信号与系统实验报告实验三 连续时间LTI系统的频域分析
北京理工大学信号与系统实验报告3信号的频域分析报告

实验3信号的频域分析(综合型实验)一、实验目的1)深入理解信号频谱的概念,掌握信号的频域分析方法。
2)观察典型周期信号和非周期信号的频谱,掌握其频谱特性。
二、实验原理与方法1•连续周期信号的频谱分析如果周期信号满足Dirichlet条件,就可展开为傅里叶级数的形式,即1 .k.x(t) = E c k e j^0t(1)C k=T Jx(t)e J 吟dt(2)k S T o T o其中T o表示基波周期,「0=2二/T o为基波频率,.(…)表示任一个基波周期内的积T o分。
上面两式为周期信号复指数形式的傅里叶级数,系数c k成为x(t)的傅里叶系数。
周期信号的傅里叶级数还可由三角函数的线性组合来表示,即-bo -box(t)二a厂二a k cosk o t …工b k sink o t (3)k=1 k=11 2 2其中a。
x(t)dt, a k x(t)cosk ytdt,b k x(t)sink °tdt (4)T0 T o T o T o % T o(3)式中同频率的正弦、余弦项合并可以得到三角函数形式的傅里叶级数,即-box(t)= A o \ A k cos(k o t 玉)(5)km其中A o =a°, A. f 迸氐,入=-arctan& (6)a k任何满足Dirichlet条件的周期信号都可以表示成一组谐波关系的复指数函数或三角函数X =的叠加。
周期信号表示为傅里叶级数时需要无限多项才能完全逼近原信号2•连续非周期信号的频谱分析以上两式把信号的时频特性联系起来 ,确立了非周期信号x(t)和频谱X(-)之间的关利用MATLAB 可以方便地求出非周期连续时间信号的傅里叶变换 ,几种常见方法如下:1) 符号运算法MATLAB 的符号数学工具箱提供了直接求解傅里叶变换和反变换的函数,fourier函数和ifourier 函数,基本调用格式为X = fourier (x)x = ifourier (X)默认的时域变量为t ,频域变量为「。
《信号与系统》实验三

三:
源程序:
(1):τ/T=1/4时的周期矩形脉冲的幅度谱和相位谱:
n=-20:20;
F=zeros(size(n));
forii=-20:20
F(ii+21)= sin(ii*pi/4)/(ii*pi+eps);
end
F(21)=1/4;
实验
内容
1.求图1所示周期信号( , )的傅里叶级数,用Matlab做出其前3、9、21、45项谐波的合成波形与原信号作比较,并做出其单边幅度谱和相位谱。
图1 周期为2的三角脉冲信号
2. 求图2所示的单个三角脉冲( )的傅里叶变换,并做出其幅度谱和相位谱。
图2 单个三角脉冲
3. 求不同占空比下周期矩形脉冲的幅度谱和相位谱,例如 、 。
y=1/4;
forn=1:m
y=y+4/(n*n*pi*pi)*(1-cos(n*pi/2)).*cos(n*pi.*t);
end
源代码:
t=-6:0.01:6;
d=-6:2:6;
fxx=pulstran(t,d,'tripuls');
f1=fourierseries(3,t);
f2=fourierseries(9,t);
n=1:10;
a=zeros(size(n));
fori=1:10
a(i)=angle(4/(i*i*pi*pi)*(1-cos(i*pi/2)))
end
n=0:pi:9*pi
stem(n,a,'fill','linewidth',2);
axis([0,9*pi,-0.2,0.2])
连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。
本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。
2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。
傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。
具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。
3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。
频率响应是系统对不同频率输入信号的响应情况。
通过系统函数H(ω)可以计算系统的频率响应。
系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。
4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。
通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。
常用的频域分析方法包括功率谱密度估计、谱线估计等。
5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。
通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。
6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。
通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。
