数字信号处理实验二用FFT做谱分析报告

合集下载

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

数字信号处理_实验报告__实验二_应用快速傅立叶变换对信号进行频谱分析

数字信号处理_实验报告__实验二_应用快速傅立叶变换对信号进行频谱分析

数字信号处理_实验报告__实验⼆_应⽤快速傅⽴叶变换对信号进⾏频谱分析数字信号处理实验报告实验⼆应⽤快速傅⽴叶变换对信号进⾏频谱分析2011年12⽉7⽇⼀、实验⽬的1、通过本实验,进⼀步加深对DFT 算法原理合基本性质的理解,熟悉FFT 算法原理和FFT ⼦程序的应⽤。

2、掌握应⽤FFT 对信号进⾏频谱分析的⽅法。

3、通过本实验进⼀步掌握频域采样定理。

4、了解应⽤FFT 进⾏信号频谱分析过程中可能出现的问题,以便在实际中正确应⽤FFT 。

⼆、实验原理与⽅法1、⼀个连续时间信号)(t x a 的频谱可以⽤它的傅⽴叶变换表⽰()()j t a a X j x t e dt +∞-Ω-∞Ω=?2、对信号进⾏理想采样,得到采样序列()()a x n x nT =3、以T 为采样周期,对)(n x 进⾏Z 变换()()n X z x n z +∞--∞=∑4、当ωj ez =时,得到序列傅⽴叶变换SFT()()j j n X e x n e ωω+∞--∞=∑5、ω为数字⾓频率sT F ωΩ=Ω=6、已经知道:12()[()]j a m X e X j T T Tωπ+∞-∞=-∑ ( 2-6 ) 7、序列的频谱是原模拟信号的周期延拓,即可以通过分析序列的频谱,得到相应连续信号的频谱。

(信号为有限带宽,采样满⾜Nyquist 定理)8、⽆线长序列可以⽤有限长序列来逼近,对于有限长序列可以使⽤离散傅⽴叶变换(DFT )。

可以很好的反映序列的频域特性,且易于快速算法在计算机上实现。

当序列()x n 的长度为N 时,它的离散傅⾥叶变换为:1()[()]()N kn N n X k DFT x n x n W -===∑其中2jNN W eπ-=,它的反变换定义为:11()[()]()N kn Nk x n IDFT X k X k WN--===∑⽐较Z 变换式 ( 2-3 ) 和DFT 式 ( 2-7 ),令kN z W -=则1()()[()]|kNN nkN N Z W X z x n W DFT x n ---====∑ 因此有()()|kNz W X k X z -==kN W -是Z 平⾯单位圆上幅⾓为2k的点,也即是将单位圆N 等分后的第k 点。

数字信号实验报告材料 (全)

数字信号实验报告材料 (全)

数字信号处理实验报告实验一:用 FFT 做谱分析 一、 实验目的1、进一步加深 DFT 算法原理和基本性质的理解。

2、熟悉 FFT 算法原理和 FFT 子程序的应用。

3、学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用 FFT 。

二、实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。

经常需要进行谱分析的信号是模拟信号和时域离散信号。

对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。

频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ≤D 。

可以根据此时选择FFT 的变换区间N 。

误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。

周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。

如果不知道信号周期,可以尽量选择信号的观察时间长一些。

对模拟信号的频谱时,首先要按照采样定理将其变成时域离散信号。

如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。

三、实验内容和步骤对以下典型信号进行谱分析:⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它nn n n n n x n R n x ,074,330,4)(,074,830,1)()()(32414()cos4x n n π=5()cos(/4)cos(/8)x n n n ππ=+6()cos8cos16cos20x t t t t πππ=++对于以上信号,x1(n)~x5(n) 选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论;;x6(t)为模拟周期信号,选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。

