2020届长沙市中考数学模拟试卷(有答案)(word版)(加精)
2020届中考模拟湖南省长沙市中考数学模拟试卷及参考答案(word版)

长沙中考数学测试卷一、选择题1.下列四个数中,最大的数是( ) A.-2 B.31C.0D.6 2.大家翘首以盼的长株潭城际铁路将于2016年年底通车,通车后,从长沙到株洲只需24分钟,从长沙到湘潭只需25分钟,这条铁路线全长95500米,则数据95500用科学记数法表示为( ) A .0.955×105B. 9.55×105C. 9.55×104 D . 9.5×1043.下列计算正确的是( ) A .1052=⨯B. x 8÷x 2=x 4C. (2a )3=6a 3 D . 3a 3 · 2 a 2=6a64.六边形的内角和是( ) A .︒540B. ︒720C. ︒900 D . ︒3605.不等式组⎩⎨⎧<-≥-048512x x 的解集在数轴上表示为( )6.下图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是( )7.若一个三角形的两边长分别为3和7,则第三边长可能是( ) A .6B. 3C. 2 D . 118.若将点A (1,3)向左平移2个单位,再向下平移4个单位得到点B ,则点B 的坐标为( ) A .(-2,-1)B. (-1,0)C. (-1,-1) D . (-2,0)9.下列各图中,∠1与∠2互为余角的是( )10.已知一组数据75, 80,85,90,则它的众数和中位数分别为( ) A .75, 80B. 80,85C. 80,90 D . 80,8011.如图,热气球的探测器显示,从热气球A 处看一栋楼顶部B 处的 仰角为︒30,看这栋楼底部C 处的俯角为︒60,热气球A 处与楼的水 平距离为120 m ,则这栋楼的高度为( )A .1603m B. 1203m C .300 m D . 1602m12.已知抛物线y =ax 2+bx +c (b >a >0)与x 轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y 轴左侧;②关于x 的方程ax 2+bx +c=0无实数根;③a -b +c ≥0;④ab cb a -++的最小值为3.其中,正确结论的个数为( )A .1个 B.2个 C.3个 D.4个 二、填空题13.分解因式:x 2y -4y =____________.14.若关于x 的一元二次方程x 2-4x -m =0有两个不相等的实数根,则实数m 的取值范围是_________. 15.如图,扇形OAB 的圆心角为120°,半径为3,则该扇形的弧长为_______.(结果保留π) 16.如图,在⊙O 中,弦AB=6,圆心O 到AB 的距离OC=2,则⊙O 的半径长为_____________.17.如图,△ABC 中,AC=8,BC=5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为______.15题图 16题图 17题图18.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是__________. 三、解答题19.计算:4sin60°-︱- 2︳- 12+(-1)201620.先化简,再求值:b a a -(a b 11-)+b a 1-.其中,a =2,b =31.21.为积极响应市委市政府“加快建设天蓝·水净·地绿的美丽长沙”的号召,我市某街道决定从备选的五种树中选购一种进行栽种,为了更好的了解社情民意,工作人员在街道辖区范围内随即抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成下面两个不完整的统计图.请根据所给信息解答以下问题:(1)这次参与调查的居民人数为_______;(2)请将条形统计图补充完整;(3)请计算扇形统计图中“枫树”所在扇形的圆心角度数;(4)已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人?22.如图,AC是□ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;2,求□ABCD的面积.(2)若AB=2,AC=323.2016年5月6日,中国第一条具有自主知识产权的长沙磁悬浮线正式开通运营,该线路连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将会给乘客带来美的享受。
湖南省长沙市2020年九年级中考数学4月份模拟考试卷(含答案)

湖南省长沙市2020年中考数学4月份模拟考试卷一.选择题(每小题3分,满分36分)1.的倒数是()A.﹣B.C.2020 D.﹣20202.科学家发现一种病毒的直径为0.0043微米,则用科学记数法表示0.0043为()A.4.3×10﹣3B.4.3×10﹣2C.0.43×10﹣2D.4.3×1033.如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间5.如图,以Rt△ABC的直角边AB为直径作半圆⊙O与边BC交于点D,过D作半圆的切线与边AC交于点E,过E作EF∥AB,与BC交于点F.若AB=20,OF=7.5,则CD的长为()A.7 B.8 C.9 D.106.下列说法正确的是()A.“清明时节雨纷纷”是必然事件B.为了解某灯管的使用寿命,可以采用普查的方式进行C.两组身高数据的方差分别是S甲2=0.01,S乙2=0.02,那么乙组的身高比较整齐D.一组数据3,5,4,5,6,7的众数、中位数和平均数都是57.如图,一个公共房门前的台阶高BC=1.3米,台阶拆除后,换成供轮椅行走的斜坡∠BAC =10°,则下列关系式或说法正确的是()A.斜坡AB的坡度是10°B.斜坡AB的坡度是tan10°C.AC=1.3tan10°D.AB=1.3sin10°8.如图,是一张平行四边形纸片ABCD,要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:对于甲、乙两人的作法,可判断()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误9.如图所示是某几何体的三视图,根据图中数据计算,这个几何体的侧面积为()A.B.12πC.2πD.24π10.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x尺,绳子长为y 尺,则下列符合题意的方程组是()A.B.C.D.11.关于x的不等式组恰好只有4个整数解,则a的取值范围为()A.﹣2≤a<﹣1 B.﹣2<a≤﹣1 C.﹣3≤a<﹣2 D.﹣3<a≤﹣2 12.如图,以▱ABCD的四条边为边,分别向外作正方形,连结EF,GH,IJ,KL.如果▱ABCD 的面积为8,则图中阴影部分四个三角形的面积和为()A.8 B.12 C.16 D.20二.填空题(满分18分,每小题3分)13.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为.14.函数中自变量x的取值范围是.15.方程的解是.16.如图,在4×3的矩形方框内有一个不规则的区域A(图中阴影部分所示),小明同学用随机的办法求区域A的面积.若每次在矩形内随机产生10000个点,并记录落在区域A 内的点的个数,经过多次试验,计算出落在区域A内点的个数的平均值为6700个,则区域A的面积约为.17.如图,在矩形ABCD中,AB:BC=3:4,点E是对角线BD上一动点(不与点B,D重合),将矩形沿过点E的直线MN折叠,使得点A,B的对应点G,F分别在直线AD与BC上,当△DEF为直角三角形时,CN:BN的值为.18.如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.三.解答题19.(6分)计算:|﹣3|﹣(﹣π)0+()﹣1+(﹣1)2019﹣.20.(6分)化简求值:,其中x=.21.(8分)今年猪肉价格受非洲猪瘟疫情影响,有较大幅度的上升,为了解某地区养殖户受非洲猪瘟疫情感染受灾情况,现从该地区建档的养殖户中随机抽取了部分养殖户进行了调查(把调查结果分为四个等级:A级:非常严重;B级:严重;C级:一般;D级:没有感染),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查的养殖户的总户数是;把图2条形统计图补充完整.(2)若该地区建档的养殖户有1500户,求非常严重与严重的养殖户一共有多少户?(3)某调研单位想从5户建档养殖户(分别记为a,b,c,d,e)中随机选取两户,进一步跟踪监测病毒传播情况,请用列表或画树状图的方法求出选中养殖户e的概率.22.(8分)如图,在▱ABCD中,点E是BC上的一点,连接DE,在DE上取一点F使得∠AFE =∠ADC.若DE=AD,求证:DF=CE.23.(9分)人们常常在室内摆放一些绿色植物,这样做不仅增加了温馨舒适度,还有助于提高室内空气的质量.前年某小区为更好地提高住户的居住感受,为已入住的住户购置A、B两个品种的绿色植物共900盆.