深基坑支护及桩基础设计实例分析
深基坑支护方案

基坑开挖及边坡护坡方案一、工程概况:本工程由海南南国置业有限公司开发的南国·威尼斯项目的米兰区一期工程,该工程位于海口市琼山区云定路,本期工程共十二栋(五栋12层,三栋16层,四栋18层)小高层建筑及五栋楼相通的连体地下室,本项目占地面积9270.81㎡,总建筑面积145297.78㎡,地上建筑面积131078.34㎡,地下建筑面积14219㎡。
本工程的基础采用桩基础,主体为剪力墙结构,地下一层,地上十二层及十六层,建筑物总高57.95 m及60.05 m。
基础土方采用满堂开挖的形式,从现场实测标高(绝对标高最高是40.50 m,最低是27.45 m)及施工图桩顶标高(1#桩顶标高35.70 m、3#桩顶标高35.25 m、5#桩顶标高34.6 m、7#桩顶标高32.80 m、2#4#6#桩顶标高30.80 m)考虑,开挖深度0.0~4.9m。
从现场实际情况看,绝对标高从30.80 m至41.24 m只是本期工程用地的西北面大部分。
二、现场土质情况:本工程场地第○1层为素填土,厚0.50~3.20m;第○2层为粘土,厚2.50~21.40m;第○3层为角砾,厚1.80~24.70m;第○4层中等风化玄武岩,厚1.60-7.20m;第○5层中砂,厚6.10~19.70m;第○6层生物碎屑岩,厚1.80~27.50m。
本工程选第○3层作为该建筑物的持力层。
三、施工准备:反铲挖掘机(WY100)2台,装载车1台,自卸车(8T)16台,铁铲20把。
四、施工工艺:测量放线挖绝对标高从40.50 m至(35.70m、35.25 m、34.60m、32.80 m)的土方放边坡上边线挖边坡(绝对标高从38.50m至35.50m的基坑土方开挖)人工修整边坡水泥砂浆护坡(桩基施工)挖地下室边坡挖(绝对标高从35.70m至30.80m的基坑)土方开挖人工修整边坡水泥砂浆护坡。
五、土方开挖:根据地勘报告,地下水位位于18.80m以下,基坑开挖最深才9.7m,因此开挖时不考虑降水。
结合实例谈高层建筑深基坑支护施工技术

( 在 开挖至基 坑底 面时, 5 ) 应及 时分区浇筑相应的垫层, 再进行 桩头
凿除和钢筋绑扎 工作 , 以减少基坑暴露时间和墙体变位; () 6 在基坑 内布置真空深井泵进行超前降水, 降深尽可 能均匀 。降水 深 度 为 开挖 面 以下 1 1 m; ~. 5 () 于 场 地 内有 微 承 压 水 层 , 工期 间 需 实测 实 际水 头 , 7对 施 并采 取 相
() 1一般侧围护墙体采用 S W 工法, M 水泥搅拌桩的直径 2 10 m + 6 00 m
 ̄80 @60 b5 mm 0mm, 拌 桩 顶标 高 为 一 . m, 搅 2 5 底标 高为 一 2 5 内插 H8 0 9 2 . m, 8 5x 3 0 1x 5型钢 , 一跳 一 , 0 ̄22 插 型钢 顶标 高为 一 . m, 标 高 为一 1 5 15 底 8 2 . m。 8 () 有 建筑 物 有 地 下 室 部 分 的相 邻 侧 S 2原 MW 工 法 水 泥 搅 拌 桩 的 直 径 2 ̄O mm 0 mm, 拌 桩顶 标 高 为 一 .0 底 标 高 为 一 78 m。 土 钉 d O @5 0 7 搅 52 m, 1.5 墙采用 , 8 x . M t mm 3 mm~ 4 mmx . m 钢 管 作 锚 杆 , 垂 直 方 向共 设 置 五 O 68 35 a r
