用FFT对信号作频谱分析实验报告
实验二用FFT对信号进行频谱分析

实验二用FFT对信号进行频谱分析简介:频谱分析是信号处理中常用的一种方法,通过将信号变换到频域,可以得到信号的频谱特征。
其中,快速傅里叶变换(FFT)是一种高效的计算频域的方法。
在这个实验中,我们将学习如何使用FFT对信号进行频谱分析。
实验步骤:1.准备工作:a. 安装MATLAB或者Octave等软件,并了解如何运行这些软件。
2.载入信号:a. 在MATLAB或Octave中,使用内置函数加载信号文件,将信号读入到内存中。
b.查看信号的基本信息,例如采样频率、时长等。
3.FFT变换:a. 使用MATLAB或Octave的fft函数将信号由时域变换到频域。
b.设置合适的参数,例如变换的点数、窗口函数等。
可以尝试不同的参数,观察其对结果的影响。
4.频谱绘制:a. 使用MATLAB或Octave的plot函数将变换后的频率数据进行绘制。
b.可以绘制幅度谱(频率的能量分布)或相位谱(频率的相位分布),也可以同时绘制两个谱。
5.频谱分析:a.根据绘制出的频谱,可以观察信号的频率特征。
例如,可以识别出信号中的主要频率分量。
b.可以进一步计算信号的能量、均值、方差等统计量,了解信号的功率特征。
c.可以对不同的信号进行对比分析,了解它们在频域上的差异。
实验结果和讨论:1.绘制出的频谱图可以清晰地显示信号的频率分量,可以识别出信号中的主要频率。
2.通过对不同信号的对比分析,可以发现它们在频域上的差异,例如不同乐器的音调特征。
3.可以进一步分析频谱的统计特征,例如信号的能量、平均幅度、峰值频率等。
4.在进行FFT变换时,参数的选择对结果有一定的影响,可以进行参数的调优,获得更准确的频谱分析结果。
结论:本实验通过使用FFT对信号进行频谱分析,可以获得信号在频域上的特征。
通过观察频谱图和统计特征,可以进一步了解信号的频率分布、能量特征等信息。
这对信号处理、音频分析等领域具有很大的应用价值。
在实际应用中,可以根据不同的需求,选择合适的参数和方法,对不同的信号进行频谱分析。
实验二FFT实现信号频谱分析

0
2
4
6
4
2
0
-2
-4
-6
-4
-20246四、试验环节
4. 试验内容2旳程序运营成果如下图所示:
60
30
40
20
20
10
0
0
-10 -5
0
5
10
-40 -20
0
20 40
30
80
60 20
40 10
20
0
-40 -20
0
20 40
0
-40 -20
0
20 40
四、试验环节
|X(k)| x(n)
5. 试验内容 3旳程序运营成果如下图所示:
fft 计算迅速离散傅立叶变换
fftshift
ifft
调整fft函数旳输出顺序,将零频 位置移到频谱旳中心
计算离散傅立叶反变换
fft函数:调用方式如下
y=fft(x):计算信号x旳迅速傅立叶变换y。当x旳长度为 2旳幂时,用基2算法,不然采用较慢旳分裂基算法。
y=fft(x,n):计算n点FFT。当length(x)>n时,截断x,不 然补零。
【例2-11】产生一种正弦信号频率为60Hz,并用fft函数 计算并绘出其幅度谱。
fftshift函数:调用方式如下 y=fftshift(x):假如x为向量,fftshift(x)直接将x旳左右两 部分互换;假如x为矩阵(多通道信号),将x旳左上、右 下和右上、左下四个部分两两互换。 【例2-12】产生一种正弦信号频率为60Hz,采样率为1000Hz, 用fftshift将其零频位置搬到频谱中心。
以上就是按时间抽取旳迅速傅立叶变换
实验二的应用FFT对信号进行频谱分析

实验二的应用FFT对信号进行频谱分析引言:频谱分析是通过将连续信号转换为离散信号,根据信号在频域上的强度分布来分析信号的频谱特性。
其中,FFT(Fast Fourier Transform,快速傅里叶变换)是一种常见的频谱分析算法,可以高效地计算离散信号的傅里叶变换。
实验目的:本实验旨在使用FFT算法来对一个信号进行频谱分析,从而了解FFT 的原理和应用。
实验器材:-计算机-MATLAB软件实验步骤:1.准备信号数据:首先,需要准备一个信号数据用于进行频谱分析。
可以通过MATLAB 自带的函数生成一个简单的信号数据,例如生成一个正弦信号:```Fs=1000;%采样频率T=1/Fs;%采样时间间隔L=1000;%信号长度t=(0:L-1)*T;%时间向量S = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t); % 生成信号,包含50Hz和120Hz的正弦波成分```其中,Fs为采样频率,T为采样时间间隔,L为信号长度,t为时间向量,S为生成的信号数据。
