第二章晶体的投影

合集下载

晶体的投影

晶体的投影

结晶学与矿物学
乌尔夫网(Wulff net) 乌尔夫网
• 将投影平面标上刻度 • 规定 ϕ 起始于E ρ 起始点于中心
结晶学与矿物学
晶体测角(crystal goniometry) 晶体测角
结晶学与矿物学
乌尔夫网应用举例
例一:晶面M的坐标为ρ =30º和ϕ = 40º,作M的极射赤平投影
(a)
结晶学与矿物学
面角守恒定律
• 面角守恒定律 (law of Steno): 同种晶体之间, 对应晶面间的夹角恒等。
两图中的晶面 a, b, c ? 面角 面角的表达
结晶学与矿物学
晶体的球面投影(spherical projection)
• 以晶体的中心为球心,任意长 为半径,作一球面;然后从球 心出发(注意:不是从每个晶 面本身的中心出发),引每一 晶面的法线,延长后各自交球 面于一点,这些点便是相应晶 面的球面投影点。
Planes now = points But still 3-D!
结晶学与矿物学
球面坐标
• Similar to 地球的经纬 度(计数方法有差异)
• 方位角(经度) ϕ: 0 ~ 360° • 极距角(纬度) ρ: 0 ~ 180°, 从北极开始 • 点M的坐标?
M
结晶学与矿物学
极射赤平投影
• 以赤道平面为投影 平面,以南极(S)为 视点,将球面上的 各个点线进行投影
2. 晶体的投影
• • • • 面角守恒定律 晶体的球面投影及其坐标 极射赤平投影和乌尔夫网(Wulff net) 乌尔夫网应用举例
结晶学与矿物学
晶体投影的目的
• Stereographic Projection want to represent 3-D 3crystal on 2-D paper 2-

《结晶学与矿物学》课程笔记

《结晶学与矿物学》课程笔记

《结晶学与矿物学》课程笔记第一章:晶体及结晶学一、引言1. 晶体的定义- 晶体是一种固体物质,其内部原子、离子或分子在三维空间内按照一定的规律周期性重复排列,形成具有长程有序结构的物质。

