
本 专 题 栏 目 开 关
(2)在两向量共线的充要条件中,为什么要求 b≠0?
答案
(1)两向量共线,则它们的方向相同或相反.
(2)由于我们已经规定了 0 与任意向量平行,所以当 b =0 时,a 与 b 是共线向量,可如果 a≠0,就不可能存 在实数 λ,使 a=λb 成立.
本 专 题 栏 目 开 关
例 1 设 A 是△BCD 所在平面外的一点,G 是△BCD 的重 → 1 → → → 心.求证:AG= (AB+AC+AD). 3 证明 连接 BG, 延长后交 CD 于点 E, 由G → 2→ 为△BCD 的重心,知BG= BE. 3 由题意知 E 为 CD 的中点, → 1→ 1→ ∴BE=2BC+2BD. → → → → 2→ AG=AB+BG=AB+3BE

高中数学选修2-1精品教案1:3.1.2 空间向量的数乘运算教学设计

高中数学选修2-1精品教案1:3.1.2 空间向量的数乘运算教学设计

3.1.2 空间向量的数乘运算教学目标:1.掌握空间向量的数乘运算及其几何意义; 2.理解共线向量定理和共面向量定理及它们的推论;3.掌握空间直线、空间平面的向量参数方程和线段中点的向量公式. 教学重、难点:共线、共面定理及其应用. 教学过程: 一.复习引入空间向量的概念及表示;向量的加减运算的几何意义. 二.思考分析问题1:向量a 与b 共线的条件是什么? 提示:存在唯一实数λ,使a =λb .问题2:空间中任意两个向量一定共面吗?任意三个向量呢? 提示:一定;不一定.问题3:空间两非零向量a ,b 共面,能否推出a =λb (λ∈R)? 提示:不能. 三.抽象概括1.空间向量的数乘运算(1)定义:实数λ与空间向量a 的乘积λa 仍然是一个向量,称为向量的数乘运算. (2)向量a 与λa 的关系:(3)①分配律:λ(a +b )=λa +λb . ②结合律:λ(μa )=(λμ)a . 2.共线向量如果l 为经过点A 平行于已知非零向量a 的直线,那么对于空间任一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP u u u r=OA u u r+ta ,①其中a 叫做直线l 的方向向量,如图所示. 若在l 上取AB u u u r=a ,则①式可化为OP u u u r =OA u u r +tAB u u u r .如图,空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP u u u r =x MA u u u r +y MB u u u r,或对空间任意一点O 来说,有OP u u u r =OM u u u r +x MA u u u r +y MB u u u r . 2.平面向量的数乘运算的运算律推广到空间向量的数乘运算,结论仍然成立.3.共线向量的充要条件及其推论是证明共线(平行)问题的重要依据,条件b ≠0不可遗漏. 4.直线的方向向量是指与直线平行或共线的向量.一条直线的方向向量有无限多个,它们的方向相同或相反.5.共面向量的充要条件给出了空间平面的向量表示式,说明空间中任意一个平面都可以由一点及两个不共线的平面向量表示出来.另外,还可以用OP u u u r =x OA u u r +y OB u u u r +z OC u u u r,且x+y +z =1判断P ,A ,B ,C 四点共面. 四.例题分析及练习[例1] 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,AM u u u r =12MC u u ur ,1A N u u u r =2 ND u u u r .设AB u u u r =a ,AD u u u r=b ,1AA u u u r =c ,试用a ,b ,c 表示MN u u u r .[思路点拨] 先利用三角形法则进行向量的加减运算,将MN u u u r表示成其他向量,然后进一步用a ,b ,c 表示MN u u u r.[精解详析] 如图所示,连接AN ,则MN u u u r =AN u u u r -AM u u u r =1AA u u u r +1A N u u u r -13AC u u u r=1AA u u u r +231A D u u u r -13(AB u u u r +BC u u ur )=1AA u u u r +23(AD u u u r -1AA u u u r )-13(AB u u u r +AD u u u r)=c +23(b -c )-13(a +b )=-13a +13b +13c .[感悟体会] 用已知向量表示未知向量,体现了向量的数乘运算.解题时要结合具体图形,利用三角形法则、平行四边形法则,将目标向量逐渐转化为已知向量.本题也可以先将MNu u u r表示为MN u u u r =MA u u u r +1AA u u ur +1A N u u u r .训练题组11.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11A B u u u u r =a ,11AD u u u u r=b ,1A A u u u r =c ,则下列向量中与1B M u u u u r相等的向量是( )A .-12a +12b +c B.12a +12b +c C.12a -12b +c D .