2.进行FFT计算:利用MATLAB提供的fft函数,对准备好的信号数据进行FFT计算,得到信号的频谱:```Y = fft(S); % 对信号数据进行FFT计算P2 = abs(Y/L); % 取FFT结果的模值,并归一化P1=P2(1:L/2+1);%取模值前一半P1(2:end-1) = 2*P1(2:end-1); % 对非直流分量进行倍频处理f=Fs*(0:(L/2))/L;%计算对应的频率```其中,Y为FFT计算的结果,P2为对应结果的模值,并进行归一化处理,P1为P2的前一半,f为对应的频率。
3.绘制频谱图:使用MATLAB的plot函数,将频率和对应的功率谱绘制成频谱图:```plot(f,P1)title('Single-Sided Amplitude Spectrum of S(t)')xlabel('f (Hz)')ylabel(',P1(f),')```实验结果与分析:上述实验步骤通过MATLAB实现了对一个信号的频谱分析并绘制成频谱图。
实验三用FFT对信号进行频谱分析和MATLAB程序

实验三用FFT对信号进行频谱分析和MATLAB程序实验三中使用FFT对信号进行频谱分析的目的是通过将时域信号转换为频域信号,来获取信号的频谱信息。
MATLAB提供了方便易用的函数来实现FFT。
首先,我们需要了解FFT的原理。
FFT(快速傅里叶变换)是一种快速计算离散傅里叶变换(DFT)的算法,用于将离散的时间域信号转换为连续的频域信号。
FFT算法的主要思想是将问题划分为多个规模较小的子问题,并利用DFT的对称性质进行递归计算。
FFT算法能够帮助我们高效地进行频谱分析。
下面是一个使用MATLAB进行频谱分析的示例程序:```matlab%生成一个10秒钟的正弦波信号,频率为1Hz,采样率为100Hzfs = 100; % 采样率t = 0:1/fs:10-1/fs; % 时间范围f=1;%正弦波频率x = sin(2*pi*f*t);%进行FFT计算N = length(x); % 信号长度X = fft(x); % FFT计算magX = abs(X)/N; % 幅值谱frequencies = (0:N-1)*(fs/N); % 频率范围%绘制频谱图figure;plot(frequencies, magX);xlabel('频率(Hz)');ylabel('振幅');title('信号频谱');```上述代码生成了一个10秒钟的正弦波信号,频率为1 Hz,采样率为100 Hz。
通过调用MATLAB的fft函数计算信号的FFT,然后计算每个频率分量的幅值谱,并绘制出信号频谱图。
在频谱图中,横轴表示频率,纵轴表示振幅。
该实验需要注意以下几点:1.信号的采样率要与信号中最高频率成一定比例,以避免采样率不足导致的伪频谱。
2.FFT计算结果是一个复数数组,我们一般只关注其幅值谱。
3.频率范围是0到采样率之间的频率。
实验三的报告可以包含以下内容:1.实验目的和背景介绍。
实验四 用 FFT 对信号作频谱分析

实验四程序代码及实验结果图: (1)对以下序列进行谱分析。
⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它n n n n n n x n R n x ,074,330,4)(,074,830,1)()()(3241选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论。
实验程序代码及结果如下:%------------产生激励序列------------% x1n = ones(1,4); %产生序列向量x1(n)=R4(n) M=8;xa=1:(M/2); xb=(M/2):-1:1;x2n=[xa,xb]; %产生长度为8的三角波序列x2(n) x3n=[xb,xa]; %产生长度为8的倒三角波序列x3(n)n1 = 0:length(x1n)-1; %分别求出序列长度 n2 = 0:M-1; n3 = 0:M-1;n8k= 0:2/8:2-2/8; %产生数字归一化频率 n16k= 0:2/16:2-2/16; n32k= 0:2/32:2-2/32;%------------fft 做频谱分析------------% X1k8=fft(x1n,8); %x1n 的8点DFT X1k16=fft(x1n,16); %x1n 的16点DFT X1k32=fft(x1n,32); %x1n 的32点DFTX2k8=fft(x2n,8); %x2n 的8点DFT X2k16=fft(x2n,16); %x2n 