- 晶体的特点是在宏观上表现出明确的几何外形和物理性质的各向异性。

2. 结晶学的定义- 结晶学是研究晶体的形态、结构、性质、生长和应用的科学。

- 它是固体物理学、化学和材料科学的一个重要分支。

3. 晶体与非晶体的区别- 晶体:具有规则的内部结构和外部几何形态,物理性质各向异性。

- 非晶体(如玻璃):内部结构无规则,没有长程有序,物理性质各向同性。

二、晶体的基本特征1. 几何外形- 晶体通常具有规则的几何外形,如立方体、六方柱、四方锥等。

- 几何外形是由晶体的内部结构决定的。

2. 晶面、晶棱和晶角- 晶面:晶体上平滑的平面,由晶体内部的原子平面构成。

- 晶棱:晶面的交线,由晶体内部的原子线构成。

- 晶角:晶棱之间的夹角,由晶体内部的原子角构成。

3. 晶面指数、晶棱指数和晶角指数- 晶面指数:用来表示晶面在晶体中的位置和方向的符号。

- 晶棱指数:用来表示晶棱在晶体中的位置和方向的符号。

- 晶角指数:用来表示晶角的大小和方向的符号。

4. 物理性质各向异性- 晶体的物理性质(如电导率、热导率、折射率等)随方向的不同而变化。

- 这是因为晶体内部原子的排列在不同方向上有所不同。

三、晶体的分类1. 天然晶体与人工晶体- 天然晶体:在自然界中形成的晶体,如矿物、岩石等。

- 人工晶体:通过人工方法在实验室或工业生产中制备的晶体。

2. 单晶体与多晶体- 单晶体:整个晶体内部原子排列规则一致,具有单一的晶格结构。

- 多晶体:由许多小晶体(晶粒)组成的晶体,晶粒之间排列无序。

3. 完整晶体与缺陷晶体- 完整晶体:内部结构完美,没有缺陷的晶体。

- 缺陷晶体:内部存在点缺陷、线缺陷、面缺陷等结构缺陷的晶体。

四、晶体的生长1. 晶体生长的基本过程- 成核:晶体生长的起始阶段,形成晶体的核。

高考化学晶体投影知识点

高考化学晶体投影知识点

高考化学晶体投影知识点晶体投影是高考化学中的重要知识点之一,理解和掌握晶体投影的相关概念和方法对于解决晶体结构问题具有重要意义。

下面将介绍晶体投影的相关知识点及其应用。

一、晶体投影的定义晶体投影是指将三维晶体结构中的原子、分子或离子的投影投射在一个平面上,用二维图形来表示晶体的结构。

晶体投影可以帮助我们更清晰地观察晶体的结构,便于分析和研究晶体的性质。

二、晶体投影的方法1. 平行投影法平行投影法是一种常用的晶体投影方法,通过将所有原子在一个平面上投影,使得所有原子在投影图上的尺寸和位置与真实晶体结构一致。

可以使用线段或圆点表示原子,根据需要选择合适的比例尺和投影方向进行绘制。

2. 立体投影法立体投影法是另一种常用的晶体投影方法,它可以提供三维晶体结构的立体感。

通常使用矩形或六边形的投影图形表示晶体结构,其中不同的原子用不同的颜色或符号表示。

三、晶体投影的应用1. 晶体结构分析晶体投影可以帮助我们分析和解释晶体的结构。

通过观察晶体投影图,可以确定晶体中的基本单元和各个原子的位置关系,进而推断晶体的晶格类型、空间群和化学组成等信息。

2. 晶体性质研究晶体投影还可以用于研究晶体的物理和化学性质。

通过观察晶体投影图的形状和对称性,可以推断晶体的晶胞参数、晶体的晶系和晶体的晶体学类别,进而预测晶体的性质,如硬度、光学性质等。

3. 材料设计和合成晶体投影在材料科学和工程中有着广泛的应用。

通过研究晶体投影图,可以了解晶体的结构特征和原子排列方式,从而指导新材料的设计和合成。

四、晶体投影的难点和注意事项1. 投影方向的选择选择合适的投影方向是进行晶体投影的关键。

不同的投影方向可以呈现不同的晶体结构信息。

经验上,选择高对称轴或者对称平面作为投影方向,可以简化晶体投影图的绘制,并且更容易把握晶体的对称性。

2. 投影图的分析正确理解和分析晶体投影图对于解决晶体结构问题至关重要。

需要注意的是,晶体投影图只能提供晶体中原子位置在投影面上的信息,需要结合其它实验数据和理论知识进行综合分析。

晶体投影

晶体投影

FCC(111)极射赤面投影
第二章:晶体投影 § 2.2 投影网及极射赤面投影应用
应用:面角测量 N
S
极式网:经线上的纬度差
吴式网:能转动
有且只有一个大圆过两点,此大圆必与0°经线相交于xy平面内 N
S
转动直到两点在一条经线上,读出纬度的差值即为面角
第二章:晶体投影 § 2.3 心射切面投影
极射赤面投影(Stereographic projection):主要用来表示 线、面的方位,及其相互之间的角距关系和运动轨迹, 把物体三维空间的几何要素(面、线)投影到平面上来 进行研究。 特点:简便、直观、是一种形象、综合的定量图解。 在结晶学、地质和航海上被广泛地应用。 步骤: 1. 球面投影:视点-球心,投影面-参考球面 作晶面的法线交投影面于极点P; 2. 极射赤面投影:视点-南极S,投影面-赤平面,赤道-基圆 连接SP,交赤平面于一点即极射赤面投影点p。
第二章:晶体投影 § 2.1 极射赤面投影
晶体学第一定律的意义:使人们从实际晶体千变万化的形态 中,找到它们外形上的内在规律,得以根据面角的关 系,来恢复晶体的理想形状,从而奠定了几何结晶学 的基础。对晶体学的发展产生了极为深远的影响。 面角: 两个晶面法线间的夹角,等于外角
第二章:晶体投影 § 2.1 极射赤面投影 极射赤面投影:
N 晶面 P 晶面法线
p
投影面 基圆 S
晶面在球上的投影
北半球晶面的极射赤面投影
南半球晶面的极射赤面投影
N
S
大圆的极射赤面投影
小圆的极射赤面投影
第二章:晶体投影 § 2.1 极射赤面投影 § 2.2 投影网及极射赤面投影应用 § 2.3 心射切面投影
第二章:晶体投影 § 2.2 投影网及极射赤面投影应用

晶体学基础(第二章)

晶体学基础(第二章)