其中,A品种每盆20元,B品种每盆30元(1)已知该小区前年购置这900盆绿色植物共花费23000元,请分别求出已购置的A、B 品种的数量;(2)今年该小区决定再次为已入住的住户购置绿色植物C、D两个新品种.已知C品种今年每盆的价格比A品种前年的价格优惠a%,D品种今年每盆的价格比B品种前年的价格优惠a%.由于小区入住率的提高,今年需要购置C品种的数量比A品种前年购置的数量增加了a%,购置D品种的数量比B品种前年购置的数量增加了a%,于是今年的总花费比前年增加了a%.求a的值.24.(9分)如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=2,求EF的长.25.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式.(2)点E是x轴上一点,且△AOE是等腰三角形,求E点的坐标.26.(10分)已知:抛物线y=x2+x+m交x轴于A,B两点,交y轴于点C,其中点B在点A的右侧,且AB=7.(1)如图1,求抛物线的解析式;(2)如图2,点D在第一象限内抛物线上,连接CD,AD,AD交y轴于点E.设点D的横坐标为d,△CDE的面积为S,求S与d之间的函数关系式(不要求写出自变量d的取值范围);(3)如图3,在(2)的条件下,过点D作DH⊥CE于点H,点P在DH上,连接CP,若∠OCP=2∠DAB,且HE:CP=3:5,求点D的坐标及相应S的值.参考答案一.选择1.解:的倒数是2020,故选:C.2.解:用科学记数法表示0.0043为4.3×10﹣3.故选:A.3.解:A、不是轴对称图形,是中心对称图形,不合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不合题意.故选:C.4.解:∵49<51<64,∴7<<8,∴在7到8之间,故选:D.5.解:连结AD,如图,∵AB为直径,∴∠ADB=90°,∴∠1+∠ADE=90°,∠2+∠C=90°,∵DE为切线,∴ED=EA,∴∠ADE=∠2,∴∠1=∠C,∴ED=EC,∴CE=AE,∵EF∥AB,∴EF为△ABC的中位线,∴BF=CF,而BO=AO,∴OF为△ABC的中位线,∴OF∥AE,∴AE=OF=7.5,∴AC=2AE=15,在Rt△ACD中,BC===25,∵∠DCA=∠ACB,∴△CDA∽△CAB,∴=,即=,∴CD=9.故选:C.6.解:A,B,C选项中,可能发生也可能不发生,是随机事件,不符合题意,是必然事件的是:一组数据3,5,4,5,6,7的众数、中位数和平均数都是5,符合题意,故选:D.7.解:斜坡AB的坡度i=,不是坡角,因此A选项不符合题意;斜坡AB的坡度i==tan10°,因此选项B符合题意;∵tan10°=,∴AC==,因此选项C不符合题意;∵sin10°=,∴AB==,因此选项D不符合题意,故选:B.8.解:甲的作法正确;∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵EF是AC的垂直平分线,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形;乙的作法正确;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选:C.9.解:由三视图可判断该几何体是圆锥,底面直径为4,母线长为6,故这个几何体的侧面积为:×4π×6=12π.故选:B.10.解:由题意可得,,故选:B.11.解:不等式组整理得:,解得:a+1<x<,由解集中恰好只有4个整数解,得到整数解为0,1,2,3,∴﹣1≤a+1<0,解得:﹣2≤a<﹣1,故选:A.12.解:过D作DN⊥AB于N,过E作EM⊥FA交FA延长线于M,连接AC,BD,∵四边形ABGF和四边形ADLE是正方形,∴AE=AD,AF=AB,∠FAB=∠EAD=90°,∴∠EAF+∠BAD=360°﹣90°﹣90°=180°,∵∠EAF+∠EAM=180°,∴∠EAM=∠DAN,∴sin∠EAM=,sin∠DAN=,∵AE=AD,∴EM =DN ,∵S △AEF =AF ×EM ,S △ADB =AB ×DN ,∴S △AEF =S △ABD ,同理S △BHG =S △ABC ,S △CIJ =S △CBD ,S △DLK =S △DAC ,∴阴影部分的面积S =S △AEF +S △BGH +S △CIJ +S △DLK =2S 平行四边形ABCD =2×8=16.故选:C .二.填空13.解:∵抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A (﹣2,4),B (1,1), ∴方程组的解为,,即关于x 的方程ax 2﹣bx ﹣c =0的解为x 1=﹣2,x 2=1.故答案为x 1=﹣2,x 2=1.14.解:由题意得:x ﹣1≠0且1+2x ≥0,∴x ≥﹣且x ≠1,故答案为:x ≥﹣且x ≠1.15.解:方程的两边同乘(x ﹣4),得2﹣(x ﹣1)=0,解得x =3.检验:把x =3代入(x ﹣4)=﹣1≠0.∴原方程的解为:x =3.16.解:由题意,∵在矩形内随机产生10000个点,落在区域A 内点的个数平均值为6700个,∴概率P ==0.67,∵4×3的矩形面积为12,∴区域A的面积的估计值为0.67×12=8.04故答案为:8.04;17.解:∵AB:BC=3:4,设AB=3x,BC=4x,∵四边形ABCD是矩形,∴CD=AB=3x,AD=BC=4x,分两种情况:①如图所示,当∠DFE=90°时,△DEF为直角三角形,∵∠CDF+∠CFD=∠EFN+∠CFD=90°,∴∠CDF=∠EFN,由折叠可得,EF=EB,BN=FN,∴∠EFN=∠EBN,∴∠CDF=∠CBD,又∵∠DCF=∠BCD=90°,∴△DCF∽△BCD,∴=,即=,∴CF=x,∴FN=NB==,∴CN=CF+NF=x+x=x,∴BN=∴CN:BN=x:x=25:7.②如图所示,当∠EDF=90°时,△DEF为直角三角形,∵∠CDF +∠CDB =∠CDF +∠CBD =90°,∴∠CDF =∠CBD ,又∵∠DCF =∠BCD =90°,∴△DCF ∽△BCD , ∴=,即=,∴CF =x ,∴NF =BN ==x ,∴CN =NF ﹣CF =x ﹣x =x ,∴CN :BN =7:25,综上所述,CN :BN 的值为或, 故答案为:或. 18.解:连DC ,如图,∵AE =3EC ,△ADE 的面积为3,∴△CDE 的面积为1,∴△ADC 的面积为4,设A 点坐标为(a ,b ),则AB =a ,OC =2AB =2a ,而点D 为OB 的中点,∴BD =OD =b ,∵S 梯形OBAC =S △ABD +S △ADC +S △ODC , ∴(a +2a )×b =a ×b +4+×2a ×b ,∴ab =,把A(a,b)代入双曲线y=,∴k=ab=.故答案为:.三.解答19.解:原式=3﹣1+4﹣1﹣3=2.20.解:原式=•==﹣x(x+1)=﹣x2﹣x当x=时,原式=﹣2﹣.21.解:(1)21÷35%=60户,60﹣9﹣21﹣9=21户,故答案为:60,补全条形统计图如图所示:(2)1500×=750户,答:若该地区建档的养殖户有1500户中非常严重与严重的养殖户一共有750户;(3)用表格表示所有可能出现的情况如下:共有20种不同的情况,其中选中e的有8种,∴P(选中e)==,22.证明:∵四边形ABCD是平行四边形,∴∠B=∠ADC,AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC,∵∠AFD+∠AFE=180°,∠AFE=∠ADC,∴∠AFD=∠C,在△AFD和△DEC中,,∴△AFD≌△DCE(AAS),∴DF=CE.23.解:(1)设前年已购置的A、B品种的数量分别为x盆和y盆,由题意得:解得:答:前年已购置的A品种400盆,B品种500盆.(2)由题意得:20(1﹣a%)×400(1+a%)+30(1﹣a%)×500(1+a%)=23000(1+a%)设a%=t则20(1﹣t)×400(1+)+30(1﹣t)×500(1+t)=23000(1+t)化简得:﹣10t2+3t=0∴t(﹣10t+3)=0∴t1=0(舍),t2=∴a%=∴a=30答:a的值为30.24.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AC⊥AB,∴∠CAB=90°,∴∠ABD=∠CAD,∵=,∴∠AED=∠ABD,∴∠AED=∠CAD;(2)证明:∵点E是劣弧BD的中点,∴=,∴∠EDB=∠DAE,∵∠DEG=∠AED,∴△EDG∽△EAD,∴,∴ED2=EG•EA;(3)解:连接OE,∵点E是劣弧BD的中点,∴∠DAE=∠EAB,∵OA=OE,∴∠OAE=∠AEO,∴∠AEO=∠DAE,∴OE∥AD,∴,∵BO=BF=OA,DE=2,∴,∴EF=4.25.