《误差理论与测量平差》期末考试试卷附答案

合集下载

误差理论和测量平差试题+问题详解

误差理论和测量平差试题+问题详解

实用标准文案《误差理论与测量平差》(1 )正误判断。

正确“ T ”,错误“ F ”。

(30分) 在测角中正倒镜观测是为了消除偶然误差()。

在水准测量中估读尾数不准确产生的误差是系统误差()。

如果随机变量X 和Y 服从联合正态分布,且()。

观测值与最佳估值之差为真误差()。

X 与Y 的协方差为0 ,则X 与Y 相互独立系统误差可用平差的方法进行减弱或消除( )。

权一定与中误差的平方成反比()。

间接平差与条件平差一定可以相互转换( )。

在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

对同一量的 N 次不等精度观测值的加权平均值与用条件平差所得的结果一定相同无论是用间接平差还是条件平差, 对于特定的平差问题法方程阶数一定等于必要观测数( )。

对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的( )。

观测值L 的协因数阵Q LL 的主对角线元素 Q ii 不一定表示观测值 L i 的权()。

当观测值个数大于必要观测数时,该模型可被唯一地确定()。

定权时6 0可任意给定,它仅起比例常数的作用()。

设有两个水平角的测角中误差相等, 则角度值大的那个水平角相对精度高()。

1. 1. 2 . 3 .4 .5 .6 .7 .8 .9 .101112131415用“相等”或“相同”或“不等”填空(8分)。

已知两段距离的长度及其中误差为300.158m ±3.5cm; 600.686m ±3.5cm。

则:1•这两段距离的中误差( )。

2.这两段距离的误差的最大限差( )。

3•它们的精度( )。

4•它们的相对精度( )。

17 . 选择填空。

只选择一个正确答案( 25分)。

1•取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权a) d/D b) D/dc) d2/D2d) D2/d 22.有一角度测20测回,得中误差土0.42秒,如果要使其中误差为土0.28秒, 测回数N=( )。

最新《测量平差》重要试卷及答案

最新《测量平差》重要试卷及答案

《误差理论与测量平差》试卷(D )卷考试时间:100分钟考试方式:闭卷题号-一- -二二二四五六总分得分阅卷人、填空题(共20分,每空2 分)1、观测误差产生的原因为:仪器、外界环境、观测者2、已知一水准网如下图,其中A、B为已知点,观测了8段高差,若设E点高程的平差值与BE之间高差的平差值为未知参数)?1>刃2,按附有限制条件的条件平差法(概括平差法)进行平差时,必要观测个数为_4 _________ ,多余观测个数为_4 ________ ,一般条件方程个数为5 ______ ,限制条件方程个数为_ 1 __________3、取一长度为d的直线之丈量结果的权为1,则长度为D的直线之丈量结果的权为d/D _______ ,若长度为D的直线丈量了n次,则其算术平均值的权为_______ nd/D ______ 。

24、已知某点(X、Y)的协方差阵如下,其相关系数p XY=0.6________ ,其点位方差为CT 1.25 mm9.25 0.30D XX =030 1.00?二、设对某量分别进行等精度了 n 、m 次独立观测,分别得到观测值L i , (\ = 1,2- n),L i , (i =1,2,…m),权为 P i = p ,试求:1)n 次观测的加权平均值 Xn = 的权p n[p]解:因为p i=px -用]X n1 Pl_1 pl_2pL n[p]np=-L 1L nn—1 1 …1 r (L 1 L 2 …Ln Tn根据协因数传播定律,则 X n 的权p n :■v1 1 J——=—(1 1 …1 )* % +*1 1 a 1 P m mm ■'mp兀」订丿贝U : p n 二 np2)m 次观测的加权平均值 x m = 的权p m[p]X m =[PL]—PL I PL2 pL m[p] mp1L i L2 L mm」1 1 1 * L i L2 L m Tm根据协因数传播定律,则X m的权p m:1 1 ,111——=—(1 1…1)*+* __ I-P m m m■mp< ZP」11丿则:P m 二mp3)加权平均值x二叭P m X m的权p xP n + P mP n P m n p*X n mp*X mnp mp根据协因数传播定律,则X的权Y XnI(2 分)(2 分)贝U: p X = (n • m) p (1 分)三、已知某平面控制网中待定点坐标平差参数?的协因数为Q X? *1.5 1in +m2其单位为(dm/s),并求得<?o =二2 ",试用两种方法求E、F o(15分)若选择/ ABC平差值为未知参数X ,用附有参数的条件平差法列岀其平差值条件方程式。