功 效 、 证 工 程 质 量及 施 工 进 度 的重 要 举 措 。本 文 结 合 实例 对 其 技 术 的进 行 简 述 。 保 关 键 词 : 层 建筑 ; 基 坑 支护 ; 量 控 制 高 深 质1 工 Nhomakorabea 实况
某 大 厦 高 2 , 筑 面 积 为 18 5 m。 , 下 两 层 , 高 42 分 别 9层 建 570 地 层 . m, 为汽 车 库 、 备 房 , 时 作人 防工 程 。 坑 深 1 . 局 部 为 1.m, 面 为 设 战 基 08 m, 1 5 下 钻孔 灌注桩基 , 地质条件较差 , 地下水位较高 , 4 2层为粉砂层 , 第 ~ 顶面
超大超深基坑围护体系施工难点之案例分析

超大超深基坑围护体系施工难点之案例分析摘要:近年来,城镇化进程的加快,我国的各类工程建设数量也在不断增加。
在城市建设的过程中,由于土地的可利用面积少,但是经济以及商业发展对于市场扩展的需求却日益增加,因此在许多城市进行大面积的城建的过程中,开展相应的地下空间的建设就被提上了日程。
但是在开发地下空间的时候,有关于深坑的规模、结构以及深坑建造的主体结构的复杂性都严重的制约着深坑的建造,因此,在进行工程的建造时,深坑的设计就显得尤为重要。
本文就超大超深基坑围护体系施工难点展开探讨。
关键词:超大超深基坑;支护体系;围护体系引言工程概况:某金融大厦项目东边延吴淞路,西达乍浦路,南边靠近北苏州路而北接至天潼路,由两幢高100m和60m的塔楼及五层裙楼和超出20m深的四层地下建筑而组成。
总建筑面积超过122000m2,其中地上建筑面积约86500万m2,地下建筑面积约36000m2。
建筑平面图如图1。
图1-建筑平面图1基坑建造的工程特点以及主要的风险源分析在进行基坑的建造时,一定要结合当地实际情况进行合理的设计,制定出符合实际的施工计划和施工方案,确保在建造完成后能够平稳的运行。
在实际建造的过程中主要的风险来源有以下几个方面:(1)超大面积的基坑支撑布置。
在进行基坑工程的一体化构建时,构筑物的建筑面积巨大,因此基坑支撑的工程量便大大的增加。
在建造之前,合理的设计和支撑布置,除了能够保证基坑的安全和稳定,更是可以大大的增加基坑开挖的效率以及整体工程的施工效率。
(2)在基坑的实际开挖过程中,水处理构筑物的水平楼板层高通常情况下都比较的大,因此基坑在进行换撑时会存在着较大的困难。
一般情况下,地下一层的层高设置在6m左右,地下二层的最大一层一般在10m左右。
因此在这样的情况下,地板的高度变化就较为复杂,内部结构更是多种多样,在经过拆撑之后的围护墙其整体的内力和变形都比较大,因此这也成为在进行基坑的工程设计过程中的重点问题。
深基坑支护设计应用

探讨深基坑支护设计及应用【摘要】本文作者结合工程实例,针对深基坑支护的类型,特点及其结构设计和主要计算方法进行了详细的阐述。
以供参考。
【关键词】深基坑,支护,应用0.前言随着我国经济建设的飞速发展和人们生活水平不断的提高,多层建筑及高层建筑等工程施工,都会面临深基坑工程。
本文作者结合实例介绍了深基坑支护的类型,特点及其结构设计和主要计算方法进行了分析探讨。
1.深基坑支护的类型及特点目前基坑支护型式主要分为两大类:即支挡型和加固型,支挡型中包括放坡开挖及挡土支护开挖。
1.1 放坡开挖放坡开挖是最经济、最简单而且速度最快的一种支护类型,当条件满足时宜优先采用。
硬质、可塑性粘土和良好砂性土场地足够放坡,有时对坡面采取措施边坡高度一般为3~6m,否则分段开挖;最后还要验算边坡稳定等。
1.2 挡土支护开挖为了保证基坑周围的建筑物、构筑物以及市政设施安全,或为了满足无水条件下施工,需要设置挡土和截水结构。