进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。
7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。
频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。
总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。
频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。
实验三 连续时间系统的频域分析

2 2
e
t
1 s
e
t
co s 0 t
s (s ) 0
2 2
t
te
n
n! s
n 1
t s in 0 t
2 0 s (s 0 )
2 2 2
t
1
s
2
13
t co s 0t
s 0
2 2
2 2
(s 0 )
在线性时不变系统分析和研究中,Laplace 变换是一
种很常用的变换域分析方法。它把时域中求解响应的问题
通过 Laplace 变换转换成复频域中的问题进行分析;在复
频域中求解后再通过 Laplace 逆变换还原为时间原函数。
它把时域中输入输出之间的卷积运算转化为变换域中的乘
法运算,使运算变得方便、快捷。
2
拉普拉斯变换的性质
序号 名称 结论
a1 f 1 t a 2 f 2 t a 1 F1 s a 2 F 2 s
1
2 3 4 5
线性性质
时移性质 尺度变换性质 频移性质 时域微分性质
f t t0 t t0 F s e
j t
dt
F ( j )e
j t
d
傅立叶变换函数
fourier函数
功能:实现信号f(t)的傅立叶变换。 调用格式: F=fourier(f):是符号函数f的傅立叶变换,默认返回 函数F是关于w的函数。 F=fourier(f,v):是符号函数f的傅立叶变换,默认返回
函数F是关于v的函数。
常用拉氏变换表 序号 1 2 3 4 5 6 f(t) t>0
实验三 连续信号与系统的频域分析

学号
0174280
同组人:无
实验项目
实验三连续信号与系统的频域分析
☑必修□选修
□演示性实验☑验证性实验□操作性实验□综合性实验
实验地点
H113
实验仪器台号
F0
指导教师
蒋娜
实验日期及节次
week14->2-12
一、实验目的及要求:
1、目的
1.掌握非周期信号的傅里叶变换:fourier函数和ifourier函数;
四、实验结果与数据处理:
1.利用fourier函数求下列信号的傅里叶变换F(jω),并用ezplot函数绘出其幅度谱和相位谱。
(1)
syms t v w phase im re;%定义变量t,v,w,phase,im re
f=sym('Heaviside(t)-Heaviside(t-2)');%
Fw=fourier(f);
plot([07.0711],[0.7070.707],':');
axis([04001.1]);
grid;
xlabel('角频率(\omega)');
ylabel('幅度');
title('H(j\omega)的幅频特性');
subplot(212);
plot(w,h2*180/pi);
axis([0400200]);
(2)
syms t v w phase im re;%定义变量t,v,w,phase,im re
f=exp(-1*t)*sym('Heaviside(t)');%
Fw=fourier(f);
subplot(311);
实验三 连续时间LTI系统的时域分析实验报告

实验三连续时间L TI系统的时域分析实验报告实验三连续时间LTI系统的时域分析一、实验目的1、学会使用符号法求解连续系统的零输入响应和零状态响应2、学会使用数值法求解连续系统的零状态响应3、学会求解连续系统的冲激响应和阶跃响应二、实验原理及实例分析1、连续时间系统零输入响应和零状态响应的符号求解连续时间系统可以使用常系数微分方程来描述,其完全响应由零输入响应和零状态响应组成。
MATLAB符号工具箱提供了dsolve函数,可以实现对常系数微分方程的符号求解,其调用格式为:dsolve(‘eq1,eq2…’,’cond1,cond2,…’,’v’)其中参数eq表示各个微分方程,它与MATLAB符号表达式的输入基本相同,微分和导数的输入是使用Dy,D2y,D3y来表示y的一价导数,二阶导数,三阶导数;参数cond表示初始条件或者起始条件;参数v表示自变量,默认是变量t。
通过使用dsolve函数可以求出系统微分方程的零输入响应和零状态响应,进而求出完全响应。
2、连续时间系统零状态响应的数值求解在实际工程中使用较多的是数值求解微分方程。
对于零输入响应来说,其数值解可以通过函数initial来实现,而该函数中的参量必须是状态变量所描述的系统模型,由于现在还没有学习状态变量相关内容,所以此处不做说明。
对于零状态响应,MATLAB控制系统工具箱提供了对LTI系统的零状态响应进行数值仿真的函数lsim,利用该函数可以求解零初始条件下的微分方程的数值解。
其调用格式为:y=lsim(sys,f,t),其中t表示系统响应的时间抽样点向量,f是系统的输入向量;sys表示LTI系统模型,用来表示微分方程、差分方程或状态方程。
在求解微分方程时,sys是有tf函数根据微分方程系数生成的系统函数对象,其语句格式为:sys=tf(a,b)。
其中,a和b分别为微分方程右端和左端的系数向量。