的16点DFT X2k32=fft(x2n,32); %x2n 的32点DFTX3k8=fft(x3n,8); %x3n 的8点DFT X3k16=fft(x3n,16); %x3n 的16点DFT X3k32=fft(x3n,32); %x3n 的32点DFT%------------绘制x1n 的8/16/32点DFT------------% subplot(3,4,1);stem(n1,x1n); %绘制时域采样波形图title('x1(n)的时域波形图'); %标题xlabel('n'); %横坐标名称ylabel('时域幅度值'); %纵坐标名称subplot(3,4,2);stem(n8k,abs(X1k8)); %绘制8点DFT的幅频特性图title('x1(n)的8点DFT]'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称subplot(3,4,3);stem(n16k,abs(X1k16)); %绘制16点DFT的幅频特性图title('x1(n)的16点DFT'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称subplot(3,4,4);stem(n32k,abs(X1k32)); %绘制32点DFT的幅频特性图title('x1(n)的32点DFT'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称%------------绘制x2n的8/16/32点DFT------------%subplot(3,4,5);stem(n2,x2n); %绘制时域采样波形图title('x2(n)的时域波形图'); %标题xlabel('n'); %横坐标名称ylabel('时域幅度值'); %纵坐标名称subplot(3,4,6);stem(n8k,abs(X2k8)); %绘制8点DFT的幅频特性图title('x2(n)的8点DFT]'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称subplot(3,4,7);stem(n16k,abs(X2k16)); %绘制16点DFT的幅频特性图title('x2(n)的16点DFT'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称subplot(3,4,8);stem(n32k,abs(X2k32)); %绘制32点DFT的幅频特性图title('x2(n)的32点DFT'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称%------------绘制x3n的8/16/32点DFT------------%subplot(3,4,9);stem(n3,x3n); %绘制时域采样波形图title('x3(n)的时域波形图'); %标题xlabel('n'); %横坐标名称ylabel('时域幅度值'); %纵坐标名称subplot(3,4,10);stem(n8k,abs(X3k8)); %绘制8点DFT的幅频特性图title('x3(n)的8点DFT]'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称subplot(3,4,11);stem(n16k,abs(X3k16)); %绘制16点DFT的幅频特性图title('x3(n)的16点DFT'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称subplot(3,4,12);stem(n32k,abs(X3k32)); %绘制32点DFT的幅频特性图title('x3(n)的32点DFT'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称2、对以下周期序列进行谱分析。
FFT算法分析实验实验报告

FFT算法分析实验实验报告一、实验目的快速傅里叶变换(Fast Fourier Transform,FFT)是数字信号处理中一种非常重要的算法。
本次实验的目的在于深入理解 FFT 算法的基本原理、性能特点,并通过实际编程实现和实验数据分析,掌握 FFT 算法在频谱分析中的应用。
二、实验原理FFT 算法是离散傅里叶变换(Discrete Fourier Transform,DFT)的快速计算方法。