这种结构称为支(围)护结构。
基坑工程包括支护体系的设置和土方开挖两个方面。
土方开挖的施工组织是否合理对围护体系是否成功产生重要影响。
不合理的土方开挖方式、步骤和速度有可能导致主体结构桩基础变位、支护结构变形过大、甚至引起支护体系围护体系崩溃。
挡土支护按目前常见的有五种:水泥土墙支护、排桩、地下连续墙、钢板桩支护、土钉墙支护(喷锚支护)、逆作拱墙。
1.3 加固型加固型主要有水泥搅拌桩加固法、高压旋喷桩加固法、水泥喷粉桩加固法、注浆加固法、网状树根桩加固法及插筋补强法等,哪一种比较经济合理,可根据挖土面的深度,工程及水文地质条件,外荷载状况及施工场地等条件综合分析考虑确定。
2.深基坑支护结构主要计算方法基坑支护结构设计计算包括外力(土压力及地基超载)和支护结构内力(弯矩和剪力)、支撑体系的设计计算、基坑整体稳定性和局部稳定性、地基承载力、支护结构顶部位移、结构和地面的变形以及软弱土层的局部加固、对相邻建筑的影响等诸方面的计算。
深基坑工程的常见质量问题及案例分析

深基坑工程的常见质量问题及案例分析深基坑工程是最近30多年中迅速发展起来的一个领域。
以前的几十年中,由于建筑物的高度不高,基础的埋置深度很浅,很少使用地下室,基坑的开挖一般仅作为施工单位的施工措施,最多用钢板桩解决问题,没有专门的设计,也并没有引起工程界太多的关注。
近30多年来,由于高层建筑、地下空间的发展,深基坑工程的规模之大、深度之深,成为岩土工程中事故最为频繁的领域,给岩土工程界提出了许多技术难题,当前,深基坑工程已成为国内外岩土工程中发展最为活跃的领域之一。
1、深基坑工程概念特点1.1、深基坑工程概念住房和城乡建设部《危险性较大的分部分项工程安全管理办法的通知》规定:深基坑工程指开挖深度超过5米(含5米)或地下室三层以上(含三层),或深度虽未超过5米,但地质条件和周围环境及地下管线特别复杂的基坑土方开挖、支护、降水工程。
1.2、深基坑工程特点当前我国各大城市深基坑工程主要突出了以下四个特点:、①深基坑距离周边建筑越来越近由于城市的改造与开发,基坑四周往往紧贴各种重要的建筑物,如轨道交通设施、地下管线、隧道、天然地基民宅、大型建筑物等,设计或施工不当,均会对周边建筑造成不利影响。
②深基坑工程越来越深随着地下空间的开发利用,基坑越来越深,对设计理论与施工技术都提出的更难的要求。
如无锡恒隆广场基坑深近27m,上海中心深基坑达30m,均已挖入了承压水层。
右图为宁波嘉和中心二期项目基坑,平均开挖深度为18.3m,最大挖深为25.9m,整体为三层地下室布局,局部有夹层。
③ 基坑规模与尺寸越来越大上海招商银行信用卡中心工程基坑面积达81000m2,无锡恒隆广场基坑面积35000m2。
这类基坑在支护结构的设计、施工中,特别是支撑系统的布置、围护墙的位移及坑底隆起的控制均有相当的难度。
图为天津西站二期项目基坑,总面积为39000平方米,基坑周长达855米。
④施工场地越来越紧凑市区大规模的改造与开发,其中不少以土地出让形式吸引外资、内资开发,为充分利用土地资源,常要求建筑物地下室做足红线。
建筑工程深基坑支护施工技术案例分析

可兼作 挡水结构 。复合型 土钉墙 中的帷幕体除 了起着挡水 、截水作用 外 ,另外一 个重要作用 是固化饱 和软弱地层 ,在支护工作 面形成一道 “ 障” ,保证 支护工作 面不 出现流 砂或淤泥 流动等地层 损失现象 。本文主要结 合湘麓 国际酒店公寓楼 深基坑工程 案例 ,介绍 了土钉支护 屏
2 土钉墙 施 工技 术应 用
2 1 工 程概 况 .