解:(1)∵AD⊥x轴,∴∠ADO=90°,在Rt△ADO中,AD=3,tan∠AOD=,∴OD=2,∴A(﹣2,3),∵点A在反比例函数y=的图象上,∴n=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣,∵点B(m,﹣1)在反比例函数y=﹣的图象上,∴﹣m=﹣6,∴m=6,∴B(6,﹣1),将点A(﹣2,3),B(6,﹣1)代入直线y=kx+b中,得,∴,∴一次函数的解析式为y=﹣x+2;(2)设E(m,0),由(1)知,A(﹣2,3),∴OA2=13,OE2=m2,AE2=(m+2)2+9,∵△AOE是等腰三角形,∴①当OA=OE时,∴13=m2,∴m=±,∴E(﹣,0)或(,0),②当OA=AE时,13=(m+2)2+9,∴m=0(舍)或m=﹣4,∴E(﹣4,0),③当OE=AE时,m2=(m+2)2+9,∴m=﹣,∴E(﹣,0),∴满足条件的点E的坐标为(,0)或(﹣,0)或(﹣4,0)或(﹣,0).26.(1)由y=x2+x+m,令y=0,则(x+2)(x﹣m)=0,∴AO=2,BO=m,∴A(﹣2,0),B(m,0),∵AB=7,∴m﹣(﹣2)=7,m=5,∴y=;(2)过点D作DK⊥x轴于点K,设∠DAB=α,则D(d,﹣),∴=.∴EO=AO•tanα=5﹣d,CE=5﹣(5﹣d)=d,∴;(3)过点E作CE的垂线,过C作∠OCP的平分线交DE于点J,交CE的垂线于点F,过点F作ED的平行线交HD于点N.∴∠ECF=∠HDE=α,HE=3k,CP=5k,CE=HD=d,∵CE=HD,∠CEF=∠CHD=90°,∴△CEF≌△DHE(ASA),∵EF∥DN,NF∥DE,∴四边形EDNF为平行四边形,∴EF=HE=DN=3k,CF=DE=FN,∴△CFN为等腰直角三角形,∴∠PCN=∠FNC=45°,∴∠PCN=∠PNC=45°﹣α,∴PC=PN=5k,∴PD=2k,∴CH=d﹣3k,PH=d﹣2k,∴(d﹣3k)2+(d﹣2k)2=(5k)2,∴(d﹣6k)(d+k)=0,∴d=6k,∴在Rt△DHE中,tan,由(2)知,∴.∴d=4,∴D(4,3),∴==8.。
2020届长沙市中考数学模拟试卷(五)(有答案)(加精)

湖南省长沙市中考数学模拟试卷(五)一、(在下列的四个选项中,只有一个是符合题意的,请在答题卡中填涂符合题意的选项。
共12小题,每小题3分,满分36分)1.﹣8的立方根是()A.B.2 C.﹣2 D.2.“比a的3倍大5的数”用代数式表示为()A.3a+5 B.3(a+5)C.3a﹣5 D.3(a﹣5)3.已知点P(﹣2,1)关于y轴的对称点为Q(m,n),则m﹣n的值是()A.1 B.﹣1 C.3 D.﹣34.已知在Rt△ABC中,∠C=90°,AC=2,BC=3,则AB的长为()A.4 B.C. D.55.如图所示是一个几何体的三视图,则这个几何体的名称是()A.圆柱B.圆锥C.长方体D.棱锥6.天气预报称,明天长沙市全市的降水率为90%,下列理解正确的是()A.明天长沙市全市有90%的地方会下雨B.明天长沙市全市有90%的时间会下雨C.明天长沙市全市下雨的可能性较大D.明天长沙市一定会下雨7.若一个三角形的三条边长分别为3,2a﹣1,6,则整数a的值可能是()A.2,3 B.3,4 C.2,3,4 D.3,4,58.已知正数x满足x2+=62,则x+的值是()A.31 B.16 C.8 D.49.如图,在△ABC中,DE∥BC,=,四边形DECB的面积是10,则△ABC的面积为()A.4 B.8 C.18 D.910.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是()A.△OAB是等边三角形B.弦AC的长等于圆内接正十二边形的边长C.OC平分弦ABD.∠BAC=30°11.如果一个点的横、纵坐标均为整数,那么我们称这个点是格点,如图,A、B两点在函数y=(x>0)的图象上,则图中阴影部分(不包括边界)所含格点的个数为()A.1 B.2 C.3 D.412.如图所示是二次函数y=ax2+bx+c(a≠0)的图象,现有下列说法:①a>0;②c>0;③4a﹣b+c<0;④当﹣1<x<3时,y>0.其中正确的个数为()A.1个 B.2个 C.3个 D.4个二、填空题(共6小题,每小题3分,满分18分)13.分解因式:y5﹣x2y3=.14.已知A(﹣1,y1)、B(3,y2)为一次函数y=﹣2x+3图象上的两点,则y1与y2的大小关系是.15.如图,在▱ABCD中,DB=DC,∠A=67°,CE⊥BD于点E,则∠BCE=.16.某学生在解一元二次方程x2﹣2x=0时,只得出一个根是2,则被他漏掉的另一个根是x=.17.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于.18.如图所示,在正方形铁皮中,剪下一个圆和一个扇形,使余料尽量少.用圆做圆锥的底面,用扇形做圆锥的侧面,正好围成一个圆锥,若圆的半径为2,则扇形的半径为.三、解答题(本题共8个小题,第19、20小题每小题6分,第21、22小题每小题6分,第23、24小题每小题6分,第25、26小题每小题6分,共66分)19.计算:()﹣1+tan60°﹣(﹣)0.20.解不等式组:并在数轴上表示解集.21.为了提高教师的综合素质,教育部门对全长沙市教师进行某项专业技能培训.为了解培训的效果,培训结束后随机抽取了部分参训老师进行技能测试,测试结果分成“不合格”、“合格”、“良好”、“优秀”四个等级,并绘制了如图所示的统计图,请根据统计图提供的信息,回答下列问题:(1)培训结束后共抽取了名参训教师进行技能测试;(2)从参加测试的人员中随机抽取一人进行技能展示,其测试结果为“优秀”的概率为;(3)若全市有4000名参加培训的教师,请你估算获得“优秀”的总人数是多少.22.在菱形ABCD中,对角线AC、BD相交于点O,过点O作一条直线分别交DA、BC的延长线于点E、F,连接BE、DF.(1)求证:四边形BFDE是平行四边形;(2)若EF⊥AB,垂足为M,tan∠MBO=,求EM:MF的值.23.长沙市为了治理城市污水,需要铺设一段全长为300米的污水排放管道.铺设完120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务.(1)求原计划每天铺设管道多少米?(2)若原计划每天的支出为4000元,则现在比原计划少支出多少钱?24.已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=,求BF的长.25.在平面直角坐标系中,如果点P(x,y)的坐标满足x+y=xy,那么称P为和谐点.(1)若点A(a,2)是正比例函数y=kx(k≠0,k为常数)上的一个和谐点,求这个正比例函数的解析式;(2)试判断函数y=﹣2x+1的图象上是否存在和谐点?若存在,求出和谐点的坐标;若不存在,请说明理由;(3)直线l:y=kx+2经过和谐点P,且与反比例函数G:y=﹣交于M、N两点,若点P的纵坐标为3,求出直线l的解析式,并在x轴上找一点Q使得QM+QN最小.26.如图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D,与y轴交于点C,与x轴交于A、B两点,点A在原点的左侧,点B的坐标为(3,0),OB=OC=3OA.(1)求这个二次函数的解析式;(2)如图,若点G(2,m)是该抛物线上一点,E是直线AG下方抛物线上的一动点,当点E 运动到什么位置时,△AEG的面积最大?求此时点E的坐标和△AEG的最大面积;(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆的半径.湖南省长沙市中考数学模拟试卷(五)参考答案与试题解析一、(在下列的四个选项中,只有一个是符合题意的,请在答题卡中填涂符合题意的选项。
2020年中考数学全真模拟试卷8套附答案(适用于湖南省长沙市)

C.
D.
12. 如图,在等腰直角△ABC 中,∠C=90°,D 为 BC 的中 点,将△ABC 折叠,使点 A 与点 D 重合,EF 为折痕 ,则 sin∠BED 的值是( )
A.
B.
C.
D.
二、填空题(本大题共 6 小题,共 18.0 分) 13. 分解因式:x3-4x=______.
14. 计算:
3.【答案】A
【解析】【分析】 此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|< 10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值. 科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要 看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原 数绝对值>10 时,n 是正数;当原数的绝对值<1 时,n 是负数. 【解答】 解:20 万=200000=2×105. 故选:A.
6.【答案】C
【解析】解:∵点 A(1,3)向左平移 2 个单位,再向下平移 4 个单位得到点 B, ∴点 B 的横坐标为 1-2=-1,纵坐标为 3-4=-1, ∴B 的坐标为(-1,-1). 故选:C. 根据向左平移横坐标减,向下平移纵坐标减求解即可. 本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减; 纵坐标上移加,下移减.