-12a -12b +c解析:1B M u u u u r =1B B u u u r +BM u u u r =1B B u u u r +12(AD u u u r -AB u u u r )=1B B u u u r +12AD u u u r -12AB u u u r =-12a +12b +c .答案:A2.已知P 是正方形ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形ABCD 的中心O ,Q 是CD 的中点,求下列各式中x ,y 的值:(1) OQ u u u r =PQ u u u r +x PC u u u r +y PA u u r;(2) PA u u r =x PO u u u r +y PQ u u u r +PD u u u r.解:(1)∵OQ u u u r =PQ u u u r -PO u u u r =PQ u u u r -12(PA u u r +PC u u ur )=PQ u u u r -12PA u u r -12PC u u u r ,∴x =y =-12.(2)∵PA u u r +PA u u r =2PO u u u r ,∴PA u u r=2PO u u u r -PC u u u r .又∵PC u u u r +PD u u u r =2PQ u u u r ,∴PC u u u r =2PQ u u u r -PD u u u r .从而有PA u u r =2PO u u u r -(2PQ u u u r -PD u u u r )=2PO u u u r -2PQ u u u r +PD u u u r.∴x =2,y =-2.[例2] 如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE u u u r 与MN u u u r是否共线.[思路点拨] 分析题意u u u r u u r u u u ru u u r →[精解详析] ∵M ,N 分别是AC ,BF 的中点,四边形ABCD ,ABEF 都是平行四边形,∴MN u u u r =MC u u u r +CB u u r +BN u u u r =12AC u u u r +CB u u r +12BF u u u r =12(BC u u u r -BA u u r )+CB u u r +12(BA u u r +BE u u u r )=12BC u u ur +CB u u r +12BE u u u r =12(CB u u r +BE u u u r )=12CE u u u r . ∴CE u u u r ∥MN u u u r ,即CE u u u r 与MN u u u r共线.[感悟体会] 判定向量共线就是充分利用已知条件找到实数x ,使a =xb 成立,同时要充分利用空间向量运算法则,结合具体的图形,化简得出a =xb ,从而得出a ∥b ,即a 与b 共线. 训练题组23.已知空间向量a ,b ,且AB u u u r=a +2b ,BC u u u r =-5a +6b ,CD u u u r =7a -2b ,则一定共线的三点是( )A .A ,B ,D B .A ,B ,C C .B ,C ,D D .A ,C ,D解析:BD u u u r =BC u u ur +CD u u u r =(-5a +6b )+(7a -2b )=2a +4b =2AB u u u r,∴A ,B ,D 三点共线.答案:A4.已知四边形ABCD 是空间四边形,E ,H 分别是边AB ,AD 的中点,F ,G 分别是边CB ,CD 上的点,且CF u u u r =23CB u u r ,CG u u u r =23CD u u u r.求证:四边形EFGH 是梯形.证明:∵E ,H 分别是AB ,AD 的中点,∴AE u u u r =12AB u u u r ,AH u u u r =12AD u u u r ,EH u u u r =AH u u u r -AE u u u r =12AD u u u r -12AB u u u r =12(AD u u u r -AB u u u r )=12BD u u ur =12(CD u u u r -CB u u r )=12(32CG u u u r -32CF u u u r )=34(CG u u u r -CF u u u r )=34FG u u u r ,∴EH u u u r ∥FG u u u r 且|EH u u u r |=34|FG u u u r |≠|FG u u u r |.又点F 不在EH u u u r上,∴四边形EFGH 是梯形.[例3] 对于任意空间四边形ABCD ,E ,F 分别是AB ,CD 的中点.试证:EF u u u r 与BC u u u r ,AD u u u r共面.[思路点拨] 分析题意→应用向量共面的充要条件→得出结论[精解详析] 空间四边形ABCD 中,E ,F 分别是AB ,CD 上的点,则EF u u u r =EA u u r +AD u u u r +DF u u u r ,EF u u u r =EB u u r +BC u u ur +CF u u u r .①又E ,F 分别是AB ,CD 的中点,故有EA u u r =-EB u u r ,DF u u u r=-CF u u u r .②将②代入①中,两式相加得2 EF u u u r =AD u u u r +BC u u ur .