DFT 的定义为:对于长度为 N 的序列 x(n),其 DFT 为X(k) =∑n=0 到 N-1 x(n) e^(j 2π k n / N) ,其中 j 为虚数单位。
FFT 算法基于分治法的思想,将 N 点 DFT 分解为多个较小规模的DFT,从而大大减少了计算量。
常见的 FFT 算法有基 2 算法、基 4 算法等。
三、实验环境本次实验使用的编程语言为 Python,主要依赖 numpy 库来实现 FFT 计算和相关的数据处理。
四、实验步骤1、生成测试信号首先,生成一个包含不同频率成分的正弦波叠加信号,例如100Hz、200Hz 和 300Hz 的正弦波。
设定采样频率为 1000Hz,采样时间为 1 秒,以获取足够的采样点进行分析。
2、进行 FFT 计算使用 numpy 库中的 fft 函数对生成的测试信号进行 FFT 变换。
3、频谱分析计算 FFT 结果的幅度谱和相位谱。
通过幅度谱确定信号中各个频率成分的强度。
4、误差分析与理论上的频率成分进行对比,计算误差。
五、实验结果与分析1、幅度谱分析观察到在 100Hz、200Hz 和 300Hz 附近出现明显的峰值,对应于生成信号中的频率成分。
峰值的大小反映了相应频率成分的强度。
2、相位谱分析相位谱显示了各个频率成分的相位信息。
3、误差分析计算得到的频率与理论值相比,存在一定的误差,但在可接受范围内。
误差主要来源于采样过程中的量化误差以及 FFT 算法本身的近似处理。
实验二 应用 FFT 对信号进行频谱分析

三、实验内容及步骤
(一)编制实验用主程序及相应子程序
1、在实验之前,认真复习 DFT 和 FFT 有关的知识,阅读本实验原 理与方法和实验附录部分中和本实验有关的子程序,掌握子程序的原理 并学习调用方法。 2、编制信号产生子程序及本实验的频掊分析主程序。实验中需要用 到的基本信号包括: (1)高斯序列: (2)衰减正弦序列: (3)三角波序列: (4)反三角序列:
四、思考题
能说出哪一个低频分量更多一些吗?为什么? 2、 对一个有限长序列进行离散傅里叶变换(DFT),等价于将该序 列周期延拓后进行傅里叶级数(DFS)展开。因为 DFS 也只是取其中一 个周期来运算,所以 FFT 在一定条件下也可以用以分析周期信号序 列。如果实正弦信号,用 16 点的 FFT来做 DFS 运算,得到的频谱是信 号本身的真实谱吗?
(二)上机实验内容
1、观察高斯序列的时域和频域特性 ①固定信号中的参数 p=8,改变 q 的值,使 q 分别等于 2,4,8。观 察它们的时域和幅频特性,了解 q 取不同值的时候,对信号时域特性和 幅频特性的影响。 ②固定 q=8,改变 p,使 p 分别等于 8,13,14,观察参数 p 变化对 信号序列时域及幅频特性的影响。注意 p 等于多少时,会发生明显的泄 漏现象,混淆现象是否也随之出现?记录实验中观察到的现象,绘制相 应的时域序列和幅频特性曲线。 2、观察衰减正弦序列的时域和幅频特性 ①令α=0.1 并且 f=0.0625,检查谱峰出现的位置是否正确,注意频谱 的形状,绘制幅频特性曲线。 ②改变 f=0.4375,再变化 f=0.5625,观察这两种情况下,频谱的形状 和谱峰出现的位置,有无混淆和泄漏现象发生?说明产生现象的原因。 3、观察三角波序列和反三角波序列的时域和幅频特性
利用FFT对信号进行频谱分析

∑-=--==101,....,0,)(1)(N k nk N N n W k X N n x (3.2) 离散傅立叶反变换与正变换的区别在于N W 变为1-N W ,并多了一个N 1的运算。
因为N W 和1-N W 对于推导按时间抽取的快速傅立叶变换算法并无实质性区别,因此可将FFT 和快速傅立叶反变换(IFFT )算法合并在同一个程序中。
2.利用FFT 进行频谱分析若信号本身是有限长的序列,计算序列的频谱就是直接对序列进行FFT 运算求得)(k X ,)(k X 就代表了序列在[]π2,0之间的频谱值。
幅度谱 )()()(22k X k X k X I R +=相位谱 )()(arctan )(k X k X k R I =ϕ 若信号是模拟信号,用FFT 进行谱分析时,首先必须对信号进行采样,使之变成离散信号,然后就可按照前面的方法用FFT 来对连续信号进行谱分析。
按采样定理,采样频率s f 应大于2倍信号的最高频率,为了满足采样定理,一般在采样之前要设置一个抗混叠低通滤波器。
用FFT 对模拟信号进行谱分析的方框图如下所示。
3.在运用DFT 进行频谱分析的过程中可能产生三种误差:(1)混叠序列的频谱是被采样信号频谱的周期延拓,当采样速率不满足Nyquist 定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。