酒店公寓楼地下2 ,地上 由三层群楼及两栋塔楼组成,酒』 罢, 层 占 建筑高度9 . m 2 0 ;公寓3层 ,总高度9 . m 6 1 9 5 。地下建筑面积为150 n, 0 60 2 r 地上建筑面积为6 9 5 2 3 9 m ,总建筑面积约8 9m 。该工程的外形 为不规 4 0 52 则形状 , 该工程 的上部结构采用框架剪力墙结构 , 基础采用桩基础 ,同 时配合独立柱基础 。根据工程设 计 ,基础开挖至地面以下8 m。该工程 . 0 以强风化板岩 为持力层 ,场地土类型为 中软场地 土。建筑场地类别为 Ⅱ 类 ,抗震设计类别为丙类 , 为建筑抗震一般地段。 22 方案设计 . 根据前述计算 ,本工程基坑作如下设计 : 本次基坑支护方案比选 的原则为首先根据地层 、开挖深度 、周边环 境 的不 同 ,详细地对基坑 支护分段 ,然后 对每一段按 由简单到复杂 、 由低价到高价 的先后顺序进行试算 、比较 ,同时兼顾工期及其它工程条 件 ,最后选择最佳的方案 。在经过计算、 比较分析后 ,本工程支护结构 拟采用土钉墙复合体的支护体系。 基 坑支护有 效深度 为45 m;基坑 的支护 型式 设计一 种支护 断面 . 5 分 三层支 护 ,坡 度为 1 .:第一层 2 L 6 0 m :1 O 0 = 0 0 m@1 0 m 2 0 m、第 二层 2 I 5 0m 0. 00 m@10 m = 2 0 m、第三层2 L 4 0 m 0 = 0 0 m@10 m 20 m。混凝土面层设计
软土地区深基坑支护设计及施工技术

软土地区深基坑支护设计及施工技术摘要:在软土地层的深基坑支护工程中,若施工稍有不慎,不仅危及基坑本身安全,还将会殃及周围的建筑物、道路和各种地下设施,造成巨大的损失。
因此探讨软土地区深基坑支护设计及施工技术就显得十分重要。
本文针对软土地区的工程特性和深基坑支护的基本要求,通过结合工程实例,介绍了基坑支护设计考虑的几个重点,以及支护设计方案,重点阐述了压灌桩围护结构与锚索的施工技术,可为今后的此类工程提供参考与借鉴作用。
关键词:软土地区;深基坑;支护设计;重点;技术引言随着建筑行业的不断发展,高层建筑和大型建筑在大量涌现,深基坑工程越来越多。
在建筑工程中,深基坑工程得到了广泛的利用与发展。
所谓基坑工程,就是为了保护建筑基坑的开挖、地下主体结构的施工安全和周边环境不被或少被破坏而采取的支档措施。
在软土地区深基坑的施工中,因软土具有天然含水率高、低强度、高压缩性和弱透水性等特点,在该类地层中施工的锚索往往承载力较低,且徐变较大。
由此可见,深基坑支护设计及施工技术是软土地区深基坑施工的关键技术,能够有效地保障建筑基坑整体加固保护作用。
基于此,下文结合工程实例,对深基坑支护设计方案及施工技术进行了探讨。
图2 ab/bc区段设计剖面1 工程概况某工程设2层地下室,采用静压桩基础。
基坑开挖深度为5.8~8.5m。
基坑面积约为70000m2,基坑周长约为1038m。
2 基坑支护设计考虑的几个重点(1)基坑面积大,周边有市政道路和建筑物,施工安全是本工程重点。
本工程基坑开挖深度为5.8~8.5m,面积为70315m2,为一超大型深基坑,基坑四周有重要的地下管线和架空高压电线,东边有昌宏路市政主干道,西北角有中闸中心小学(目前沉降较大,已超规范限值,且采用天然基础)、某村(2~5层砖混结构,天然基础),基坑开挖必须有足够保护上述建(构)筑物安全的措施。
(2)坑底开挖面基本处于③2层泥炭质土。
③2层泥炭质土力学性质特别差,承载力低,孔隙大、含水量高、有机质含量也高,对基坑、基础施工带来难度。
深基坑拉森钢板桩支护方案(最终)

深基坑拉森钢板桩支护施工方案一、工程概况南沙河桥起点桩号为K13+064.25,终点桩号为K13+460.490,上跨南沙河,规划南沙河上口宽152米,下口宽120米,两侧设置6米巡河路。