所以EF u u u r =12AD u u u r +12BC u u u r ,即EF u u u r 与BC u u u r ,AD u u u r共面.[感悟体会] 利用向量法证明向量共面问题,关键是熟练进行向量的表示,恰当应用向量共面的充要条件.解答本题实质上是证明存在实数x ,y 使向量EF u u u r =x AD u u u r+y BC u u u r 成立,也就是用空间向量的加、减法则及运算律,结合图形,用AD u u u r ,BC u u u r 表示EF u u u r.训练题组35.在下列条件中,使M 与A ,B ,C 一定共面的是( )A .OM u u u r =3OA u u r -2OB u u u r -OC u u u r B .OM u u u r +OA u u r +OB u u u r +OC u u u r =0C .MA u u u r +MB u u u r +MC u u ur =0D .OM u u u r =14OB u u u r -OA u u r +12OC u u u r解析:∵MA u u u r +MB u u u r +MC u u u r =0,∴MA u u u r =-MB u u u r -MC u u ur ,∴M 与A ,B ,C 必共面.答案:C6.已知e 1,e 2为两个不共线的非零向量,且AB u u u r =e 1+e 2,AC u u u r =2e 1+8e 2,AD u u u r=3e 1-3e 2,求证:A ,B ,C ,D 四点共面.证明:设存在实数λ,μ,使得AB u u u r =λAC u u u r +μAD u u u r ,即e 1+e 2=λ(2e 1+8e 2)+μ(3e 1-3e 2)=(2λ+3μ)e 1+(8λ-3μ)e 2. ∵e 1,e 2为两个不共线的非零向量,∴有⎩⎪⎨⎪⎧2λ+3μ=1,8λ-3μ=1,解得⎩⎨⎧λ=15,μ=15,即AB u u u r =15AC u u u r +15AD u u u r.从而点B 位于平面ACD 中,即A ,B ,C ,D 四点共面. 五.课堂小结与归纳1.共线向量定理包含两个命题,特别是对于两个向量a ,b ,若存在实数λ,使a =λb (b ≠0)⇒a ∥b ,可以作为以后证明线线平行的依据.2.共面向量的充要条件是判断三个向量是否共面的依据.其推论是判定空间四点共面的依据(若对空间任一点O ,有OP u u u r =αOA u u r +βOB u u u r +γOC u u u r(α+β+γ=1)成立,则P ,A ,B ,C共面).3.在讨论向量共线或共面时,必须注意零向量与任意向量都共线.要注意:向量的共线与共面不具有传递性. 六.当堂训练1.下列命题中正确的个数是( )①若a 与b 共线,b 与c 共线,则a 与c 共线. ②向量a ,b ,c 共面,即它们所在的直线共面. ③若a ∥b ,则存在唯一的实数λ,使a =λb . A .0 B .1C .2 D .3①当b =0时,a 与c 不一定共线,故①错误;②中a ,b ,c 共面时,它们所在的直线平行于同一平面不一定在同一平面内,故②错误; ③当b 为零向量,a 不为零向量时,λ不存在. 解析:①当b =0时,a 与c 不一定共线,故①错误;②中a ,b ,c 共面时,它们所在的直线平行于同一平面不一定在同一平面内,故②错误; ③当b 为零向量,a 不为零向量时,λ不存在. 答案:A2.在四面体O -ABC 中,OA u u r =a ,OB u u u r =b ,OC u u u r=c ,D 为BC 的中点,E 为AD 的中点,则OE u u u r=( )A.12a -14b +14c B .a -12b +12c C.12a +14b +14c D .14a +12b +14c 解析:OE u u u r =OA u u r +AE u u u r =OA u u r +12AD u u u r =OA u u r +12×12(AB uu u r +AC uuur )=OA u u r +14(OB u u u r -OA u u r +OC u u u r -OA u u r )=12OA u u r +14OB u u u r +14OC u u u r =12a +14b +14c .答案:C3.已知两非零向量e 1,e 2不共线,设a =λe 1+μe 2(λ,μ∈R 且λ,μ≠0),则( ) A .a ∥e 1B .a ∥e 2C .a 与e 1,e 2共面D .以上三种情况均有可能解析:若a ∥e 1,则存在实数t 使得a =te 1,∴te 1=λe 1+μe 2,∴(t -λ)e 1=μe 2,则e 1与e 2共线,不符合题意.同理,a 与e 2也不平行.由向量共面的充要条件知C 正确. 答案:C4.A ,B ,C 不共线,对空间任意一点O ,若OP u u u r =34OA u u r +18OB u u u r +18OC u u u r,则P ,A ,B ,C四点( ) A .不共面B .共面C .不一定共面D .无法判断是否共面解析:OP u u u r =34OA u u r +18OB u u u r +18OC u u u r =34OA u u r +18(OA u u r +AB u u u r )+18(OA u u r +AC u u u r )=OA u u r +18AB u u u r +18AC u u u r , ∴OP u u u r -OA u u r =18AB u u u r +18AC u u u r ,∴AP u u u r =18AB u u u r +18AC u u u r .