《误差理论与测量平差基础》试卷A(答案)

《误差理论与测量平差基础》试卷A(答案)

《误差理论与测量平差基础》期末考试试题A(参考答案)一、名词解释(每题2分,共10分)1、偶然误差——在相同得观测条件系作一系列得观测,如果误差在大小与符号上都表现出偶然性。

即从单个误差瞧,该误差得大小与符号没有规律性,但就大量误差得总体而言,具有一定得统计规律。

这种误差称为偶然误差。

2、函数模型线性化——在各种平差模型中,所列出得条件方程或观测方程,有得就是线性形式,有得就是非线性形式。

在进行平差计算时,必须首先把非线性形式得函数方程按台劳公式展开,取至一次项,转换成线性方程。

这一转换过程,称之为函数模型得线性化。

3、点位误差椭圆——以点位差得极大值方向为横轴X 轴方向,以位差得极值F E 、分别为椭圆得长、短半轴,这样形成得一条椭圆曲线,即为点位误差椭圆。

4、协方差传播律——用来阐述观测值得函数得中误差与观测值得中误差之间得运算规律得数学公式。

如0K KL Z +=,若观测向量得协方差阵为LL D ,则按协方差传播律,应有T LL ZZ K KD D =。

5、权——表示各观测值方差之间比例关系得数字特征,220ii P σσ=。

二、判断正误(只判断)(每题1分,共10分)参考答案:X √X √X X X √√X三、选择题(每题3分,共15分)参考答案:CCDCC四.填空题(每空3分,共15分)参考答案:1、 6个2、 13个3、1/n4、 0、45、 0)()()()(432200=''+∆+∆+-''+-''-W y SX X x SY Y C ACA C C ACA C ρρ,其中AB AC AC X X Y Y W αββ-++--=''4300arctan五、问答题(每题4分,共12分)1、 几何模型得必要元素与什么有关?必要元素数就就是必要观测数吗?为什么?答:⑴几何模型得必要元素与决定该模型得内在几何规律有关;(1分) ⑵必要元素数就就是必要观测数;(1分)⑶几何模型得内在规律决定了要确定该模型,所必须具备得几何要素,称为必要元素,必要元素得个数,称为必要元素数。

《误差理论与测量平差基础》试卷A(2014答案)

《误差理论与测量平差基础》试卷A(2014答案)

《误差理论与测量平差基础》期末考试试题A(参考答案)一、名词解释(每题2分,共10分)1、系统误差——在相同的观测条件系作一系列的观测,如果误差在大小和符号上都表现出系统性,或者在观测过程中按一定规律变化,或者为某一常数,那么,这种误差就称为系统误差。

2、中误差——表征精度的一项指标,即统计学中的标准差σ,[]n∆∆±=σ。

3、点位误差椭圆——以点位差的极大值方向为横轴X 轴方向,以位差的极值F E 、分别为椭圆的长、短半轴,这样形成的一条椭圆曲线,即为点位误差椭圆。

4、水准网——以高差作为观测值,用于求取未知点高程平差值的一种高程控制网布设方案。

5、权——表示各观测值方差之间比例关系的数字特征,220ii P σσ=。

二、判断正误(只判断)(每题1分,共10分)参考答案:1X 2X 3X 4X 5X 6√ 7√ 8√ 9√ 10√三、选择题(每题3分,共15分)参考答案:1D 2ABC 任选一个(题目不严谨导致) 3A 4D 5C四.填空题(每空3分,共15分)参考答案:1. 122. 14个3.14. 1.255.0)()()()(200200200200=+∆+∆-∆-∆W y S X x S Y y S X x S Y B AB ABB AB AB A AB AB A AB AB ,其中 ()()AB ABABABABABA B ABABABX Y W Y X SY Y YX X Xα-∆∆=∆+∆=-=∆-=∆0020200000000arctan ,,,五、问答题(每题4分,共12分)1. 在具体的平差问题中,只要参数个数等于必要观测数t ,就可以采用间接平差方法进行平差。