例如,对于微分方程a3y'''(t)?a2y''(t)?a1y'(t)?a0y(t)?b3f'''(f)?b2f''(t)?b1f'(t)?b0f(t) 可以使用a?[a3,a2,a1,a0];b?[b3,b2,b1,b0];sys?tf(b,a)获得其LTI模型。
实验连续信号频域分析报告

实验三连续信号的频域分析一、实验目的掌握周期信号的频谱分析方法一-傅里叶级数及其物理意义。
深人理解信号频谱的概念,掌握典型信号的频谱以及Fourier变换的主要性质。
二、实验原理及方法在“信号与系统”课程中详细讨论了信号的Fourier分析方法,包括周期信号的频谱分析一-Fourier级数和非周期信号的频谱分析—Fourier变换的理论。
1.周期信号的三角形式的傅里叶级数由Fourier级数的理论可知:任何周期信号只要满足Dirichlet条件就可以分解成许多指数分量之和(指数Fourie:级数)或直流分量及许多正弦、余弦分量之和,即其中,为直流分量,是信号f(t)在一个周期内的平均值;Ancos ( n,(n +n)为n次谐波。
一般来说,任意周期信号表示为Fourier级数时需要无限多项才能完全逼近原信号。
但在实际应用中,经常采用有限项级数来代替无限项级数,即用式(3-2)来逼近f( t)显然,所选项数越多,有限项级数越逼近原信号,其方均误差越小、对一定的周期T,实验图3-2说明取不同项数(即谐波次数)时,有限项级数fN(t)逼近信号f( t)的情况。
实验图3一中的4幅图分别是3项、9项、21项和45项傅里叶级数逼近的结果。
由此可见,当选取傅里叶级数的项数越多,所合成的波形fN(t)中的峰起越靠近.f( })的不连续点。
从理论上讲,当所选取的项数N越大时,该峰极值趋于一个常数,大约等于跳变值的9%,并从不连续点开始以起伏振荡的形式逐渐衰减下去,此即Gibbs现象。
2.周期信号的指数形式的傅里叶级数利用欧拉公式有式(3-1)可表示为将式(3-5)第3项中的n用-n代换,并考虑An是n(或nΩo)的偶信号,An =A-n 是n(或Ωo)的奇信号,。
则上式可写成式(3-6)表明,任意周期信号.f(t)可分解为无穷多项不同频率的复指数,的加权和,其各分量的复数幅度或相量(或称为复加权系数)为计算机不能计算无穷多个系数,假设需要计算的谐波次数为N,则总的系数个数为2NTA。
信号与系统实验报告实验三 连续时间LTI系统的频域分析

实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法与特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习与掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续与离散时间系统的频域数学模型与频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波与滤波器的概念,掌握利用MATLAB 计算与绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response),就是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况与响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号与响应信号,h(t)就是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3、1或者: )()()(ωωωj X j Y j H =3、2)(ωj H 为系统的频域数学模型,它实际上就就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt e t h j H tj ωω)()( 3、3由于H(j ω)实际上就是系统单位冲激响应h(t)的傅里叶变换,如果h(t)就是收敛的,或者说就是绝对可积(Absolutly integrabel)的话,那么H(j ω)一定存在,而且H(j ω)通常就是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的就是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3、4上式中,)j (ωH 称为幅度频率相应(Magnitude response),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt e t h j H tj ωω)()(3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
)(ωj H 和)(ωϕ都是频率ω的函数。
对于一个系统,其频率响应为H(j ω),其幅度响应和相位响应分别为)(ωj H 和)(ωϕ,如果作用于系统的信号为tj et x 0)(ω=,则其响应信号为 tj e j H t y 0)()(0ωω=t j j e e j H 00)(0)(ωωϕω=))((000)(ωϕωω+=t j e j H3.5若输入信号为正弦信号,即x(t) = sin(ω0t ),则系统响应为))(sin(|)(|)sin()()(00000ωϕωωωω+==t j H t j H t y 3.6可见,系统对某一频率分量的影响表现为两个方面,一是信号的幅度要被)(ωj H 加权,二是信号的相位要被)(ωϕ移相。