由共面的充要条件知P ,A ,B ,C 四点共面. 答案:B5.在三棱锥A -BCD 中,若△BCD 是正三角形,E 为其中心,则AB u u u r +12BC u u u r -32BE u u u r -AD u u u r化简的结果为________.解析:延长DE 交边BC 于点F ,则有AB u u u r +12BC u u u r =AF u u u r ,32DE u u u r +AD u u u r =AD u u u r +DF u u u r =AF u u u r ,故AB u u u r +12BC u u u r -32DE u u u r -AD u u u r=0.答案:06.设e 1,e 2是平面内不共线的向量,已知AB u u u r=2e 1+ke 2,CB ―→=e 1+3e 2,CD u u u r =2e 1-e 2,若A ,B ,D 三点共线,则k =________.解析:AD u u u r =AB u u u r +BC u u u r +CD u u u r =AB u u u r -CB u u r +CD u u ur =3e 1+(k -4)e 2.由A ,B ,D 三点共线可知,存在λ使AB u u u r =λAD u u u r,即2e 1+ke 2=3λe 1+λ(k -4)e 2.∵e 1,e 2不共线,∴⎩⎪⎨⎪⎧2=3λ,k =λk -4,可得k =-8.答案:-87.如图所示,平行六面体ABCD -A 1B 1C 1D 1中,E ,F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1.证明:A ,E ,C 1,F 四点共面.证明:∵ABCD -A 1B 1C 1D 1是平行六面体,∴1AA u u u r =1BB u u u r =1CC u u u r =1DD u u u u r ,∴BE u u u r =131AA u u u r ,DF u u u r =231AA u u ur ,∴1AC u u u r =AB u u u r +AD u u u r +1AA u u u r =AB u u u r +AD u u u r +131AA u u ur +231AA u u u r=(AB u u u r +131AA u u u r )+(AD u u u r +231AA u u u r )=AB u u u r +BE u u u r +AD u u u r +DF u u u r =AE u u u r +AF u u u r.由向量共面的充要条件知A ,E ,C 1,F 四点共面.8.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且1A E u u u r =21ED u u u r,F 在对角线A 1C上,且1A F u u u r =23FC u u ur .求证:E ,F ,B 三点共线.证明:设AB u u u r =a ,AD u u u r=b ,1AA u u u r =c .∵1A E u u u r =21AA u u u r ,1A F u u u r =23FC u u u r ,∴1A E u u u r =2311A D u u u u r ,1A F u u u r =251AC u u u r ,∴1A E u u u r =23AD u u u r =23b ,1A F u u u r =25(AC u u u r -1AA u u u r )=25(AB u u u r +AD u u u r -1AA u u ur )=25a +25b -25c .∴EF u u u r =1A F u u u r -1A E u u u r =25a -415b -25c =25(a -23b -c ).又EB u u r =1EA u u u r +1A A u u u r +AB u u u r =-23b -c +a =a -23b -c ,∴EF u u u r =25EB u u r.所以E ,F ,B 三点共线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.2 空间向量的数乘运算
【使用说明及学法指导】
1.先自学课本,理解概念,完成导学提纲;
2.小组合作,动手实践。

【学习目标】
1.掌握空间向量的数乘运算律,能进行简单的代数式化简;
2.理解共线向量定理和共面向量定理及它们的推论;
3.能用空间向量的运算意义及运算律解决简单的立体几何中的问题.
【重点】能用空间向量的运算意义及运算律解决简单的立体几何中的问题
【难点】理解共线向量定理和共面向量定理及它们的推论;
一、自主学习
1.预习教材P86~ P87, 解决下列问题
复习1:化简:
⑴ 5(32
-);
b a
a b
-)+4(23
⑵()()
-+--+-.
a b c a b c
63
复习2:在平面上有两个向量,a b,若b是非零向量,则a与b平行的充要条件是
2.导学提纲
1.空间任意两个向量有____种位置关系?如何判定它们的位置关系?任意两个向量的夹角的范围是______________?