24. 如图,在⊙O 中,直径 CD 垂直于不过圆心 O 的弦 AB,垂足为点 N,连接 AC,BC ,点 E 在 AB 上,且 AE=CE. (1)求证:∠ABC=∠ACE; (2)过点 B 作⊙O 的切线交 EC 的延长线于点 P,证明 PB=PE; (3)在第(2)问的基础上,设⊙O 半径为 2 ,若点 N 为 OC 中点,点 Q 在⊙O 上,求线段 PQ 的最大值.
2020年中考数学全真模拟试卷6套附答案(适用于湖南省长沙市)

【解析】解:A、正六边形的外角和等于 360°,正确,是真命题; B、位似图形必定相似,正确,是真命题; C、对角线相等的平行四边形是矩形,故错误,是假命题; D、两组对角相等的四边形是平行四边形,正确,是真命题, 故选:C. 利用正多边形的外角和、位似图形的定义、矩形的性质及平行四边形的判定分别判断后 即可确定正确的选项. 本题考查了命题与定理的知识,解题的关键是了解正多边形的外角和、位似图形的定义 、矩形的性质及平行四边形的判定等知识,难度不大.
10.【答案】C
【解析】解:根据题意,得
黄球的概率 P=
,
故选:C. 随机事件 A 的概率 P(A)=事件 A 可能出现的结果数所有可能出现的结果数,P(必然 事件)=1,P(不可能事件)=0. 本题考查了概率,熟练运用概率公式进行计算是解题的关键.
11.【答案】B
【解析】解:∵点 A(x1,-3)、B(x2,-2)、C(x3,1)在反比例函数
第 3 页,共 15 页
23. 如图,AB 为半⊙O 的直径,弦 AC 的延长线与过点 B 的切线交于点 D,E 为 BD 的中点,连接 CE. (1)求证:CE 是⊙O 的切线; (2)过点 C 作 CF⊥AB,垂足为点 F,AC=5,CF=3, 求⊙O 的半径.
24. 为了美化环境,建设宜居衡阳,我市准备在一个广场上种植甲、乙两种花卉.经市 场调查,甲种花卉的种植费用 y(元)与种植面积 x(m2)之间的函数关系如图所 示,乙种花卉的种植费用为每平方米 100 元. (1)求 y 与 x 的函数关系式; (2)广场上甲、乙两种花卉的种植面积共 1000m2,若甲种花卉的种植面积不少于 200m2,且不超过乙种花卉种植面积的 3 倍,那么应该怎忙分配甲、乙两种花卉的 种植面积才能使种植费用最少?最少总费用为多少元?
2020年长沙市教科院中考数学模拟试卷(五) (含答案解析)

2020年长沙市教科院中考数学模拟试卷(五)一、选择题(本大题共12小题,共36.0分)1.−3的绝对值是()A. 13B. −3 C. 3 D. −132.函数y=xx+3中,自变量x的取值范围是()A. x>−3B. x≠0C. x>−3且x≠0D. x≠−33.太阳中心的温度达到了19200000℃,用科学记数法表示数据19200000,正确的是A. 1.92×108B. 19.2×107C. 192×105D. 1.92×1074.如图,正方形网格中,已有两个小正方形被涂黑,再将图其余小正方形涂黑一个,使整个图案构成一个轴对称图形的方法有()A. 4B. 5C. 6D. 75. 2.如果n边形的内角和是它外角和的3倍,则n等于()A. 6B. 7C. 8D. 96.下列运算正确的是()A. a2⋅a3=a6B. 5a−2a=3a2C. (a3)4=a12D. (x+y)2=x2+y27.在平面直角坐标系中,点P(2,−3)在第()象限A. 一B. 二C. 三D. 四8.已知m,n是方程x2−2x−2016=0的两个实数根,则n2+2m的值为()A. 1010B. 2012C. 2016D. 20209.下列四个命题中,正确的有()①若a<b,则a+1<b+1;②若a<b,则a−1<b−1;③若a<b,则−2a>−2b;④若a<b,则2a>2b.A. 1个B. 2个C. 3个D. 4个10.如图,BD是⊙O的直径,点A,C在⊙O上,AB⏜=AD⏜,AC交BD于点G.若∠COD=126°,则∠AGB的度数为()A. 99°B. 108°C. 110°D. 117°11.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是()A. ∠B=∠FB. ∠B=∠BCFC. AC=CFD. AD=CF12.已知两点A(−5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点,若y1>y2≥y0,则x0的取值范围是()A. x0>−5B. x0>−1C. −5<x0<−1D. −2<x0<3二、填空题(本大题共6小题,共18.0分)13.若a2−3a+1=0,则3a2−9a+2021=______.14.在一个不透明的口袋中,装有除了颜色不同,其它都相同的4个白色球,1个红色球,5个黄色球,搅匀后随机从袋中摸出1个球是黄色球的概率是______ .15.如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的数y=kx),则点D的坐标是________.点E(n,2316.用半径为6cm,圆心角为120°的扇形围成的圆锥的底面圆半径为______cm.17.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片折叠,使点C与点A重合,折痕为EF,点D的对应点为G,连接DG,则图中阴影部分面积是.18.如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC绕点C逆时针旋转60°得到△DEC,连接BD,则BD2的值是______.三、解答题(本大题共8小题,共66.0分))−219.计算:3tan30°+|√3−2|+(−1320.如图,△ABC各顶点的坐标分别是A(−2,−4),B(0,−4),C(1,−1).(1)在图中画出△ABC关于原点对称的△A1B1C1;(2)在图中画出△ABC绕原点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求点A运动到A2路径长.21.某校举行“汉字听写”比赛,每位学生听写汉字39个.比赛结束后随机抽查部分学生听写结果,图1,图2是根据抽查结果绘制的统计图的一部分.组别听写正确的个数x人数A0≤x<810B8≤x<1615C16≤x<2425D24≤x<32mE32≤x<40n根据以上信息解决下列问题:(1)本次共随机抽查了多少名学生,求出m,n的值并补全图2的条形统计图;(2)求出图1中∠α的度数;(3)该校共有3000名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.22.如图,在7×7的方格纸中,点A,B,C都在格点上,请按要求找出D点,使得D点在格点上.(1)在图甲中画一个∠ADC,使得∠ABC=∠ADC.(2)在图乙中画一个三角形ADC,使得△ADC的面积等于△ABC面积的2倍.23.某服装店销售一种服装,每件进货价为40元,当以每件80元销售的时候,每天可以售出50件,为了增加利润,减少库存,服装店准备适当降价.据测算,该服装每降价1元,每天可多售出2件.如果要使每天销售该服装获利2052元,每件应降价多少元?24.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连接AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线;(2)若BC=6,tanB=1,求⊙O的半径.225.在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=−1时,在抛物线上是否存在点P,使△PAB的面积为1?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.26.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(−1,0),B(3,0)两点,与y轴交于点C(0,−3).(1)求该抛物线的解析式及顶点M的坐标;(2)求△BCM的面积;(3)若P是x轴上一个动点,过P作射线PQ//AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A、P、Q、C为顶点的四边形为平行四边形?若存在请求出Q点的坐标;若不存在,请说明理由.【答案与解析】1.答案:C解析:解:|−3|=3,故选:C.根据绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值.则−3的绝对值就是表示−3的点与原点的距离.此题主要考查了绝对值,关键是掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.答案:D解析:解:由题意得,x+3≠0,解得x≠−3.故选D.根据分母不等于0列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.答案:D解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将19200000用科学记数法表示为:1.92×107.故选D.4.答案:B解析:本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.根据轴对称的概念作答,如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,2处,3处,4处,5处,选择的位置共有5处.故选B.5.