避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解。
在一般情况下,为了保证不出现频谱混叠,在采样前,先进行抗混叠滤波。
(2)泄漏实际中我们往往用截短的序列来近似很长的甚至是无限长的序列,这样可以使用较短的DFT 来对信号进行频谱分析,这种截短等价于给原信号序列乘以一个矩形窗函数,也相当于在频域将信号的频谱和矩形窗函数的频谱卷积,所得的频谱是原序列频谱的扩展。
抗混叠低通滤波器 采样T=1/f s N 点FFT泄漏不能与混叠完全分开,因为泄漏导致频谱的扩展,从而造成混叠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一报告、用FFT 对信号作频谱分析
一、实验目的
学习用FFT 对连续信号和时域离散信号进行频谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。
二、实验内容
1.对以下序列进行频谱分析:
()()
()()4231038470n 4033
470n
x n R n n n x n n
n n n x n n n =+≤≤⎧⎪
=-≤≤⎨⎪⎩-≤≤⎧⎪
=-≤≤⎨⎪⎩
其它其它 选择FFT 的变换区间N 为8和16两种情况进行频谱分析。
分别打印其幅频特性曲线,并进行对比,分析和讨论。
2.对以下周期序列进行频谱分析:
()()45cos
4
cos
cos
4
8
x n n x n n n
π
π
π
==+
选择FFT 的变换区间N 为8和16两种情况分别对以上序列进行频谱分析。
分别打印其幅频特性曲线,并进行对比、分析和讨论。
3.对模拟信号进行频谱分析:
()8cos8cos16cos20x t t t t πππ=++
选择采样频率64s F Hz =,对变换区间N=16,32,64 三种情况进行频谱分析。
分别
打印其幅频特性,并进行分析和讨论。
三、实验程序
1.对非周期序列进行频谱分析代码:
close all;clear all;
x1n=[ones(1,4)];
M=8;xa=1:(M/2);xb=(M/2):-1:1;x2n=[xa,xb];
x3n=[xb,xa];
X1k8=fft(x1n,8);X1k16=fft(x1n,16);
X2k8=fft(x2n,8);X2k16=fft(x2n,16);
X3k8=fft(x3n,8);X3k16=fft(x3n,16);
subplot(3,2,1);mstem=(X1k8);title('(1a)8点DFT[x_1(n)]');
subplot(3,2,2);mstem=(X1k16);title('(1b)16点DFT[x_1(n)]');
subplot(3,2,3);mstem=(X2k8);title('(2a)8点DFT[x_2(n)]');
subplot(3,2,4);mstem=(X2k16);title('(2b)16点DFT[x_2(n)]');
subplot(3,2,5);mstem=(X3k8);title('(3a)8点DFT[x_3(n)]');
subplot(3,2,6);mstem=(X3k16);title('(3b)16点DFT[x_3(n)]');
2.对周期序列进行频谱分析代码:
N=8;n=0:N-1;
x4n=cos(pi*n/4);
x5n=cos(pi*n/4)+cos(pi*n/8);
X4k8=fft(x4n);
X5k8=fft(x5n);
N=16;n=0:N-1;
x4n=cos(pi*n/4);
x5n=cos(pi*n/4)+cos(pi*n/8);
X4k16=fft(x4n);
X5k16=fft(x5n);
figure(2)
subplot(2,2,1);mstem(X4k8);title('(4a)8点 DFT[x_4(n)]');
subplot(2,2,2);mstem(X4k16);title('(4b)16点DFT[x_4(n)]');
subplot(2,2,3);mstem(X5k8);title('(5a)8点DFT[x_5(n)]');
subplot(2,2,4);mstem(X5k16);title('(5a)16点DFT[x_5(n)]') 3.模拟周期信号谱分析
figure(3)
Fs=64;T=1/Fs;
N=16;n=0:N-1;
x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);
X6k16=fft(x6nT);