2. 如果表示空间向量的所在的直线互相或,则这些向量叫共线向量,也叫_____________
3.对空间任意两个向量,a b(0
a b的充要条件是存在唯一实数λ,
b≠),//
使得 ______,为何要求0
b≠?
4.如图,l为经过已知点A且平行于已知非零向量的直线,对空间
的任意一点O,点P在直线l上的充要条件是
5.对空间两个不共线向量,a b,向量p与向量,a b共面的充要条件
是存在,使得 .
6.空间一点P与不在同一直线上的三点A,B,C共面的充要条件是:
⑴存在,使
⑵对空间任意一点O,有
7.向量共面的充要条件的理解
(1)MP =xMA →+yMB →
.满足这个关系式的点P 都在平面MAB 内;
反之,平面MAB 内的任一点P 都满足这个关系式.这个充要条件常用以证明四点共面.
(2)共面向量的充要条件给出了空间平面的向量表示式,即任意一个空间平面可以由空间一点及两个不共线的向量表示出来,它既是判断三个向量是否共面的依据,又可以把已知共面条件转化为向量式,以便于应用向量这一工具.另外,在许多情况下,可以用“若存在有序实数组(x ,y ,z )
使得对于空间任意一点O ,有OB =(1-t )OA →=xOA →+yOB →+zOC →
,且x +y +z =1成立,则P 、A 、B 、C 四点共面”作为判定空间中四个点共面的依据. 二、典型例题
例1.1. 下列说法正确的是( )
A.a 与非零向量b 共线,b 与c 共线,则a 与c 共线
B. 任意两个相等向量不一定共线
C. 任意两个共线向量相等
D. 若向量a 与b 共线,则a b λ=
2. 正方体''''ABCD A B C D -中,点E 是上底面''''A B C D 的中心,若''BB xAD y AB z AA =++,则x = ,y = ,z = .
3. 若点P 是线段AB 的中点,点O 在直线AB 外,则OP = OA + OB .
4. 平行六面体''''ABCD A B C D -, O 为A 1C 与1的交点,则'1
()3
AB AD AA ++= AO 5. 已知平行六面体''''ABCD A B C D -,M 是AC 与BD 交点,若',,AB a AD b AA c ===,则与'B M 相等的向量是( )
A. 1122a b c -++;
B. 11
22a b c ++;
C. 1122a b c -+;
D. 11
22
a b c --+.
6. 在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ).
A .0 B.1 C. 2 D. 3
7.下列等式中,使M ,A ,B ,C 四点共面的个数是( ) ①;OM OA OB OC =--
②111
;532
OM OA OB OC =++
③0;MA MB MC ++=
④0OM OA OB OC +++=.
A. 1
B. 2
C. 3
D. 4
例2. 已知平行六面体''''ABCD A B C D -,点M 是棱AA '的中点,点G 在对角线A 'C 上,且CG:GA '=2:1,设CD =a ,',CB b CC c ==,试用向量,,a b c 表示向量',,,CA CA CM CG .
变式:已知长方体''''ABCD A B C D -,M 是对角线AC '中点,化简下列表达式: ⑴ 'AA CB - ;
⑵ '''''AB B C C D ++
⑶ '111
222AD AB A A +-
例3 如图,已知平行四边形ABCD,过平面AC 外一点O 作射线OA,OB,OC,OD,
在四条射线上分别取点E,,F,G,H,并且使,OE OF OG OH
k OA OB OC OD
====
求证:E,F,G,H 四点共面.
变式:已知空间四边形ABCD 的四个顶点A,B,C,D 不共面,E,F,G,H 分别是AB,BC,CD,AD 的中点,求证:E,F,G,H 四点共面.
三、变式训练:课本第89页练习1-3 四、课堂小结 1.知识: 2.数学思想、方法:
3.能力: 五、课后巩固
1.课本第97页A 组2题
2. 若324,(1)82a m n p b x m n yp =--=+++, 0a ≠,若//a b ,求实数,x y .
3.已知两个非零向量2
1,e e 不共线,
12,AB e e =+
121228,33AC e e AD e e =+=-. 求证:,,,A B C D 共面.。

相关文档
最新文档