由于)(ωj H 和)(ωϕ都是频率ω的函数,所以,系统对不同频率的频率分量造成的幅度和相位上的影响是不同的。
2 LTI 系统的群延时从信号频谱的观点看,信号是由无穷多个不同频率的正弦信号的加权和(Weighted sum )所组成。
正如刚才所述,信号经过LTI 系统传输与处理时,系统将会对信号中的所有频率分量造成幅度和相位上的不同影响。
从相位上来看,系统对各个频率分量造成一定的相位移(Phase shifting ),相位移实际上就是延时(Time delay )。
群延时(Group delay )的概念能够较好地反LTI 系统的群延时定义为:ωωϕωτd d )()(-= 3.7 群延时的物理意义:群延时描述的是信号中某一频率分量经过线性时不变系统传输处理后产生的响应信号在时间上造成的延时的时间。
如果系统的相位频率响应特性是线性的,则群延时为常数,也就是说,该系统对于所有的频率分量造成的延时时间都是一样的,因而,系统不会对信号产生相位失真(Phase distortion )。
反之,若系统的相位频率响应特性不是线性的,则该系统对于不同频率的频率分量造成的延时时间是不同的,因此,当信号经过系统后,必将产生相位失真。
3 用MATLAB 计算系统频率响应在本实验中,表示系统的方法仍然是用系统函数分子和分母多项式系数行向量来表示。
实验中用到的MA TLAB 函数如下:[H,w] = freqs(b,a):b,a 分别为连续时间LTI 系统的微分方程右边的和左边的系数向量(Coefficients vector ),返回的频率响应在各频率点的样点值(复数)存放在H 中,系统默认的样点数目为200点;Hm = abs(H):求模数,即进行H Hm =运算,求得系统的幅度频率响应,返回值存于Hm 之中。
real(H):求H 的实部; imag(H):求H 的虚部;phi = atan(-imag(H)./(real(H)+eps)):求相位频率相应特性,atan()用来计算反正切值;或者phi = angle(H):求相位频率相应特性;tao = grpdelay(num,den,w):计算系统的相位频率响应所对应的群延时。
计算频率响应的函数freqs()的另一种形式是:H = freqs(b,a,w):在指定的频率范围内计算系统的频率响应特性。
在使用这种形式的freqs/freqz 函数时,要在前面先指定频率变量w 的范围。
例如在语句H = freqs(b,a,w)之前加上语句:w = 0:2*pi/256:2*pi 。
下面举例说明如何利用上述函数计算并绘制系统频率响应特性曲线的编程方法。
假设给定一个连续时间LTI 系统,下面的微分方程描述其输入输出之间的关系)()(2)(3)(22t x t y dtt dy dt t y d =++ 编写的MATLAB 范例程序,绘制系统的幅度响应特性、相位响应特性、频率响应的实部和频率响应的虚部。
程序如下:% Program3_1% This Program is used to compute and draw the plots of the frequency responseb = [1]; % The coefficient vector of the right side of the differential equation a = [1 3 2]; % The coefficient vector of the left side of the differential equation [H,w] = freqs(b,a); % Compute the frequency response H Hm = abs(H); % Compute the magnitude response Hm phai = angle(H); % Compute the phase response phaiHr = real(H); % Compute the real part of the frequency responseHi = imag(H); % Compute the imaginary part of the frequency response subplot(221)plot(w,Hm), grid on, title('Magnitude response'), xlabel('Frequency in rad/sec') subplot(223)plot(w,phai), grid on, title('Phase response'), xlabel('Frequency in rad/sec') subplot(222)plot(w,Hr), grid on, title('Real part of frequency response'), xlabel('Frequency in rad/sec') subplot(224)plot(w,Hi), grid on, title('Imaginary part of frequency response'), xlabel('Frequency in rad/sec')三、实验内容及步骤实验前,必须首先阅读本实验原理,了解所给的MATLAB 相关函数,读懂所给出的全部范例程序。
实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。