答案:C解析:利用多边形的外角和是360度,一个n边形的内角和等于它外角和的3倍,则内角和是3×360°,而n边形的内角和是(n−2)⋅180°,则可得到方程,解之即可.【详解】根据题意列方程,得:(n−2)180°=3×360°,解得:n=8,即边数n等于8,故选C.本题考查了多边形的内角和的计算公式以及多边形的外角和定理,熟练掌握是解题的关键.6.答案:C解析:解:A.a2⋅a3=a5,故此选项错误;B.5a−2a=3a,故此选项错误;C.(a3)4=a12,正确;D.(x+y)2=x2+y2+2xy,故此选项错误.故选:C.分别利用同底数幂的乘法运算法则以及合并同类项法则、幂的乘方运算法则、完全平方公式分别计算得出答案.此题主要考查了同底数幂的乘法运算以及合并同类项、幂的乘方运算、完全平方公式等知识,正确把握相关定义是解题关键.7.答案:D解析:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).根据各象限内点的坐标特征解答.解:点P(2,−3)在第四象限.故选D.8.答案:D解析:本题考查了根与系数的关系及一元二次方程的解,通过方程解的定义及根与系数的关系代入化简即可得出结论.解:∵n是方程x2−2x−2016=0的实数根,∴n2−2n−2016=0,∴n2=2n+2016,∵m+n=2,∴n2+2m=2n+2016+2m=2(m+n)+2016=2×2+2016=2020.故选D.9.答案:C解析:本题考查了命题与定理的知识,解题的关键是了解不等式的基本性质.利用不等式的基本性质分别判断后即可确定正确的选项.解:①若a<b,则a+1<b+1,正确;②若a<b,则a−1<b−1,正确;③若a<b,则−2a>−2b,正确;④若a<b,则2a<2b,则④错误,故选C.10.答案:B解析:解:∵BD是⊙O的直径,∴∠BAD=90°,∵AB⏜=AD⏜,∴∠B=∠D=45°,∵∠DAC=12∠COD=12×126°=63°,∴∠AGB=∠DAC+∠D=63°+45°=108°.故选:B.根据圆周角定理得到∠BAD=90°,∠DAC=12∠COD=63°,再由AB⏜=AD⏜得到∠B=∠D=45°,然后根据三角形外角性质计算∠AGB的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.11.答案:B解析:解:∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE//AC.A、根据∠B=∠F不能判定AC//DF,即不能判定四边形ADFC为平行四边形,故本选项错误.B、根据∠B=∠BCF可以判定CF//AB,即CF//AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.C、根据AC=CF,FD//AC,不能判定四边形ADFC为平行四边形,故本选项错误.D、根据AD=CF,FD//AC不能判定四边形ADFC为平行四边形,故本选项错误.故选:B.利用三角形中位线定理得到DE//AC,结合平行四边形的判定定理进行选择.本题三角形的中位线的性质和平行四边形的判定.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.12.答案:B解析:本题考查了二次函数图象上点坐标特征,主要利用了二次函数的性质与对称性,根据顶点的纵坐标最小确定出抛物线开口方向上是解题的关键.先判断出抛物线开口方向上,进而求出对称轴的范围即可求解.解:∵点C(x0,y0)是抛物线的顶点,y1>y2≥y0,∴抛物线有最小值,函数图象开口向上,∴a>0;∴25a−5b+c>9a+3b+c,<1,∴b2a>−1,∴−b2a∴x0>−1,∴x0的取值范围是x0>−1.故选B.13.答案:2018解析:解:∵a2−3a+1=0,∴a2−3a=−1,则原式=3(a2−3a)+2021=3×(−1)+2021=−3+2021=2018,故答案为:2018.由a2−3a+1=0知a2−3a=−1,整体代入原式=3(a2−3a)+2021,计算可得.本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.14.答案:12解析:解:∵共有4+1+5=10个球,∴搅匀后随机从袋中摸出1个球是黄色球的概率是:510=12;故答案为:12.根据概率的求法,找准两点:①全部情况的总数n;②符合条件的情况数目m;二者的比值mn就是其发生的概率.使用树状图分析时,一定要做到不重不漏.此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.15.答案:(3,2)解析:本题考查了反比例函图象的性质和正方形的性质.根据平行于坐标轴的直线上点的坐标的特征,以及反比例函数的性质,即可解答.解:∵AD//BC∴D的纵坐标为2,AB=2∴C(m+2,2 3 )∴23(m+2)=2m∴m=1∴OC=3∴D的横坐标为3∴D(3,2).故答案为(3,2).16.答案:2解析:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.设圆锥的底面圆半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的,然后解方程即可.弧长等于圆锥底面的周长和弧长公式得到2πr=120⋅π⋅6180解:设圆锥的底面圆半径为r,,根据题意得2πr=120⋅π⋅6180解得r=2,即圆锥的底面圆半径为2cm.故答案为2.17.答案:185解析:本题主要考查了翻折变换,解决问题的关键是利用矩形的性质和轴对称的性质、勾股定理、全等三角形的判定和性质进行求解.解题时注意:翻折前后的对应边相等,对应角相等.解:由题意知,AF=FC,AB=CD=AG=4,BC=AD=8,在Rt△ABF中,由勾股定理知AB2+BF2=AF2,即42+(8−AF)2=AF2,解得AF=5,∵∠BAF+∠FAE=∠FAE+∠EAG=90°,∴∠BAF=∠EAG,在△BAF和△GAE中,∴△BAF≌△GAE(ASA),∴AE=AF=5,ED=GE=3过G作GH⊥AD,垂足为H∵S△GAE=12AG⋅GE=12AE⋅GH∴4×3=5×GH ∴GH=125,∴S△GED=12ED⋅GH=12×3×125=185.故答案为185.18.答案:8+4√3解析:解:如图,连接AD,设AC与BD交于点O,解:如图,连接AD,由题意得:CA=CD,∠ACD=60°∴△ACD为等边三角形,∴AD=CD,∠DAC=∠DCA=∠ADC=60°;∵∠ABC=90°,AB=BC=2,∴AC=CD=2√2,∵AB=BC,CD=AD,∴BD垂直平分AC,∴BO=1AC=√2,OD=CD⋅sin60°=√6,2∴BD=√2+√6∴BD2=(√2+√6)2=8+4√3,故答案为8+4√3连接AD,由旋转的性质可得CA=CD,∠ACD=60°,得到△ACD为等边三角形,由AB=BC,CD=AD,AC=√2,OD=CD⋅sin60°=√6,可得BD=BO+OD,得出BD垂直平分AC,于是求出BO=12即可求解.本题考查了图形的变换−旋转,等腰直角三角形的性质,等边三角形的判定和性质,线段的垂直平分线的性质,准确把握旋转的性质是解题的关键.19.答案:解:原式=3×√3+2−√3+93=√3+2−√3+9=11.解析:直接利用特殊角的三角函数值以及负指数幂的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.答案:解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)OA=√22+42=2√5,=√5π.点A运动到A2路径长=90⋅π⋅2√5180解析:本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了弧长的计算.(1)利用关于原点对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)根据网格特点和旋转的性质画出A、B、C对称点A2、B2、C2,从而得到△A2B2C2;(3)根据弧长公式,进行计算即可求出点A运动到A2路径长.21.答案:解:(1)15÷15%=100(名);m=30%×100=30;n=20%×100=20.条形图如图所示:×360=90°.(2)∠α=25100=1500(名)(3)解:3000×10+15+25100答:估计这所学校本次比赛听写不合格的学生人数有1500(名).解析:(1)用B组的人数除以百分比即可得出参加比赛的总人数;总人数×30%=D组人数,总人数×20%=E组人数;(2)C组的圆心角度数=25%×360°;×100%;(3)不合格人数为3000×10+15+25100本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.22.答案:解:(1)如图甲所示:∠ABC=∠ADC;(2)如图乙所示:△ADC的面积等于△ABC面积的2倍.解析:此题主要考查了应用设计与作图,正确借助网格分析是解题关键.(1)利用网格即可得出符合∠ABC=∠ADC的答案;(2)利用三角形面积求法得出答案.23.答案:解:设每件服装应降价x元,依题意得:(80−40−x)(50+2x)=2052,解得:x1=2,x2=13,为了减少库存,取x=13.答:每件服装应降价13元.解析:【试题解析】设每件服装应降价x元,根据总盈利=单件利润×销售数量即可得出关于x的一元二次方程,解之取其较大值即可得出结论.本题考查了一元二次方程的应用,根据数量关系列出一元二次方程是解题的关键.24.