本桥与南沙河斜交,斜交角为27度,全桥长396.24米,宽度为34.5米。
桥梁上部结构为13*30米预应力砼简支箱梁,下部结构为柱式桥墩、肋板式桥台,钻孔灌注桩基础。
南沙河桥跨越海淀区与昌平区,其中7#、8#轴位于昌平区境内。
二、工程地质情况南沙河桥7#承台位于南沙河北巡河路上,南侧约2.6米处为南沙河,北侧10.5米处为改移军缆,左侧21.8米处为占地界,右侧6.8米处为占地界,四周无建筑物,为林地。
基坑开挖深度约为:地面高程38.937m-承台底高程31.65m=7.287m,周长99.4m,面积466.84m2根据地质详勘得知:左侧高程35.27m-32.37m=2.9m及右侧高程36.15m-32.95m=3.2m范围内为粉细砂,粉细砂层液化等级为严重,液化抵抗系数0.58~0.59。
且第二层水位位于标高为32.76~37.00处。
辨别此粉砂层遇水后即为“流沙层”。
桩基设计参数注:此参数从北京勘查设计院报告中查得。
此层极易坍塌,遇水后液化严重。
根据现场实际情况,下挖至1.5m处出现地下水基坑边坍塌,同时发现沙层。
同时放坡占地界不够以及7#与8#轴之间有一条横穿的军缆,基坑开挖不能随意放坡,需采用支护开挖,支护原则需封水封沙,故我标拟对7#轴承台基坑开挖采用拉森钢板桩支护。
由于8#轴地质情况与7#轴相同,我标拟对8#轴承台基坑开挖也采用拉森钢板桩支护。
平面图和断面图附后,地质详勘见附表。
3 / 39诚信优质超越创新钢板桩转角大样图钢板桩剖面图5 / 39诚信优质超越创新三、编制依据1. 京包高速公路(五环~六环路段)工程招标文件2.京包高速公路(五环路~六环路段)工程施工图设计3. 京包高速公路(五环路~六环路段)工程项目处及监理下发文件4.《公路工程质量检验评定标准》(JTG F80/1—2004)5.《公路工程施工安全技术规程》( JTJ 076—95)6.《公路桥涵施工技术规范》 (JTJ D041-2000)7.《建筑机械使用安全技术规程》(JGJ33—2001)8.《施工现场临时用电安全技术规范》(JGJ46—2005)9.《北京市市政工程施工安全操作规程》(DBJ01—56—2001)10.《建筑基坑支护技术规程》(JGJ120-99)11.《建筑基坑工程监测技术规范技术规程》(GB50497-2009)12. 《建筑基坑支护技术规程》(DB11/489-2007)13.《建设工程安全生产管理条例》(国务院第393号令)14.《北京市建设工程施工现场管理办法》(政府令第72号)15.《危险性较大的分部分项工程安全管理办法》(建质[2009]87号)16.《北京市实施危险性较大的分部分项工程安全管理办法规定》(京建施[2009]841号)四、施工计划1.7#轴施工计划2.8#轴与7#轴施工工序、施工时间相同五、钢板桩的支护思路及要点根据本工程场地地质情况特点,本工程钢板桩主要作用是保证基坑边的稳固同时隔绝地下水流入基坑,起到支护边坡的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深基坑支护及桩基础设计实例分析
摘要:通过对深基坑支护设计及桩基础设计的实例分析,揭示了在进行深基坑支护设计的难点,分析了对预应力管桩作为立柱的创新做法,为今后类似深基坑工
程设计提供了依据并积累了经验。
关键词:深基坑支护;桩基础;预应力管桩;设计
一、工程概况
某工程地上部分为15层,地下室部分为2层,总建筑面积约30000m2,为现浇钢筋混凝土框架-剪力墙结构。
本工程基坑占地面积
约6360m2,基坑挖深为9.0m,有承台部分基坑挖深为9.5m。
属二级基坑工程。
二、工程地质
根据工程地质勘察报告,场地土层及工程地质主要性能指标见表1。
表1 场地土层及工程地质主要性能指标
土层Ps(Mpa) (0)