并结合范例程序所完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。
实验前,一定要针对下面的实验项目做好相应的实验准备工作,包括事先编写好相应的实验程序等事项。
给定三个连续时间LTI 系统,它们的微分方程分别为系统1: dt t dx t y dt t dy dt t y d )()(25)(1)(22=++ Eq.3.1系统2: )()()()(t x dtt dx t y dt t dy -=+ Eq.3.2 系统3:)(262)(262)(401)(306)(148)(48)(10)(2233445566t x t y dt t dy dtt y d dt t y d dt t y d dt t y d dt t y d =++++++ Eq.3.3 Q3-1 修改程序Program3_1,并以Q3_1存盘,使之能够能够接受键盘方式输入的微分方程系数向量。
并利用该程序计算并绘制由微分方程Eq.3.1、Eq.3.2和Eq.3.3描述的系统的幅度响应特性、相位响应特性、频率响应的实部和频率响应的虚部曲线图。
抄写程序Q3_1如下:% Q3_1b = input('请输入右边向量系数'); % The coefficient vector of the right side of the differential equationa = input('请输入左边向量系数'); % The coefficient vector of the left side of the differential equation[H,w] = freqs(b,a); % Compute the frequency response HHm = abs(H); % Compute the magnitude response Hmphai = angle(H); % Compute the phase response phaiHr = real(H); % Compute the real part of the frequency response Hi = imag(H); % Compute the imaginary part of the frequency responsesubplot(221)plot(w,Hm), grid on, title('Magnitude response'), xlabel('Frequency in rad/sec')subplot(223)plot(w,phai), grid on, title('Phase response'), xlabel('Frequency in rad/sec')subplot(222)plot(w,Hr), grid on, title('Real part of frequency response'),xlabel('Frequency in rad/sec')subplot(224)plot(w,Hi), grid on, title('Imaginary part of frequency response'), xlabel('Frequency in rad/sec')执行程序Q3_1,绘制的系统1的频率响应特性曲线如下:51000.10.20.30.4Frequency in rad/sec 0510-4-3-2-10Phase responseFrequency in rad/sec510-0.100.10.20.3Frequency in rad/sec510-0.3-0.2-0.1Imaginary part of frequency response Frequency in rad/sec从系统1的幅度频率响应曲线看,系统1是低通、高通、全通、带通还是带阻滤波器? 答:执行程序Q3_1,绘制的系统2的频率响应特性曲线如下:5101111Frequency in rad/sec 051001234Phase responseFrequency in rad/sec510-1-0.500.51Frequency in rad/sec5100.51Imaginary part of frequency response Frequency in rad/sec从系统2的幅度频率响应曲线看,系统2低通、高通、全通、带通还是带阻滤波器? 答:执行程序Q3_1,绘制的系统3的频率响应特性曲线如下:51000.51Frequency in rad/sec 0510-4-2024Phase responseFrequency in rad/sec510-1-0.500.51Frequency in rad/sec510-1-0.500.51Imaginary part of frequency response Frequency in rad/sec从系统3的幅度频率响应曲线看,系统3是低通、高通、全通、带通还是带阻滤波器? 答:这三个系统的幅度频率响应、相位频率相应、频率响应的实部以及频率响应的虚部分别具有何种对称关系?请根据傅里叶变换的性质说明为什么会具有这些对称关系?答:Q3-2 编写程序Q3_2,使之能够能够接受键盘方式输入的输入信号x(t)的数学表达式,系统微分方程的系数向量,计算输入信号的幅度频谱,系统的幅度频率响应,系统输出信号y(t)的幅度频谱,系统的单位冲激响应h(t),并按照下面的图Q3-2的布局,绘制出各个信号的时域和频域图形。