2.1 面角守恒定律
双圈反射测角仪: 双圈反射测角仪:晶体位于二旋转 轴的交点。 轴的交点。。当观测镜 筒中出现“信号” 筒中出现“信号”时,我们便可以 在水平圈上得到一个读数ρ 极距角) 在水平圈上得到一个读数ρ(极距角), 并在竖圈上得到一个读数ϕ 方位角) 并在竖圈上得到一个读数ϕ(方位角), ρ和ϕ这两个数值犹如地球上的纬度 和经度,是该晶面的球面坐标 球面坐标。 和经度,是该晶面的球面坐标。
使用很简单,但精度较差,且不适于测量小晶体。 使用很简单,但精度较差,且不适于测量小晶体。
2.1 面角守恒定律
单圈反射测角仪, 单圈反射测角仪,精度可达 0.5′ l′-0.5′。但缺点是晶体安置 好之后只能测得一个晶带( 好之后只能测得一个晶带(指 晶棱相互平行的一组晶面) 晶棱相互平行的一组晶面)上 的面角数据。 的面角数据。若欲测另一晶 带上的面角时, 带上的面角时,必须另行安 置一次晶体。测量手续复杂。 置一次晶体。测量手续复杂。
2.1 面角守恒定律 晶体测量(goniometry)又称为测角法。 晶体测量(goniometry)又称为测角法。根据测角 (goniometry)又称为测角法 的数据,通过投影, 的数据,通过投影,可以绘制出晶体的理想形态 图及实际形态图。 图及实际形态图。在这一过程中还可以计算晶体 常数,确定晶面符号(见第四章) 同时, 常数,确定晶面符号(见第四章),同时,还可以 观察和研究晶面的细节(微形貌) 观察和研究晶面的细节(微形貌)。晶体测量是研 究晶体形态的一种最重要的基本方法。 究晶体形态的一种最重要的基本方法。 为了便于投影和运算, 为了便于投影和运算,一 般所测的角度不是晶面的 夹角, 夹角,而是晶面的法线 plane)夹角 (normals to plane)夹角 (晶面夹角的补角),称为 晶面夹角的补角) 面角(interfacial angle)。 面角(interfacial angle)。

晶体投影含球面投影(特选内容)

晶体投影含球面投影(特选内容)
若极点在南半球P2点,连线SP2与赤道的交点S2位于赤道大圆(投影基圆) 之外,这种情况对投影作图及角度测量不方便,这时可从北极连线NP2,将NP2 与赤道大圆(投影基圆内)的S2称为此晶面(或晶向)的极射赤面投影。
为区别起见,将北半球的极点P1对应的极射赤面投影点S1用“o”表示;将南 半球的极点P2对应的极射赤面投影点S2用“”表示。
线均分成180份。
优选内容
6
假设球面经纬线网是带有刻度的极薄的透明塑料球。测量球面投影上
两极点P1和P2之间的夹角时,应先把球面经纬线网紧贴在球面投影的表面,
再让P1和P2两极点转到经纬线网的同一条经线上,读出两极点之间的纬度
差,即为两极点间夹角。图中极点优P选1与内容P2之间的夹角为30°。
7

15
小圆弧
大圆弧
O
优选内容
球面上的大圆族 在赤道平面上投影形 成大圆弧族,球面上 的小圆族在赤道平面 上投影投影形成小圆 弧族,它们构成一个 坐标网,这种网是乌 里夫首先制成,故称 为吴里夫网。
在乌里夫网上,大圆 弧族将小圆弧族划分 成180个间隔,小圆 弧族也将大圆弧族划 分成180个间隔,每 一间隔为1°。投影基 圆被小圆弧族划分成 360个间隔,每一间 隔为1°。
8
2. 极射赤面投影
以赤道平面为投影平面,称为投影基圆。
取半径极大的球为参考球,把晶体放在球心上,作某晶面的极点P1(此晶面 法线与参考球的交点),或某晶向的迹点P1(此晶向与参考球的交点),将南极 点与此极点(或迹点)连线SP1,与赤道大圆(投影基圆内)交于一点S1,此点 S1则称为某晶面(或晶向)的极射赤面投影。
经纬线坐标网在投影平面上的极射赤面投影是由投影基圆内的放射状直径族(经线的投