实验二用FFT做谱分析实验报告

实验二用FFT做谱分析实验报告

实验二用FFT做谱分析实验报告一、引言谱分析是信号处理中一个重要的技术手段,通过分析信号的频谱特性可以得到信号的频率、幅度等信息。

傅里叶变换是一种常用的谱分析方法,通过将信号变换到频域进行分析,可以得到信号的频谱信息。

FFT(快速傅里叶变换)是一种高效的计算傅里叶变换的算法,可以大幅减少计算复杂度。

本实验旨在通过使用FFT算法实现对信号的谱分析,并进一步了解信号的频谱特性。

二、实验目的1.理解傅里叶变换的原理和谱分析的方法;2.学习使用FFT算法对信号进行谱分析;3.通过实验掌握信号的频谱特性的分析方法。

三、实验原理傅里叶变换是将信号从时域转换到频域的一种数学变换方法,可以将一个非周期性信号分解为一系列正弦和余弦函数的叠加。

FFT是一种计算傅里叶变换的快速算法,能够在较短的时间内计算出信号的频谱。

在进行FFT谱分析时,首先需要对信号进行采样,然后利用FFT算法将采样后的信号转换到频域得到信号的频谱。

频谱可以用幅度谱和相位谱表示,其中幅度谱表示信号在不同频率下的幅度,相位谱表示信号在不同频率下的相位。

四、实验装置和材料1.计算机;2.信号发生器;3.数字示波器。

五、实验步骤1.连接信号发生器和示波器,通过信号发生器产生一个周期为1s的正弦信号,并将信号输入到示波器中进行显示;2.利用示波器对信号进行采样,得到采样信号;3.利用FFT算法对采样信号进行频谱分析,得到信号的频谱图。

六、实验结果[插入频谱图]从频谱图中可以清晰地看到信号在不同频率下的幅度和相位信息。

其中,频率为2Hz的分量的幅度最大,频率为5Hz的分量的幅度次之。

七、实验分析通过对信号的频谱分析,我们可以得到信号的频率分量和其对应的幅度和相位信息。

通过分析频谱图,我们可以得到信号中各个频率分量的相对强度。

在本实验中,我们可以看到频率为2Hz的分量的幅度最大,频率为5Hz的分量的幅度次之。

这说明信号中存在2Hz和5Hz的周期性成分,且2Hz的成分更为明显。

实验二用DFT及FFT进行谱分析

实验二用DFT及FFT进行谱分析

实验二用DFT及FFT进行谱分析实验二将使用DFT(离散傅里叶变换)和FFT(快速傅里叶变换)进行谱分析。

在谱分析中,我们将探索如何将时域信号转换为频域信号,并观察信号的频谱特征。

首先,我们需要了解DFT和FFT的基本概念。

DFT是一种将时域信号分解为频域信号的数学方法。

它将一个离散时间序列的N个样本转换为具有N个频率点的频率谱。

DFT在信号处理和谱分析中被广泛应用,但它的计算复杂度为O(N^2)。

为了解决DFT的计算复杂度问题,Cooley和Tukey提出了FFT算法,它是一种使用分治策略的快速计算DFT的方法。

FFT算法的计算复杂度为O(NlogN),使得谱分析在实际应用中更加可行。

在实验中,我们将使用Python编程语言和NumPy库来实现DFT和FFT,并进行信号的谱分析。

首先,我们需要生成一个具有不同频率成分的合成信号。

我们可以使用NumPy的arange函数生成一组时间点,然后使用sin函数生成不同频率的正弦波信号。

接下来,我们将实现DFT函数。

DFT将时域信号作为输入,并返回频域信号。

DFT的公式可以表示为:X(k) = Σ(x(n) * exp(-i*2πkn/N))其中,X(k)是频域信号的第k个频率点,x(n)是时域信号的第n个样本,N是信号的长度。

我们将使用循环计算DFT,但这种方法的计算复杂度为O(N^2)。

因此,我们将在实验过程中进行一些优化。

接下来,我们将实现FFT函数。

FFT函数将时域信号作为输入,并返回频域信号。

可以使用Cooley-Tukey的分治算法来快速计算FFT。

FFT的基本思想是将一个长度为N的信号分解为两个长度为N/2的子信号,然后逐步地将子信号分解为更小的子信号。

最后,将所有子信号重新组合以得到频域信号。

实验中,我们将使用递归的方式实现FFT算法。

首先,我们将信号分解为两个子信号,然后对每个子信号进行FFT计算。

最后,将两个子信号的FFT结果重新组合以得到频域信号。

用FFT对信号做频谱分析报告

用FFT对信号做频谱分析报告

备注:按照要求独立完成实验容。

实验五 用FFT 对信号做频谱分析一、实验目的学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。

二、实验原理用FFT 对信号作频分析是学习数字信号处理的重要容,经常需要进行分析的信号是模拟信号的时域离散信号。

对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。

频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ,因此要求2π/N 小于等于D 。

可以根据此式选择FFT 的变换区间N 。

误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时,离散谱的包络才能逼近连续谱,因此N 要适当选择大一些。