C(Kpa) 预制桩(Kpa)灌注桩(Kpa)渗透系数K(cm/scc)
fs fp fs fp
①填土
②褐黄-灰黄色粉质粘土18.5 23 2.0E-0.6
③灰色淤泥质粉质粘土14.0 13 8.0E-0.6
④灰色淤泥粘土0.51 11.5 12 20 15 1.3E-0.6
⑤1灰色砂质粉土 1.07 16.0 16 44 30 2.0E-0.6
⑤2-1灰色粉土 5.20 28.5 7 60 2500 40 1000
⑤2-2土层10.21 35.0 2 80 4000 65 1800
三、基坑围护方案的选择
基坑工程大多属于临时性结构,在建筑出地面后,即废弃。
因而设计的出发点是本着安全第一的原则,结合造价、施工、工期等因素综合考虑。
本基坑周边环境比较复杂,尤其是南侧存在大量需要保的陈旧民宅,东侧虹漕路上还有需要保护的市政管线。
按以往经验本设计决定采用钻孔灌注桩的围护形式。
钻孔灌注桩的施工工艺较成熟,作为围护桩,其适用的开挖深度也比较广,其围护刚度略低于地下连续墙,强于SMW工法,但其造价要比地下连续墙低很多针对本基坑的实际情况,工期较长,其造价可能较SMW工法也有一定的优势。
由于场地比较大,在钻孔灌注桩施工过程中的泥浆,可以充分利用场地优势,循环利用,以减少污染。
由于基坑周边环境比较复杂,市政管线保护要求高,基坑面积比较大,因而该基坑支撑考虑采用二道混凝土支撑的形式,一方面混凝土支撑整体刚度较大,能较好的控制基坑的变形,另一方面,混凝土支撑比钢支撑布置灵活,也比较符合本基坑的体形特点。
考虑到本基坑的面积很大,为方便挖土,支撑设计考虑采用“十字对撑、角撑结合边桁架”的形式,这样会在很大程度上提高挖土效率。
另外,场地第③层为灰色淤泥质粉质粘土,砂性较重,而基坑的开挖深度刚好穿越此范围,需要采用较好的止水帷幕和降水措施。
若处理不好,基坑开挖时极可能产生坍方、流砂等不良地质现象。
设计考虑在钻孔灌注桩外侧用850@600的三轴水泥搅拌桩作为止水帷幕。
与双轴水泥土搅拌桩相比,三轴水泥土搅拌桩搭接比较饱满,质量容易保证,尤其在基坑比较深、砂性土较重的地方,这个优
点就更加突出。
图1基坑剖面示意图图2支撑平面布置图
四、桩基础及立柱桩的选择
根据勘察单位提供的本工程地质勘察报告,结合场地工程地质条件、周边环境以及工期等因素,并根据目前某地区桩基的施工手段,本工程的优先方案一般
采用无挤土、低噪音的钻孔灌注桩,形成桩-筏板基础,桩基的安全等级为二级。
钻孔灌注桩的主要特点是不会产生明显的挤土效应,对周围的建筑影响比较小,适合在市中心等建筑密集地区施工,缺点是施工现场会产生大量的泥浆、施工速度慢,成本比较高。
预应力管桩比钻孔灌注桩经济性较好,在广东地区也得到了广泛的应用,它不但施工速度快、而且施工过程不会产生泥浆,但预应力管
桩也有一个比较大的缺点,就是在施工过程中挤土效应明显,会对周边建筑
及环境产生一定的影响,对密集、陈旧民房有一定风险。
本着既安全又经济的设计原则,通过对目前某市先进的桩基础设计及施工方法的反复论证,并且经过大量的计算,我们认为如果采取必要的措施,本工程采
用预应力管桩还是可行的。
经与勘察单位共同商定,在设计阶段对桩基承载力、施工顺序等进行了调整和规定。
基坑围护的支撑立柱传统做法一般是采用钻孔灌注桩作为立柱桩,将延性较好的格构式钢柱插入其中,但由于本项目是采用预应力管桩作为工程桩,为了加快施工进度,并从节约工程造价的角度考虑,本工程也决定采用600的预应力管桩填芯来作为围护结构的支撑立柱,这种做法在某地区极其少见,属于创新做法。
为了使管桩做立柱时具有足够的完整度和较好的刚度和延性,需保证填芯混
凝土有一定的入土深度,本工程填芯混凝土入土深度为8.0m,填芯总高度为18.0m,同时,为了避免管桩接头处产生薄弱环节,第一节桩也应保证一定的入土深度,本工程用于支撑立柱的管桩第一节为15m,开挖后的入土深度约为6.0m。