答案:(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°−(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)解:设圆O的半径为r,在Rt△ABC中,AC=BCtanB=3,根据勾股定理得:AB=2+62=3√5,∴OA=3√5−r,,在Rt△ACD中,tan∠1=tanB=12∴CD=ACtan∠1=1.5,根据勾股定理得:AD2=AC2+CD2=9+2.25=11.25,在Rt△ADO中,OA2=OD2+AD2,即(3√5−r)2=r2+11.252,解得:r=9√5,8∴⊙O的半径为9√5.8解析:(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.25.答案:解:(1)y=x+2,令x=0,则y=2,令y=0,则x=−2,故点A、B的坐标分别为(−2,0)、(0,2),则c=2,则函数表达式为:y=ax2+bx+2,将点A坐标代入上式并整理得:b=2a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=−b2a≥0,而b=2a+1,即:−2a+12a ≥0,解得:a≥−12,故:a的取值范围为:−12≤a<0;(3)当a=−1时,二次函数表达式为:y=−x2−x+2,过点P作直线l//AB,作PQ//y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△PAB=12×AB×PH=12×2√2×PQ×√22=1,则y P−y Q=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点坐标,分别与点AB组成的三角形的面积也为1,故:|y P−y Q|=1,设点P(x,−x2−x+2),则点Q(x,x+2),即:−x2−x+2−x−2=±1,解得:x=−1或−1±√2,故点P(−1,2)或(−1+√2,√2)或(−1−√2,−√2).解析:本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.(1)求出点A、B的坐标,即可求解;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=−b2a≥0,而b=2a+1,即:−2a+12a≥0,即可求解;(3)过点P作直线l//AB,作PQ//y轴交BA于点Q,作PH⊥AB于点H,S△PAB=12×AB×PH=1 2×2√2×PQ×√22=1,则|y P−y Q|=1,即可求解.26.答案:解:(1)设抛物线解析式为y=a(x+1)(x−3),∵抛物线过点C(0,−3),∴−3=a(0+1)(0−3),∴a=1,∴抛物线解析式为y=(x+1)(x−3),∵y=(x+1)(x−3)=(x−1)2−4,∴M(1,−4);(2)如图1,连BC、BM、CM,作MD⊥轴于D,∴S△BCM=S梯形OCMD+S△BMD−S△BCO=12(3+4)×1+12×2×4−12×3×3=72+4−92=3;(3)存在这样的点Q,使以A、P、Q、C为顶点的四边形为平行四边形.①如图2,当Q点在轴下方时,作QE⊥轴于E,∵AC//PQ且AC=PQ,∴OC=EQ=3,当−3=x2−2x−3时,解得:x1=0(舍),x2=2,∴Q(2,−3);②如图2,当Q点在轴上方时,作QF⊥轴于F,∵AC//PQ且AC=PQ,∴Rt△OAC≌Rt△FPQ,∴OC=FQ=3,当3=x2−2x−3时,解得:x1=1−√7,x2=1+√7,∴Q(1−√7,3)或(1+√7,3),综上所述,满足条件的Q点为(2,−3)或(1−√7,3)或(1+√7,3).解析:(1)根据A(−1,0),B(3,0),C(0,−3),设抛物线解析式为y=a(x+1)(x−3),代入(0,−3),解方程即可得出抛物线解析式,进而得到顶点M的坐标;(2)连BC、BM、CM,作MD⊥轴于D,根据S△BCM=S梯形OCMD+S△BMD−S△BCO进行计算即可;(3)分两种情形讨论:①当Q点在x轴下方时,作QE⊥x轴于E;②当Q点在x轴上方时,作QF⊥x 轴于F,分别根据Q的纵坐标,求出点Q的横坐标即可.本题属于二次函数综合题,主要考查了三角形面积、平行线的性质,全等三角形的判定和性质以及解一元二次方程的综合应用,解题的关键是灵活应用待定系数法确定函数解析式,学会利用分割法求三角形的面积,学会分类讨论的思想解决问题.。
2020年长沙市雨花区中考数学模拟试卷(4月份)(含答案解析)

2020年长沙市雨花区中考数学模拟试卷(4月份)一、选择题(本大题共12小题,共36.0分)1.下列各数中,比−2大的数是()A. −3B. 0C. −2D. −2.12.下列运算正确的是()A. 2a2+a2=3a4B. (−2a2)3=8a6D. (a−b)2=a2−b2C. a2÷a3=1a3.港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程总投资1269亿元,将数据1269亿精确到百亿用科学记数法表示约为()A. 13×1010B. 1.2×1011C. 1.3×1011D. 0.12×10124.若一次函数y=kx+b的图象如图所示,则()A. k<0,b<0B. k>0,b>0C. k<0,b>0D. k>0,b<05.已知a<b,则下列不等式变形不正确的是().A. 4a<4bB. −2a+4<−2b+4C. −4a>−4bD. 3a−4<3b−46.如图折线统计图描述了某地某日的气温变化情况,根据图中信息,下列说法错误的是()A. 4:00时气温最低,14:00时气温最高B. 12:00时气温为30℃C. 这一天温差约为9℃D. 气温是24℃的是在6:00和8:00时7.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()B. 36°C. 54°D. 72°8.如图,8×8方格纸上的两条对称轴EF、MN相交于中心点O,对△ABC分别作下列变换:①先以点A为中心顺时针方向旋转90∘,再向右平移4格、向上平移4格;②先以点O为中心作中心对称图形,再以点A的对应点为中心逆时针方向旋转90∘;③先以直线MN为轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90∘.其中,能将△ABC变换成△PQR的是()A. ①②B. ①③C. ②③D. ①②③9.如图,延长Rt△ABC斜边AB到D点,使BD=AB,连接CD,若tan∠BCD=1,则tanA=()3A. 32B. 1C. 13D. 2310.如图,BC是⊙O的直径,AB是⊙O的弦,PA,PC均是⊙O的切线,若∠B=40°,则∠P的度数是()A. 80°B. 90°D. 120°11.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,BD=2,则AB的长为()A. 1B. √2C. 2D. 2√212.当x=a和x=b(a≠b)时,二次函数y=2x2−2x+3的函数值相等、当x=a+b时,函数y=2x2−2x+3的值是()A. 0B. −2C. 1D. 3二、填空题(本大题共6小题,共18.0分)13.m与−1互为倒数,则m=______.314.数据3,4,10,7,6的中位数是______.15.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题,”今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”若设鸡有x只,兔有y只,则列出的方程组为______(列出方程组即可,不求解).16.若反比例函数y=−3m+6图象在第二、四象限,则m的取值范围为________.x17.已知圆的内接正六边形的周长为18,那么圆的半径为____________ .18.如图,在正方形ABCD中,E是AD的中点,DF⊥EC于点F,连结AF,则下列四个结论:①△EDF∽△ECD;②AF平分∠EAC;③AF:AB=√2:√5;④S△AFC=4S△AEF;其中,正确的是______(请将正确结论的序号填在横线上).三、计算题(本大题共2小题,共15.0分)19.计算:2cos60°−|−2|+(π−√3)0−(−3)−3.20.在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆AB=2米,它的影子BC=1.6米,木杆PQ的影子有一部分落在墙上,PM=1.2米,MN=0.8米,求木杆PQ的长度.四、解答题(本大题共6小题,共51.0分)21.先化简,再求值:m2−4m+4m−1÷(3m−1−m−1),其中m=√3−2.22.小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:(1)这项被调查的总人数是多少人?(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.23.如图,四边形ABCD中,AB//CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ABC的外接圆⊙O交BC于E点,连接DE并延长,交AB的延长线于F,求证:CF=DB.24.某村计划对总长为1800m的道路进行改造,安排甲、乙两个工程队完成.