这种说法正确吗?为什么?答:⑴不正确;(1分)⑵一个平差问题能够采用间接平差方法进行平差的充分必要条件是:参数个数等于必要观测数t ,同时彼此独立。

(3分)2. 简述偶然误差的特性。

答:⑴在一定条件下,误差绝对值有一定限值。

误差理论与测量平差基础_河南理工大学中国大学mooc课后章节答案期末考试题库2023年

误差理论与测量平差基础_河南理工大学中国大学mooc课后章节答案期末考试题库2023年

误差理论与测量平差基础_河南理工大学中国大学mooc课后章节答案期末考试题库2023年1.参数平差中,当观测值之间相互独立时,若某一误差方程式中不含有未知参数,但自由项不为0,则此误差方程式对组成法方程不起作用。

( )参考答案:正确2.某测角网的网形为中点多边形,其中共有5个三角形,实测水平角15个进行间接平差,则下列选项正确的是( )。

参考答案:误差方程的个数为15个_待求量的个数为5个3.间接平差中测方向三角网函数模型中,网中所有测站均存在一个定向角平差值参数,其系数为( )。

参考答案:-14.某平差问题有12个同精度观测值,必要观测数为t=6,现选取2个独立的参数参与平差,应列出( )个条件方程。

参考答案:85.在附有参数的条件平差中,法方程的个数为C个。

参考答案:错误6.观测值与最佳估值之差为观测值的真误差。

参考答案:错误7.通过平差可以消除误差,从而消除观测值之间的矛盾。

参考答案:错误8.在附有参数的条件平差法中,任何一个量的平差值都可以表达成( )的函数。

参考答案:观测量平差值和参数平差值9.单位权方差估值与具体采用的平差方法相关。

参考答案:错误10.测量成果精度主要包括观测值的实际精度、观测值经平差得到的观测值函数的精度两个方面。

参考答案:正确11.条件方程类型包括图形条件、极条件、边条件、方位角条件、基线条件等。

参考答案:正确12.极条件方程是以某点为极,列出各图形边长比的和为1。

参考答案:错误13.水准网的条件方程式为符合水准路线。

参考答案:错误14.为了确定一个几何模型,并不需要知道该模型中所有元素的大小,而只需要知道其中部分元素的大小就行了。

参考答案:正确15.必要元素的个数t与几何模型和实际观测量有关。

参考答案:错误16.平差的最终目的都是对参数和观测量作出某种估计,并评定其精度。

参考答案:正确17.间接平差的函数模型中的未知量是t个独立参数,多余观测数会随平差方法不同而异。

误差理论与测量平差基础期末考试试卷样题

误差理论与测量平差基础期末考试试卷样题

误差理论与测量平差基础期末考试试卷样题----42676c30-6ebc-11ec-aee4-7cb59b590d7d一、填空题(15分)1.误差的来源主要分为:。

2.均方误差是衡量精度的主要指标之一。

均方误差越大,精度越高。

极限误差差是指。

3.在平坦地区相同观测条件下,测量两段观测高差和水准路线长度如下:h1=10.125米,s1=3.8公里,h2=-8.375米,s2=4.5公里,那么h1的精度比h2的精度,H2的重量高于H1。

4、间接平差中误差方程的个数等于________________,所选参数的个数等于_______________。

5.在条件平差中,条件方程的数量等于。

6、平面控制网按间接平差法平差时通常选择________________为未知参数,高程控制网按间接平差法平差时通常选择________________为未知参数。

7、点位方差与坐标系,总是等于。

二、水准测量中若要求每公里观测高差中误差不超过10mm,水准路线全长高差中误差不超过20mm,则该水准路线长度不应超过多少公里?(5分)三、已知观测向量l??l1l2?t?3?1?的协方差阵为dl???,若有观测值函数?? 12? Y1=2l1,y2=L1+L2,然后呢?Y1y2等于?(5分)IV.观察向量l?(L13?1L2)的权重矩阵为PL?(),如果有一个函数x?l1?l2,?14t则函数x与观测向量l的互协因数阵qxl等于什么?(5分)五、在一定长度内进行同样精度的独立观测。