X6k16=fftshift(X6k16);
Tp=N*T;F=1/Tp;
k=-N/2:N/2-1;fk=k*F;
subplot(3,1,1);stem(fk,abs(X6k16),'.');box on
title('(6a)16µãDFT[x_6(nT)]');xlabel('f(Hz)');ylabel('·ù¶È');
axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k16))]);
N=32;n=0:N-1; %FFTµÄ±ä»»Çø¼äN=32
x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);
X6k32=fft(x6nT);
X6k32=fftshift(X6k32);
Tp=N*T;F=1/Tp;
k=-N/2:N/2-1;fk=k*F;
subplot(3,1,2);stem(fk,abs(X6k32),'.');box on
title('(6b)32µãDFT[x_6(nT)]');xlabel('f(Hz)');ylabel('·ù¶È');
axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k32))]);
N=64;n=0:N-1; %FFTµÄ±ä»»Çø¼äN=64
x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);
X6k64=fft(x6nT);
X6k64=fftshift(X6k64);
Tp=N*T;F=1/Tp;
k=-N/2:N/2-1;fk=k*F;
subplot(3,1,3);stem(fk,abs(X6k64),'.');box on
title('(6c)64µãDFT[x_6(nT)]');xlabel('f(Hz)');ylabel('·ù¶È');
axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k64))]);
四、实验结果与分析
分析:图(1a)和图(1b)说明X1(n)=R4(n)的8点和16点DFT分别是X1(n)的频谱函数的8点和16点采样;因X3(n)=X2((n-3))8R8(n),故X3(n)与X2(n)的8点DFT的模相等,如图(2a)和图(3a)所示。
但当N=16时,X3(n)与X2(n)不满足循环移位关系,故图(2b)和图(3b)的模不同。
分析:X4(n)=cos(лn/4)的周期为8,故N=8和N=16均是其周期的整数倍,得到正确的单一频率正弦波的频谱,仅在0.25л处有1根单一谱线,如图(4a)和图(4b)所示。
X5(n)= cos(лn/4)+ cos(лn/8) 的周期为16,故N=8不是其周期的整数倍,得到的频谱不正确,如图(5a)所示。
N=16是其一个周期,得到正确的频谱,仅在0.25л和0.125л有2根单一谱线,如图(5b)所示。
分析:X6(t)有3个频率成分,f1=4Hz,f2=8Hz,f3=10Hz,故其周期为0.5s。
采样频率Fs=64Hz,f1=Bf2=6.4f3变换区间N=16时,观察时间TP=16T=0.24s,不是x6(t)的整数倍周期,故得频率不正确,如图(6a)所示。
变换区间N=32、64时,观察时间Tp=0.5s,1s,时X6(t)得整数倍周期,所得频率正确,如图(6b)(6c)所示。
图中3根谱线正好分别位于4、8、10Hz处。
五、思考题及实验体会
通过实验,我知道了用FFT对信号作频谱分析是学习数字信号处理的重要内容。
经常需要进行谱分析的信号是模拟信号和时域离散信号。
对信号进行谱分析的重要问题是频谱分辨率D和分析误差。
频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现的频率分辨率是2л/N≤D。
可以根据此式选择FFT的变换区间N。
误差主要来自于用FFT作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N较大时,离散谱的包络才能逼近于连续谱,因此N要适当选择大一些。
周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT,得到的离散谱才能代表周期信号的频谱。
如果不知道信号周期,可以尽量选择信号的观察时间长一些。
对模拟信号进行频谱分析时,首先要按照采样定理将其变成时域离散信号。
如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的普分析进行。