同时由于采用二道支撑,其第二道支撑与立柱管桩的连接尚无参考工程可以借
鉴,设计中经反复讨论,采用了吊支撑的方法,传力明确、施工方便,取得了较好效果。
采用预应力管桩作为工程桩及支撑立柱,对于本工程在设计及施工中遇到的问题主要有:
(1)本工程位于市中心,离周围的建筑及主要道路比较近,预应力管桩在沉
桩过程中产生的挤土效应,可能会使周围的建筑、道路及附近的市政管道开裂;
(2)预应力管桩作为抗拔桩的强度保障问题;
(3)立柱管桩与混凝土第二道支撑的连接问题;
(4)立柱管桩与底板连接的防水问题。
针对上述问题,设计采取了相应的应对措施:
(1)本项目工程桩采用500的预应力管桩,当桩身穿过②、③、④、⑤1层土时,沉桩一般无较大困难,当进入第⑤2-1层砂质粉土层时,沉桩动阻力会逐渐增加,尤其是桩端进入持力层后,沉桩阻力会明显增大。
施工应制定出合理的沉桩流程并适当的控制沉桩速度,而且沉桩顺序应背离被保护对象方向进行,压桩初期的速度应控制在6-8根/天,同时在沉桩过程中应根据监测结果适当调整沉桩速度,原则上每天沉桩数量不得超过10根。
当被保护对象位移累计超过10mm 或每天增量超过2mm时,采用跳压(间隔距离应大于20m)或停压等办法调节
和控制土体的位移量。
同时设计中要求采用先施工围护桩,再施工工程桩的顺序,
虽然对工程桩沉桩有一定难度,但对本工程而言,将减小挤土效应、对周边建筑、管线的影响,同时也容易保证围护桩质量。
(2)预应力管桩的抗拔桩承载力主要取决于抗拔桩的极限承载力、桩身抗拔强度、填芯混凝土与管桩的粘结强度及接桩处的焊缝强度等。
抗拔桩的极限承载力与桩身抗拔强度按有关资料均比较容易计算出来,而填芯混凝土与管桩的粘结强度目前还没有明确规定,一般取0.4ft。
按此经计算得混凝土的灌芯高度至少为2.0m,为了有足够的安全储备,本工程抗拔桩的填芯高度设计为4.0m。
另外管桩的焊接接头在沉桩过程中容易开裂,所以除了对焊缝的强度需要验算外,
还应保证焊缝的质量,以及沉桩时间的控制。
(3)对于立柱管桩与混凝土第二道支撑的连接问题,因无参考工程借鉴,设
计中通过大量的研究及计算,很好的解决了这方面的问题,以下是立柱管桩与支撑的连接节点。
图3管桩与支撑的连接
从图3可以看出,第二道支撑是靠四根角钢吊在第一道支撑与管桩连接节点上的,管桩与一、二道支撑之间均有四根槽钢伸入到支撑混凝土中,从而保证了
管桩与立柱连接的可靠性。
(4)立柱管桩拆除后,下截管桩兼做工程桩时,还要解决管桩与底板的连
接问题,在止水的处理方面,以下是立柱与底板的连接节点。
图4管桩与底板的止水处理
从图4可以看出,为保证止水效果,工程采用两道止水措施,首先在底板下侧采用圆形止水措施,其与管桩之间的空隙采用环氧树脂填充。
然后在其上又增
加一道方形止水装置,待立柱管桩截除后采用钢板将其内部满焊封闭。
四、经济性比较
经综合分析,本工程采用预应力管桩作为承压桩、抗拔桩和立柱桩,比钻孔
灌注桩约约50%工程造价。
五、工程施工情况
本工程现已交付使用,在围护桩与工程桩施工的过程中,周边地表沉降速率较小,垂直位移变化不大,在基坑开挖施工期间,周边地表隆沉变化逐渐发展,
随着开挖深度的增加,垂直位移速率也逐渐增加;至土方开挖到设计坑底标高后,随着基坑大底板浇筑完成,垂直位移速率逐渐趋于稳定状态。
六、结论
(1)在某中心区域,带两层地下室的高层建筑采用预应力管桩还不常见,经
大量研究及计算,通过合理的施工顺序,并采取相应的措施,预应力管桩完全可以作为工程桩使用;
(2)本工程采用预应力管桩作为工程桩,比采用钻孔灌注桩约节约50%工程造价。
(3)目前采用预应力管桩作为支撑立柱的情况还比较少见,尤其是应用在有两道混凝土支撑的围护结构上,从现场的施工实践看,我们的这种做法已经得到实际工程的考验。
注:文章内所有公式及图表请以PDF形式查看。