已知一次观测的均方误差为2mm,四次观测平均值的权重为2。

试着找出:(1)单位重量均方误差?0(2)初始观察值的权重;(3)如果平均值的权重等于8,应观察多少次?(9分)六、用某全站仪测角,由观测大量得一测回测角中误差为2秒,今用试制的同一这种新仪器测量角度10次,一次的均方误差为1.8秒。

询问新仪器的精度是否高于原仪器?(α=0.05)(8分)(|n0.05|=1.645,|n0.025|=1.960,|t0.05(24)|=1.699,|t0.025(24)|=2.045χ2(9)0.05=16.919,χ2(9)0.95=3.325,χ2(9)0.025=19.023,χ2(9)0.975=2.700f(15,21)0.025=2.53)七、有限制的间接调整与一般调整的关系(8分)八、已知间接平差的模型为v?bx?l,采用最小二乘法平差,已知观测值的中误差为qll,参数x与v是否相关,试证明之(8分)九、该图显示了一个控制网络,1和2是已知点,4-5的边长是已知的。

误差理论与测量平差基础期末复习试题含答案

误差理论与测量平差基础期末复习试题含答案

误差理论与测量平差基础期末复习试题含答案误差理论与测量平差基础(B) 一、填空题(每空1分,共30分)1. 测量平差就是在基础上,依据原则,对观测值进行合理的调整,即分别给以适当的,使矛盾消除,从而得到一组最可靠的结果,并进行。

2. 测量误差的定义为,按其性质可分为、和。

3. 衡量估计量优劣的标准有、、。

9km,5mm4. 在A、B两点间进行水准测量,路线长度为,每千米单程观测高差的中误差等于,则A、B两点间单程观测高差的中误差等于,往返高差中数的中误差等于,往返高差不符值的限差为。

5. 设为独立等精度偶然误差,为每个误差的均方差,则误差和的限差为,(i,1,2,?,n),,,,i。

(取2倍中误差为限差) [,],6. 若有一组观测值的函数、,设,则二L,?,Lx,aL,?,aLx,bL,?,bLQ,I1n111nn211nnL者的相关系数= ,若再设,则行列式= 。

Q,b,2a(i,1,?,n)xxXii12x3,1,,,,17. 设,,,,,则,X,,,,2Σ,z,x,x,,z,x0Xz21212,,,,1x,122,,,,,, ,。

,,zzz122T8. = 。

tr[E(ΔPΔ)]1,nn,nn,111SS9. 设观测值为,观测值的函数为,欲使的权倒数为,则的权倒数, 。

f,lgSfppfS,,ˆˆv,sinx,2cosx,L10. 设非线性误差方程,参数近似值,观测值,x,60, x,45L,2512510205线性化之后的误差方程为。

11. 平差的数学模型可分为模型和模型,前者描述观测值之间、观测值与参数之间以及参数之间数学期望的关系,后者描述的则是观测值的精度特性。

ˆ,V,AδX,l,n,tn,1n,1t,1T12. 由二次型的数学期望= 可以证明,具有条件的参数平差模型中,E(XAX),ˆBδXW0,,X,t,1r,1r,t,T= 。

E(VPV),,15cm9cm4513. 已知某点的点位中误差等于,点位误差椭圆的短半轴为,短轴的方向角为,则误差椭圆的长半轴等于,长轴的方向角等于。

误差理论与测量平差基础期末考试试卷样题

误差理论与测量平差基础期末考试试卷样题

误差理论与测量平差基础期末考试试卷样题一、填空题(15分)1、误差的来源主要分为、、。

2、中误差是衡量精度的主要指标之一,中误差越,精度越。

极限误差是指。

3、在平坦地区相同观测条件下测得两段观测高差及水准路线的长分别为:h 1=10.125米,s1=3.8公里,h2=-8.375米,s2=4.5公里,那么h1的精度比h2的精度______,h2的权比h1的权______。

4、间接平差中误差方程的个数等于________________,所选参数的个数等于_______________。

5、在条件平差中,条件方程的个数等于。

6、平面控制网按间接平差法平差时通常选择________________为未知参数,高程控制网按间接平差法平差时通常选择________________为未知参数。

7、点位方差与坐标系,总是等于。

二、 水准测量中若要求每公里观测高差中误差不超过10mm ,水准路线全长高差 中误差不超过20mm,则该水准路线长度不应超过多少公里?(5分)三、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于?(5分)四、观测向量L L L T=()12的权阵为P L =--()3114,若有函数X L L =+12,则函数X 与观测向量L 的互协因数阵Q XL 等于什么? (5分)五、对某长度进行同精度独立观测,已知一次观测中误差为2mm ,设4次观测值平均值的权为2。