已知甲队每天能完成的道路长度是乙队每天能完成的2倍,并且各自在独立完成长为400m的道路时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成道路的长度分别是多少m?(2)若村委每天需付给甲队的道路改造费用为0.4万元,乙队为0.25万元,要使这次的道路改造费用不超过8万元,至少应安排甲队工作多少天?x+2与x轴交于点A,25.在如图所示的平面直角坐标系中,直线y=12与y轴交于点C,抛物线y=ax2+bx+c经过A,C两点,与x轴.的另一交点为点B,其对称轴是x=−32(1)求抛物线解析式.(2)抛物线上是否存在点M(点m不与点C重合),使△MAB与△ABC的面积相等?若存在,求出点M的坐标;若不存在,请说明理由.26.(1)如图1,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC;(2)如图2,正方形ABCD中,∠PCG=45°,延长FG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,作FE⊥PC,垂足为点E,交CG于点N,连结DN,求∠NDC的度数.【答案与解析】1.答案:B解析:此题主要考查了有理数大小比较的方法,要熟练掌握,有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.解:根据有理数比较大小的方法,可得−3<−2.1<−2<0,所以各数中,比−2大的数是0.故选B.2.答案:C解析:此题主要考查了合并同类项法则,积的乘方运算法则、完全平方公式和同底数幂的除法法则,正确掌握相关运算法则是解题关键.直接利用合并同类项法则,积的乘方运算法则、完全平方公式和同底数幂的除法法则分别计算得出答案.解:A.2a2+a2=3a2,故此选项错误;B.(−2a2)3=−8a6,故此选项错误;C.a2÷a3=1,正确;aD.(a−b)2=a2−2ab+b2,故此选项错误;故选C.3.答案:C解析:此题考查科学记数法的表示方法,以及近似数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解:1269亿=126900000000,用科学记数法表示为1.269×1011≈1.3×1011.故选C.4.答案:B解析:本题考查了一次函数图象与系数的关系:由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y 轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.k> 0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0得到y=kx+b的图象在一、三、四象限;k<0,b>0得到y=kx+b的图象在一、二、四象限;k<0,b<0得到y=kx+b的图象在二、三、四象限.根据一次函数图象与系数的关系进行判断.解:∵一次函数图象过第一、二、三象限,∴k>0,∵一次函数图象与y轴的交点在x轴上方,∴b>0.故选B.5.答案:B解析:此题考查了不等式的性质,熟练掌握不等式的性质是解本题的关键.根据不等式的性质:不等式左右两边都加上或减去同一个数或整式,不等号方向不变;不等式左右两边都乘以或除以同一个正数,不等号方向不变;不等式左右两边都乘以或除以同一个负数,不等号方向改变,即可做出判断.解:A、由a<b知4a<4b,此选项正确;B、由a<b知−2a>−2b,继而得−2a+4>−2b+4,此选项错误;C、由a<b知−4a>−4b,此选项正确;D、由a<b知3a<3b,继而得3a−4<3b−4,此选项正确;故选B.6.答案:D解析:本题考查了折线统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.折线统计图表示的是事物的变化情况,如气温变化图;根据观察图象的横坐标,可得时间,根据观察图象的纵坐标,可得气温.解:A.由横坐标看出4:00时气温最低,14:00时气温最高,故A正确;B.由纵坐标看出12:00时气温为30℃,故B正确;C.由纵坐标看出这一天温差约为9℃;故C正确;D.由横坐标看出气温是24℃的还有在0:00时,故D错误;故选D.7.答案:B×(5−2)×180°=108°,解析:解:在正五边形ABCDE中,∠A=15又知△ABE是等腰三角形,且AB=AE,(180°−108°)=36°.∴∠ABE=12故选:B.在等腰三角形△ABE中,求出∠A的度数即可解决问题.本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题是基础题,比较简单.8.答案:D解析:本题考查图形的变化,要求学生熟练掌握平移、旋转和轴对称变化的性质与运用.根据图形的平移、旋转和轴对称变化的性质与运用得出.解:根据题意可得:①②③都可以使△ABC变换成△PQR.故选:D.9.答案:A解析:本题考查了三角形的中位线定理,锐角三角函数的定义,解答此题关键是作出辅助线构造直角三角形,再进行计算.若想利用tan∠BCD的值,应把∠BCD放在直角三角形中,为此,过B作BE//AC交CD于E,得到△ACD 的中位线,可分别得到所求的角的正切值相关的线段的比.解:如图,过B作BE//AC交CD于E.∵AC⊥BC,∴BE⊥BC,∠CBE=90°,∴BE//AC.∵AB=BD,∴AC=2BE.又∵tan∠BCD=13,设BE=x,则BC=3x,AC=2x,∴tanA=BCAC =3x2x=32.故选A.10.答案:C解析:解:连接OA,∵∠B=40°,∴∠AOC=2∠B=80°,∵PA,PC均是⊙O的切线,∴∠OAP =∠OCP =90°,∴∠AOC +∠P =180°,∴∠P =100°,故选:C .可求出∠AOC =80°,利用切线的性质得∠AOC +∠P =180°,可求出∠P 的度数.本题考查了切线的性质及圆周角定理,注意圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.11.答案:B解析:由旋转的性质得:AB =AD =1,∠BAD =∠CAE =90°,再根据勾股定理即可求出BD . 本题考查了旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.也考查了勾股定理,掌握旋转的性质是解决问题的关键. 解:∵将△ABC 绕点A 逆时针旋转的到△ADE ,点C 和点E 是对应点,∴AB =AD ,∠BAD =∠CAE =90°,∴2AB 2=BD 2=4.则AB =√2故选B .12.答案:D解析:解:∵当x =a 或x =b(a ≠b)时,二次函数y =2x 2−2x +3的函数值相等,∴以a 、b 为横坐标的点关于直线x =12对称,则a+b 2=12, ∴a +b =1,∵x =a +b ,∴x =1,当x =1时,y =2x 2−2x +3=2−2+3=3,故选:D .先找出二次函数y =2x 2−2x +3的对称轴为直线x =12,求得a +b =1,再把x =1代入y =2x 2−2x +3即可.本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性和对称轴公式,是基础题,熟记性质和得出a +b =1是解题的关键.13.答案:−3解析:解:−3与−13互为倒数,则m═−3,故答案为:−3.根据乘积是1的两数互为倒数可得答案.此题主要考查了倒数,关键是掌握倒数定义. 14.答案:6解析:解:将数据重新排列为3、4、6、7、10,∴这组数据的中位数为6,故答案为:6.将数据重新排列,再根据中位数的概念求解可得.考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.15.答案:{x +y =352x +4y =94解析:此题考查了由实际问题抽象出二元一次方程组,解答本题的关键是仔细审题,根据等量关系得出方程组,难度一般.根据等量关系:上有三十五头,下有九十四足,即可列出方程组.解:设鸡有x 只,兔有y 只,由题意得:{x +y =352x +4y =94. 故答案为{x +y =352x +4y =94. 16.答案:m >2解析:本题考查的是反比例函数的图象及性质有关知识,根据题意可得:−3m+6<0即可解答.图象在第二、四象限,解:∵反比例函数y=−3m+6x∴−3m+6<0,解得:m>2.故答案为m>2.17.答案:3解析:本题考查的是正多边形和圆,熟知正六边形的半径与边长相等是解答此题的关键.根据圆内接正六边形边长与半径的关系即可得出结论.解:∵圆内接正六边形的周长为18,∴边长是3,∴圆的半径是3.故答案为318.答案:①③④解析:本题考查学相似三角形的判定和性质、正方形的性质,勾股定理等知识,解题的关键是正确寻找相似三角形,利用相似三角形的性质解决问题,属于中考常考题型.①正确,可以根据∠EDC=∠EFD= 90°,∠DEF=∠DEC,进行证明,②错误.先证明△AEF∽△CEA得∠EAF=∠ACE,通过计算发现AF≠FC即∠FAC≠∠FCA,由此可以作出判断.③正确.求出AF,即可解决问题.④正确,只要证明FC=4EF即可.解:设正方形ABCD边长为2a,则AE=ED=a,EC=√5a∵四边形ABCD是正方形,∴AB=BC=CD=AD=2a,∠ADC=90°,∵DF⊥EC,∴∠EDC=∠EFD=90°,∵∠DEF=∠DEC,∴△EDF∽△ECD,故①正确;∴EDEC =DFCD=EFED,∴√5a =DF2a=EFa,DE2=EF⋅EC,∴EF=√55a,DF=2√55a,FC=4√55a,∴FC=4EF,∴S△AFC=4S△AEF,故④正确;∴AE2=EF⋅EC,∴AEEF =ECAE,∵∠AEF=∠AEC,∴△AEF∽△CEA,∴AFAC =AEEC=EFAE,∠EAF=∠ACE,∴2√2a =√5a,∴AF=2√105a,∴AF≠FC,∴∠FAC≠∠FCA,∴∠EAF≠∠FAC,故②错误;∴AF:AB=2√105a:2a=√10:5=√2:√5,故③正确.