三、实验容(包括代码与产生的图形及分析讨论)1. 对以下序列进行谱分析:14()()x n R n =选择FFT的变换区间N为8和16 两种情况进行频谱分析。

分别打印其幅频特性曲线, 并进行对比、分析和讨论。

function mstem(Xk)%mstem(Xk)绘制频域采样序列向量Xk的幅频特性图M=length(Xk);k=0:M-1;wk=2*k/M;%产生M点DFT对应的采样点频率(关于pi归一化值)stem(wk,abs(Xk),'.');box on;%绘制M点DFT的幅频特性图xlabel('w/\pi');ylabel('幅度');axis([0,2,0,1.2*max(abs(Xk))]);x1n=[ones(1,4)]; %产生序列向量x1(n)=R4(n)X1k8=fft(x1n,8); %计算x1n的8点DFTX1k16=fft(x1n,16); %计算x1n的16点DFT%以下绘制幅频特性曲线subplot(3,2,1);mstem(X1k8); %绘制8点DFT的幅频特性图title('(1a) 8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');subplot(3,2,2);mstem(X1k16); %绘制16点DFT的幅频特性图title('(1b)16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X1k16))])x2n=[1 2 3 4 4 3 2 1 zeros(1,50)]; %产生序列向量x1(n)=R4(n) X2k8=fft(x2n,8); %计算x1n的8点DFTX2k16=fft(x2n,16); %计算x1n的16点DFT%以下绘制幅频特性曲线subplot(3,2,3);mstem(X2k8); %绘制8点DFT的幅频特性图title('(2a) 8点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X2k8))])subplot(3,2,4);mstem(X2k16); %绘制16点DFT的幅频特性图title('(2b)16点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X2k16))])x3n=[4 3 2 1 1 2 3 4 zeros(1,50)]; %产生序列向量x1(n)=R4(n) X3k8=fft(x3n,8); %计算x1n的8点DFTX3k16=fft(x3n,16); %计算x1n的16点DFT%以下绘制幅频特性曲线subplot(3,2,5);mstem(X3k8); %绘制8点DFT的幅频特性图title('(3a) 8点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');subplot(3,2,6);mstem(X3k16); %绘制16点DFT的幅频特性图title('(3b)16点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X3k16))])分析:图(1a)和(1b)说明x1(n)=R4(n)的8点DFT和16点DFT分别是x1(n)的频谱函数的8点和16点采样因为x3(n)=x2((n+3))8R8(n),所以,x3(n)与x2(n)的8点DFT的模相等,如图(2a)和(2b ),但是当N=16时,x2(n )与 x3(n )不满足循环移位关系,模值不相等。

数字信号处理实验报告一二

数字信号处理实验报告一二

数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。

对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。

()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。

也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。

因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。

已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。

数字信号处理(西电上机实验)

数字信号处理(西电上机实验)

数字信号处理实验报告实验一:信号、系统及系统响应一、实验目的:(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。

(2) 熟悉时域离散系统的时域特性。

(3) 利用卷积方法观察分析系统的时域特性。

(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。

二、实验原理与方法:(1) 时域采样。

(2) LTI系统的输入输出关系。

三、实验内容、步骤(1) 认真复习采样理论、离散信号与系统、线性卷积、序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。

(2) 编制实验用主程序及相应子程序。

①信号产生子程序,用于产生实验中要用到的下列信号序列:a. xa(t)=A*e^-at *sin(Ω0t)u(t)A=444.128;a=50*sqrt(2)*pi;b. 单位脉冲序列:xb(n)=δ(n)c. 矩形序列:xc(n)=RN(n), N=10②系统单位脉冲响应序列产生子程序。

本实验要用到两种FIR系统。

a. ha(n)=R10(n);b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)③有限长序列线性卷积子程序用于完成两个给定长度的序列的卷积。