试求:(1)单位权中误差0σ;(2)一次观测值的权;(3)若使平均值的权等于8,应观测多少次? (9分)六、用某全站仪测角,由观测大量得一测回测角中误差为2秒,今用试制的同一类新型仪器测角10测回,得一测回中误差为1.8秒,问新仪器是否比原仪器精度有所提高?(α=0.05)(8分)(|N0.05|=1.645,|N0.025|=1.960,|t0.05(24)|=1.699 , |t0.025(24)|=2.045χ2(9)0.05=16.919, χ2(9)0.95=3.325, χ2(9)0.025=19.023, χ2(9)0.975=2.700F(15,21)0.025=2.53 )七、附有限制条件的间接平差与概括平差之间的关系(8分)八、已知间接平差的模型为l X B V -=∧,采用最小二乘法平差,已知观测值的中误差为ll Q ,参数V X 与∧是否相关,试证明之(8分)九、如图为一控制网,1、2为已知点,4—5的边长已知,若采用测角网的形式观测,共观测了15个角度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《误差理论与测量平差》期末考试试卷附答案
一、判断题(本大题共15小题,每题2分,共30分)(正确“T”,错误“F”)
1.在测角中正倒镜观测是为了消除偶然误差()。

2.在水准测量中估读尾数不准确产生的误差是系统误差()。

3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。

4.观测值与最佳估值之差为真误差()。

5.系统误差可用平差的方法进行减弱或消除()。

6.权一定与中误差的平方成反比()。

7.间接平差与条件平差一定可以相互转换()。

8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。

10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。

11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()12.观测值L的协因数阵QLL的主对角线元素Qii不一定表示观测值Li的权()。

13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

14.定权时σ0可任意给定,它仅起比例常数的作用()。

15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。

二、计算填空题(本大题共3小题、每空5分,共30分)
1、用“相等”或“相同”或“不等”填空
已知两段距离的长度及其中误差为300.158m±3.5cm; 600.686m±3.5cm。

则:
(1)这两段距离的中误差()。

(2)这两段距离的误差的最大限差()。

(3)它们的精度()。

(4)它们的相对精度()。

2、设β的权为1,则乘积4β的权为()。

3、有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需再
增加()测回。

三、多项选择题(本大题共5小题,每题5分,共25分)
1.下列观测中,哪些是具有“多余观测”的观测活动()
A 对平面三角形的三个内角各观测一测回,以确定三角形形状
B 测定直角三角形的两个锐角和一边长,确定该直角三角形的大小及形状
C 对两边长各测量一次
D 三角高程测量中对水平边和垂直角都进行一次观测
2.下列哪些是偶然误差的特性()
A 绝对值小的误差比绝对值大的误差出现的概率小
B 当偶然误差的个数趋向极大时,偶然误差的代数和趋向零
C 误差分布的离散程度是指大部分误差绝对值小于某极限值绝对值的程度
D 误差的符号只与观测条件有关
3、某测角网的网形为中点多边形,网中有3个三角形,共测水平角9个()
A 共有5个条件方程可列出
B 极条件方程有2个
C 水平条件方程有2个
D 极条件方程有1个
4、对上题(一题3小题)进行参数平差()
A 法方程的个数为5个
B 误差方程的个数为9个
C 待求量的个数为5个
D 待求量的个数为13个
5.在t检验中,设置检验显著水平为0.05,由此确定的拒绝域界限值为1.96,某被检验量M的t检验值为1.99 ()
A 原假设成立
B 备选假设不成立
C 原假设不成立
D 备选假设成立
四、简单推理题(15分)
条件平差中,已知观测值Li的协因数阵为Q,试推导观测值改正数Vi的协因数阵表达式
误差理论与测量平差参考答案
一、判断题
1-5 FFTFF 6-10 TTTTF 11-15 TTFTF
二、填空题
1、相等、相等、相同、不等
2、1/16
3、25
三、多项选择题
1、AB
2、BC
3、AD
4、BD
5、CD
四、简单推理题。

相关文档
最新文档