晶体的投影和倒易点阵PPT课件

晶体的投影和倒易点阵PPT课件

6
-
2021年2月7日4时8分
2. 晶体的极射投影:是一种二次投影,即将晶体的晶面或晶向的球 面投影再以一定的方式投影到赤平面所获得的投影。包括心射极平 投影和极射赤平投影。
➢ 心射极平投影:
定义:将投影平面与上述带有晶面极点的球面相切与球面上的任一点, 以球心为视点,将球面上的晶面极点投影于投影平面上,即以球心与球 面上的晶面极点做直线延伸到投影平面,此直线与投影平面相交点即为 此晶面极点的投影点。 缺点:投影直线与投影平面平行的那些晶面极点无法做投影,一个投影 平面只能记录球面上部分晶面极点。 应用:诠释劳埃衍射照片十分有用。
1.正点阵 2.倒易点阵 3.倒易矢量的基本性质 4.正倒空间的关系 5.广义晶带理论
14 -
2021年2月7日4时8分
一、正点阵
概念:晶体的空间点阵。反映了晶体中的质点在三维空间中的周 期性排列;与晶体结构相关,描述的是晶体中原子的分布规律, 是实际物质空间,所在空间为正空间;
分类:7大晶系、14种晶胞类型; 晶面、晶向表征方法:米勒指数(hkl)、[uvw]或(hkil)、
7
-
➢ 极射赤平投影:
以赤道平面为投影平面,以南极(或北极)为视点,将球面上的各个点、 线进行投影。
晶体投影的基本要素
8
-
D’
C’
B’
A’
极射赤平投影
2021年2月7日4时8分
球面投影与极射赤面投影之间的关系: 球面上过南北轴的大圆,其极射赤面投影为过基圆中心的直径; 球面上未过南北轴的倾斜大圆,其投影为大圆弧,大圆弧的弦为基圆直径; 水平大圆即赤道平面与投影球的交线,其极射赤面投影为投影基圆本身; 水平小圆的极射赤面投影为与基圆同心的圆; 倾斜小圆的投影为椭圆; 直立小圆的极射赤面投影为一段圆弧,其大小和位置取决于小圆的大小和位置。

第2章 晶体投影

第2章 晶体投影
§2.1 面角守恒定律 §2.2 晶体的测量 §2.3 晶体的极射赤平投影
2
§2.1 面角守恒定律
成分和结构相同的晶体,常常因生长环境条件的影响,而 形成不同的外形,或者偏离理想的形态而形成所谓的“歪 晶”。
3
4
面角守恒定律(law of constancy of angle),亦称斯丹诺定律(law Steno):同种矿物的晶体,其对应晶面间的夹角恒等。

双圈反射测角仪
投影
8
§2.4 晶体的极射赤平投影
一、极射赤平投影的原理 二、极射赤平投影的方法和步骤 三、吴氏网
目的:将晶面在三维空间分布的规律性转化为二维平面图
9
一、极射赤平投影的原理
• • 取任一点O为投影中心,以一定的半径做一个球 通过球心作一个水平面,与投影球相交为一大圆,它相当于球的赤 道,称为基圆;基圆面称为赤道平面; 垂直于赤平面的直径NS称为投影轴;投影轴与投影球的两个交点N 和S,即投影球的北极和南极,也分别称为上目测点和下目测点。 子午面:包含投影轴的直立平面。 基本原理: 以赤道平面为投影平面,以南 极S(或北极N)作为目测点,由 S(或N)向球面上的点作直线, 连线与赤道平面的交点即为相 应点的极射赤平投影点。


立方体
三 方 柱
20
投影图的解读
四方单锥
斜方柱
四方柱 三方单锥
21
1.做立方体6个晶面的极射赤平投影
2.做八面体8个晶面的极射赤平投影
3.做菱形十二面体12个晶面的极射赤平投影
对称面?对称轴
22
在赤平投影图上,方位角() 与极距角() 怎么体现?
= 0 A’