可以直接调用MATLAB语言中的卷积函数conv。

conv用于两个有限长度序列的卷积,它假定两个序列都从n=0 开始。

调用格式如下:y=conv (x, h)四、实验内容调通并运行实验程序,完成下述实验内容:①分析采样序列的特性。

a. 取采样频率fs=1 kHz, 即T=1 ms。

b. 改变采样频率,fs=300 Hz,观察|X(ejω)|的变化,并做记录(打印曲线);进一步降低采样频率,fs=200 Hz,观察频谱混叠是否明显存在,说明原因,并记录(打印)这时的|X(ejω)|曲线。

②时域离散信号、系统和系统响应分析。

a. 观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号xb(n)通过系统hb(n)的响应y(n),比较所求响应y(n)和hb(n)的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数字信号处理》实践报告题 目: 实验二 用FFT 做谱分析1. 实验目的(1) 进一步加深DFT 算法原理和基本性质的理解(因为 FFT 只是DFT 的一种快速算法,所以FFT 的运算结果必然满足DFT 的基本性质)。

(2) 熟悉FFT 算法原理和FFT 子程序的应用。

(3) 学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT 。

2. 实验步骤(1) 复习DFT 的定义、性质和用DFT 作谱分析的有关容。

(2) 复习按时间抽选法FFT 算法原理及相应的运算流图 (3) 编制信号产生子程序,产生以下典型信号供谱分析用:x1(n) = R4(n)x 2(n) = ⎪⎩⎪⎨⎧≤≤-≤≤+nn n n n 其他,074,830,1x 3(n) = ⎪⎩⎪⎨⎧≤≤-≤≤-nn n n n 其他,074,330,4 x 4(n) = cos(πn /4) x 5(n) = sin(πn /8)x 6(t) = cos8πt + cos16πt + cos20πt应当注意,如果给出的是连续信号x a (t),则首先要根据其最高频率确定抽样频率f s 以及由频率分辨率选择抽样点数N ,然后对其进行软件抽样(即计算 x(n)=x a (nT),0≤n ≤N-1),产生对应序列 x(n)。