方位角在基圆上度量,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ρ ϕ= 0 ϕ
即:方位角在基圆上度量,极距角则体现为投 影点距圆心的距离(h = r tan ρ /2) 。
极射赤平投影:
是将物体在三维空间的几何要素表述在平面上的一种投影方式。
特点:只反映物体的线和面在三度空间的方位和角距关系,而不涉及它 们的具体位置、长短大小和距离远近。它是一种等角投影。
上述投影平面与球面相截的圆称 为投影基圆。 球面上位于赤道上的点,其极射 赤平投影点将落在基圆上; 北极的投影点即是基圆的中心; 北半球上其他的点,它们的投影 都将落在基圆之内。
第二章 晶体的测量与投影
Ⅰ.面角守恒定律 Ⅱ.晶体的测量 Ⅲ.晶体的球面投影及其坐标 Ⅳ.极射赤平投影和乌尔夫网(吴氏网) Ⅴ.乌尔夫网应用举例
理想晶体与歪晶
p 理想晶体:理想条件下生长的晶体,表现为同一单形的晶面同形等大。 p 歪晶:偏离理想状态的晶体,表现为同一单形的晶面不同形等大,有
些晶面甚至缺失。
˜
˜
˜ ˜
˜˜ ˜
˜
凡是北半球上的点均以南极为视 点;南半球上的点则以北极作为视点。
北半球(包括赤道)上的点的极射 赤平投影点标记为“•”,南半球上者 标记为“○”;
如果南、北半球上的某两个点的投 影位置恰好重合时,则记为“☉”。
也有参考书将北半球(包括赤道)上的点的 极射赤平投影点标记为“⊙”,南半球上者标 记为“×”; 如果南、北半球上的某两个点的投影位置恰 好重合时,则记为“⊕”。
ϕ=350o;ρ=40.5o。
①求作该直线的另一个投影点b 1; ②求b 1的球面坐标值。
例:立方体晶面的球面投影
2. 球面坐标
• 球面坐标(ρ,ϕ):
类似地球的经纬度
• 极距角ρ (纬度) :投影轴与晶面
法线的夹角。(0 ~ 180° ) 从 北极开始
M
• 方位角ϕ (经度) :包含该晶面 法线的子午面与零度子午面之 间的夹角。 (0 ~ 360°)
(二)极射赤平投影
1.投影的原理:
直立小圆的投影形成小圆弧
实例:
投影的反推:
投影的反推:
m3m
c
(三)吴氏网(乌尔夫网The Wulff Net)
吴氏网既是极射赤平投影网,它是由基圆(赤平大圆) 和一系列经纬网格所组 成,经纬网格是由一系列走向南北的经向大圆弧和一系列走向东西的纬向小 圆弧交织而成。
标准吴氏网的基圆直径为 20cm,网格的纵横间距为2度。 使用标准网进行投影,误差可 以不超过半度。
投影球、投影面(赤平面)、投影轴, 北极点与南极点 (目测点)。
1.投影的原理:
N
S
投影轴 投影中心 赤道平面 赤道 子午面
子午线
投影过程:球面上任一点A与南极点S连线,此连线与投影 面(赤道平面)的交点A’即为投影点。如果A点在下半球, 就与北极点N连线。
目的:将晶面的空间分布转化为平面图.
在赤平投影图上, 方位角与极距角怎么体现?
本章总结:
1. 面角守恒定律及其意义; 2. 晶面的投影过程; 3. 乌尔夫网的构成与应用; 4. 方位角与极距角的概念; 5. 投影图的解读,即从投影图上点的分布规律 能看出晶体上晶面的空间分布规律,例如上图。
作业一:
1. 下图为锡石晶体,请做出极射赤平投影图。
r m
2:已知某直线的一个投影点为b,其球面坐标为:
a
o
o
a
a
o
金刚石矿物晶体构造属等轴晶系。常见晶形有八面体、菱形十二 面体、立方体、四面体和六八面体。
p 歪晶掩盖了晶体的固有的对称性特点,给人类掌握晶体形 态的规律带来困难。
p 后来发现:同种晶体,尽管形态随生长环境的变化而变 化,但对应晶面间的夹角不变。
石英的理想晶形(左)与歪晶(右)
一、面角守恒定律 :
2.主要的投影类型:
大圆再在赤平面上进行投影
大圆是指球面上其平面半径等于球半径的圆。 小圆是指球面上其平面半径小于球半径的圆。
对球面上的大圆(它代表空间的平 面)进行极射赤平投影时,由于一个大 圆通常都被投影平面分割成相等的两 半,因而一般只取其位于北半球上的半 个圆进行投影。使其上的每个点均与南 极联线,从而在投影平面上获得一系列 交点,由后者所连接成的一条曲线即是 平面的极射赤平投影。
任意一晶面在球面上的投影为均一个点。 晶面的球面投影点只能反映晶面的空间 方位,与晶面的实际形态和大小无关。
(2)晶体上的各种直线 (包括晶棱) 的球面投影:
对其进行投影时,首先应将直线平 移,使之通过投影球球心,然后延长之。 它将与投影球球面在相对的两侧面各交于 一点,此两点便是该直线方向的一对球面 投影点。
• 将投影平面标上刻度
• 规定 – ϕ 起始于E – ρ 起始点于中心
经向大圆弧
纬向小圆弧
N S
吴氏网的应用:

吴氏网的应用实例:
例一:晶面M的坐标为ρ =30º和ϕ = 40º,作M的极射赤平投影
(a)
(b)
点M(ρ =30º和ϕ = 40º)的极射赤平投影
˜
M
(a)
例2:已知两晶面M (ρ1, ϕ1)和P(ρ2, ϕ2),求此二晶面的面角
所有直线都必须平移到过投影球中 心,然后才能进行投影。
一条直线在球面上有两个投影点。 方向相同的直线,球面投影点的位置 相同。 直线的球面投影只能反映直线方向, 不能反映直线的具体位置。
(3)晶体上平面本身的球面投影
习惯上, 晶体上的对称面、 双晶面、双晶结合面的投影, 是将这些平面直接投影的, 首 先将平面平移至通过投影球球 心, 然后延展之, 使其与球面 相交, 交线形成一个所谓的大 圆, 该大圆就是平面本身的球 面投影。
晶面M (ρ1, ϕ1)和P(ρ2, ϕ2) 的面角
例2:已知两晶面M (ρ1, ϕ1)和P(ρ2, ϕ2),求此二晶面的面角
(a)
(b)
例2:已知两晶面M (ρ1, ϕ1)和P(ρ2, ϕ2),求此二晶面的面角
(四)心射极平投影
与极射赤平投影相反,是将目测点置于投影球中心, 在过北极点的切面上投影.
依据空间平面在吴氏网上的投影,可 以求空间平面间的夹角。
吴氏网成图原理
1、经向大圆弧,系由一系列通过 球心,走向南北,分别向东和向 西倾斜,倾角从0度到90度的许多 平面的投影大圆弧组成。这些大 圆弧与东西向直径线的各交点到 直径端点(E点和W点)的角距值就 是它们所代表的平面的倾角值。
2、纬向小圆弧,系由一系列走向 东西而不通过球心的直立球面小 圆投影而成。这些小圆离球心越 远,圆弧的半径角距就越小,距 球心越近,圆弧的半径角距就越 大。赤平投影是一种等角投影, 即物体各面、线的夹角关系,投 影后仍然不变。
分为两类,一类是其测得的数据直接就是各对晶面间的面角值。另一类所 得出的则是每一个晶面的所谓球面坐标值。
通常用面角(晶面法线的夹角)
面角:是指晶面法线间的夹角,其数值等于相应晶面 实际夹角的补角。
注意:晶面夹角与面角(晶面法线的夹角)的区别: 它们之间的关系为互补的关系。
2.晶体测量方法
(1)接触测角仪测量
同种晶体之间,对应晶面间的夹角恒等。 亦称为斯丹诺定律(law of Steno)。
一方面,晶体有自发地成长为几何多面 体外形的固有能力;
另一方面,由于受到生长时环境的影响, 晶体又经常表现为所谓的歪形。
在不同晶体中,各晶面间的相对大小发 育不等,致使各晶体的形状也迥然不同,但 它们之中任何一组对应晶面的夹角却保持恒 定。
球面上的任一个大圆,其极射赤平 投影是一一对封闭的大圆弧,而且它们 与基圆的一对交点,必定是基圆中同一 直径的两个端点,亦即两者的角距必为 180度。平面上这样的圆弧,同样也称 之为大圆,或为大圆弧。
水平大圆的投影形成基圆 直立大圆的投影形成直径
倾斜大圆的投影形成大圆弧
等倾角间隔投影:有什么用?
适用于较大晶体
接触测角仪
(2)反射测角仪测量
三、晶体的投影
晶体的投影就是把三维空间中的晶体(包括构成晶体立体形态的 点、线、面、体等几何元素按照一定的投影规则投影到二维平面上。
投影的方法: 1.晶体的球面投影
2.极射赤平投影
3.心射极平投影
(一)晶体的球面投影
1.晶体的球面投影:
(1)晶面的球面投影:是各晶面 之法线在球面上的投影。以晶体的 中心为球心,任意长为半径,作一 球面;然后从球心出发,引每一晶 面的法线,延长后各自交球面于一 点,这些点便是相应的球面投影点。
面角守恒定律的意义:结晶学发展的奠基石。
同种晶体具有相同形式的 格子构造,晶体上的对应 晶面就是格子构造中的对 应面网,而在晶体生长过 程中,它们各自都是平行 地向外推移的,因此, (返回)不论晶面长得大小 如何,对应晶面间的夹角 将始终保持恒定。
二、晶体的测量
1.晶体测量
根据各晶面间的面角关系,我们就有可能恢复出晶体的理想几何形状来, 因此,我们需要对晶面间的夹角进行实际测量,称晶体测量,或称晶体测角。
相关文档
最新文档