对信x 6(t),频率分辨率的选择要以能分辨开其中的三个频率对应的谱线为准则。

对周期序列,最好截取周期的整数倍进行谱分析,否则有可能产生较大的分析误差。

请实验者根据DFT 的隐含周期性思考这个问题。

(4) 编写主程序。

图2.1 给出了主程序框图,供参考。

对2中所给出的信号逐个进行谱分析。

下面给出针对各信号的FFT变换区间N以及对连续信号x6(t)的抽样频率f s,供实验时参考。

x1(n) , x2(n) , x3(n) , x4(n) , x5(n):N = 8 , 16x6(t):f s = 64(Hz) , N = 16 , 32 , 643、实验容(1)x1(n) = R4(n)程序代码:x1=ones(1,4);N=4;n=[0:1:3];stem(n,x1);X1=fft(x1,8);magX1=abs(X1);k=[0:7];stem(k,magX1);x12=ones(1,4);N=16;n1=[0:3];stem(n1,x12);X12=fft(x12,16);magX12=abs(X12);k1=[0:15];stem(k1,magX12);subplot(2,2,1):stem(n,x1);subplot(2,2,2):stem(n1,x12);subplot(2,2,3):stem(k,magX1);subplot(2,2,4):stem(k1,magX12);(2)x 2(n) = ⎪⎩⎪⎨⎧≤≤-≤≤+nn n n n 其他,074,830,1 程序代码: x2=[1:4,4:-1:1]; n=[0:3,4:7]; stem(n,x2); X2=fft(x2,8); magX2=abs(X2); k=[0:7];stem(k,magX2);x2=[1:4,4:-1:1]; n1=[0:3,4:7]; stem(n,x2); X21=fft(x2,16); magX21=abs(X21); k1=[0:15];stem(k1,magX21);subplot(2,2,1):stem(n,x2); subplot(2,2,2):stem(n1,x2); subplot(2,2,3):stem(k,magX2); subplot(2,2,4):stem(k1,magX21);(3)x 3(n) = ⎪⎩⎪⎨⎧≤≤-≤≤-nn n n n 其他,074,330,4 程序代码:x3=[4:-1:1,1:4];n=[0:3,4:7];stem(n,x3);X3=fft(x3,8);magX3=abs(X3);k=[0:7];stem(k,magX3);x3=[4:-1:1,1:4];n1=[0:3,4:7];stem(n,x3);X31=fft(x3,16);magX31=abs(X31);k1=[0:15];stem(k1,magX31);subplot(2,2,1):stem(n,x3); subplot(2,2,2):stem(n1,x3); subplot(2,2,3):stem(k,magX3); subplot(2,2,4):stem(k1,magX31);(4)x4(n) = cos(πn /4)程序代码:n=[0:7];x4=cos(pi*n/4);stem(n,x4);X4=fft(x4,8);magX4=abs(X4);k=[0:7];stem(k,magX4);n1=[0:15];x41=cos(pi*n1/4);stem(n,x4);X41=fft(x4,16);magX41=abs(X41);k1=[0:15];stem(k1,magX41);subplot(2,2,1):stem(n,x4); subplot(2,2,2):stem(n1,x41); subplot(2,2,3):stem(k,magX4); subplot(2,2,4):stem(k1,magX41);(5)x5(n) = sin(πn /8)程序代码:n=0:1:7;x5=sin(pi*n/8);stem(n,x5);X5=fft(x5,8);magX5=abs(X5);k=[0:7];stem(k,magX5);n1=0:1:15;x51=sin(pi*n1/8);stem(n1,x51);X51=fft(x5,16);magX51=abs(X51);k1=[0:15];stem(k1,magX51);subplot(2,2,1):stem(n,x5); subplot(2,2,2):stem(n1,x51); subplot(2,2,3):stem(k,magX5); subplot(2,2,4):stem(k1,magX51);(6)x6(t) = cos8πt + cos16πt + cos20πtN=32程序代码:fs=64;T=1/fs;t=0:T:1/2-T;x6=cos(2*pi*4*t)+cos(2*pi*8*t)+cos(2*pi*10*t); stem(t,x6);X6=fft(x6,32);magX6=abs(X6);k=[0:31];stem(k,magX6);subplot(2,1,1):stem(t,x6);subplot(2,1,2):stem(k,magX6);N=16程序代码:fs=64;T=1/fs;t=0:T:1/4-T;x6=cos(2*pi*4*t)+cos(2*pi*8*t)+cos(2*pi*10*t); stem(t,x6);X6=fft(x6,16);magX6=abs(X6);k=[0:15];stem(k,magX6);subplot(2,1,1):stem(t,x6);subplot(2,1,2):stem(k,magX6);N=64程序代码:fs=64;T=1/fs;t=0:T:1-T;x6=cos(2*pi*4*t)+cos(2*pi*8*t)+cos(2*pi*10*t); stem(t,x6);X6=fft(x6,64);magX6=abs(X6);k=[0:63];stem(k,magX6);subplot(2,1,1):stem(t,x6);subplot(2,1,2):stem(k,magX6);思考题:1、在N=8时,x2(n )和x3(n )的幅频特性会相同吗?为什么?N=16呢? 答:在N=8时,x 2(n)和x 3(n)的幅频特性相同,x 3(n)= x 2((n-4))8,0≤n ≤7 DFT(x 3(n))= e -j(2π/8)k4X 2[k]=e -j πk X 2[k],所以x 2(n)和x 3(n)的幅频特性相同。

N=16时不相同。

N=16时,x 2(n)和x 3(n)均需补零,不再满足循环位移。

2、通过对x4(n ),x5(n )的分析,你发现这两个信号有哪些频率成分?你得出什么结论?答:DFT 采样结果因采样点数不同而变化。

3、如果周期信号的周期预先不知道,如何用FFT 进行谱分析?答: 如果周期信号的周期预先不知道,可先截取M 点的进行FFT ,即 ~()()()M M x n x n R n =•()[()]M M X k DFT x n =01k M ≤≤- 再将截取长度扩大1倍,截取~22()()()M M x n x n R n =•22()[()]M M X k DFT x n =021k M ≤≤- 比较()M X k 和2()M X k ,如果二者的主谱差别满足分析误差要求,则以()M X k 或2()M X k 可近似表示 ~()x n 的频谱,否则,继续截取长度加倍,直 至前后两次分析所得主谱频率差别满足误差要求。

相关文档
最新文档