故答案为①③④.19.答案:解:2cos60°−|−2|+(π−√3)0−(−3)−3=2×12−2+1+127=1−2+1+1 27=127.解析:本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、特殊角的三角函数值、绝对值等考点的运算.20.答案:解:过N点作ND⊥PQ于D,可得△ABC∽△QDN,∴ABBC =QDDN,又∵AB=2米,BC=1.6米,PM=1.2米,NM=0.8米,∴QD=AB⋅DNBC =2×1.21.6=1.5(米),∴PQ=QD+DP=QD+NM=1.5+0.8=2.3(米).答:木竿PQ的长度为2.3米.解析:本题考查了平行投影的知识,在同一时刻物高与影长成正比例;还考查了相似三角形的性质,相似三角形对应边成比例.只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出木竿PQ的长度.21.答案:解:原式=(m−2)2m−1÷[3m−1−(m+1)]=(m−2)2÷[3−m2−1] =(m−2)2m−1⋅−(m−1)(m+2)(m−2)=−m−2m+2,当m=√3−2时,原式=√3−2−23−2+2=√3−4√3=4√3−33.解析:先化简分式,然后将m的值代入计算即可.本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.22.答案:解:(1)调查的总人数是:19÷38%=50(人);(2)A组所占圆心角的度数是:360°×1550=108°;C组的人数有:50−15−19−4=12(人),补全条形图如图所示:(3)画树状图,共有12个可能的结果,恰好选中甲的结果有6个,∴P(恰好选中甲)=612=12.解析:【试题解析】本题考查了列表法与树状图法、条形统计图和扇形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数;(2)用360°乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数,从而补全统计图;(3)画出树状图,由概率公式即可得出答案.23.答案:证明:连接AE,∵∠ABC=60°,AB=BC,∴△ABC是等边三角形,∵AB//CD ,∠DAB =90°,∴∠ADC =∠DAB =90°,∴AC 为⊙O 的直径,∴∠AEC =90°,∵AC =AB ,∴EC =EB ,∵AB//CD ,∴∠CDE =∠BFE ,在三角形CDE 和三角形BFE 中,{∠CDE =∠BFE ∠CED =∠BEF CE =BE∴ΔCDE ≌ΔBFE (AAS )∴ED =EF ,∴四边形DBFC 是平行四边形,∴CF =DB .解析:本题考查的是三角形的外接圆和外心、平行四边形的判定和性质,掌握圆周角定理、平行四边形的判定定理是解题的关键.连接AE ,证明△ABC 是等边三角形,根据圆周角定理得到AC 为⊙O 的直径,得到∠AEC =90°,根据等腰三角形的性质得到EC =EB ,根据平行四边形的判定和性质定理证明即可.24.答案:解:(1)设乙工程队每天能完成道路的长度是xm ,根据题意得:400x −4002x =4,解得:x =50,经检验x =50是原方程的解,则甲工程队每天能完成道路的长度是50×2=100m .答:甲工程队每天能完成道路的长度是100m ,乙工程队每天能完成道路的长度是50m .(2)设应安排甲队工作y 天,根据题意得:0.4y +1800−100y 50×0.25≤8,解得:y ≥10.答:至少应安排甲队修建10天.解析:此题考查了分式方程的应用和一元一次不等式的应用有关知识.(1)设乙工程队每天能完成道路的长度是xm ,根据在独立完成400m 道路的长度时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y 天,根据这次的修路总费用不超过8万元,列出不等式,求解即可. 25.答案:解:(1)y =12x +2,当x =0时,y =2,当y =0时,x =−4,即A 点的坐标为(−4,0),C 点的坐标为(0,2),∵抛物线y =ax 2+bx +c 经过A ,C 两点,与x 轴的另一交点为点B ,其对称轴是x =−32. ∴{−b 2a =−3216a −4b +c =0c =2,解得:a =−12,b =−32,c =2,即抛物线解析式是y =−12x 2−32x +2;(2)存在,理由是:设△ABM 的边AB 上的高为ℎ′,∵点的坐标为(0,2),∴OC =2,∵S △ABC =12AB ×OC =12×AB ×2, ∵△MAB 与△ABC 的面积相等,∴12×AM ×ℎ=12×AB ×2,∴ℎ=2,当点M 在x 轴的上方时,把y =2代入y =−12x 2−32x +2得:x =0或−3,∵M 点和C 点不重合,C 的坐标为(0,2),∴M 的坐标为(−3,2);当点M 在x 轴的下方时,把y =−2代入y =−12x 2−32x +2得:−2=−12x 2−32x +2, 解得:x =−3+√412或−3−√412,此时M的坐标为(−3+√412,−2)或(−3−√412,−2);综合上述:抛物线上存在点M(点M不与点C重合),使△MAB与△ABC的面积相等,此时点M的坐标是(−3,2)或(−3+√412,−2)或(−3−√412,−2).解析:(1)求出A、C的坐标,得出方程组,求出方程组的解即可;(2)先根据面积求出△ABM的边AB上的高,即可得出点M的纵坐标,再代入函数解析式求出横坐标即可.本题考查了用待定系数法求二次函数的解析式,二次函数的性质,抛物线与x轴的交点问题,二次函数图象上点的坐标特征等知识点,能求出函数的解析式和求出M点的纵坐标是解此题的关键.26.答案:解:(1)∵四边形ABCD是正方形,∴BC=CD,∠BCD=∠CBG=∠D=90°,∵BG=DP,∴△BCG≌△DCP(SAS),∴CP=CG,∠BCG=∠DCP,∵∠PCG=45°,∴∠BCG+∠DCP=45°,∴∠DCP=∠BCG=22.5°,∴∠PCF=∠PCG+∠BCG=67.5°,在△PCG中,CP=CG,∠PCG=45°,∴∠CPG=12(180°−45°)=67.5°=∠PCF,∴PF=CF;(2)如图2,∵四边形ABCD是正方形,∴∠CBG=∠BCD=90°,过点C作CH⊥CG交AD的延长线于H,∴∠CDH=90°=∠HCG.∴∠BCG=∠DCH,∴△BCG≌△DCH(ASA),∴CG=CH,∵∠HCG=90°,∠PCG=45°,∴∠PCH=45°=∠PCG,∵CP=CP,∴△PCH≌△PCG(SAS),∴∠CPG=∠CPH,∵∠CPD+∠DCP=90°,∴∠CPF+∠DCP=90°,∵∠PCF+∠DCP=90°,∴∠CPF=∠PCF,∴PF=CF;(3)如图3,连接PN,由(2)知,PF=CF,∵EF⊥CP,∴PE=CE,∴EF是线段CP的垂直平分线,∴PN=CN,∴∠CPN=∠PCN,∵∠PCN=45°,∴∠CPN=45°,∴∠CNP=90°,∵PE=CE,∴EN=1CP,2在Rt△CDP中,CE=PE,∴DE=CE=1CP,2∴EN=DE,∴∠DNE=∠NDE,设∠DCP=α,∴∠CED=∠DCP=α,∴∠DEP=2α,∵∠PEF=90°,∴∠DEN=90°+2α,(180°−∠DEN)=45°−α,∴∠NDE=12∴∠NDC=∠NDE+∠CDE=45°−α+α=45°.解析:(1)先判断出△BCG≌△DCP(SAS),得出CP=CG,∠BCG=∠DCP,进而求出∠PCF=∠PCG+∠BCG=67.5°,再求出∠CPG=67.5°=∠PCF,即可得出结论;(2)先判断出△BCG≌△DCH(ASA),得出CG=CH,进而判断出△PCH≌△PCG(SAS),得出∠CPG=∠CPH,再用等角的余角相等判断出∠CPF=∠PCF,即可得出结论;(3)先判断出∠CNP=90°,再判断出EN=DE,得出∠DNE=∠NDE,设∠DCP=α,表示出∠CED=∠DCP=α,∠DEP=2α,即可得出结论.此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,直角三角形的判定和性质,三角形的外角的性质,判断出EN=DE是解本题的关键.。
2020年湖南省长沙市中考数学模拟试卷解析版

二、填空题(本大题共 6 小题,共 18.0 分)
13. 使代数式
有意义的实数 x 的取值范围为______.
14. 有 4 根细木棒,长度分别为 2cm,3cm,4cm,5cm,从中任选 3 根,恰好能搭成一
个三角形的概率是______.
25. 定义:在平面直角坐标系中,把点先向右平移 1 个单位,再向上平移 2 个单位的平 移称为一次斜平移.已知点 A(1,0),点 A 经过 n 次斜平移得到点 B,点 M 是线 段 AB 的中点.
A. (12,3)
B. (-12,3)或(12,-3)
C. (-12,-3)
D. (12,3)或(-12,-3)
11. 如图,已知⊙O 的半径为 5,弦 AB=8,CD=6,则图中
阴影部分面积为( )
A. π-24
B. 9π
C. π-12
D. 9π-6
12. 如图,点 O(0,0),A(0,1)是正方形 OAA1B 的 两个顶点,以 OA1 对角线为边作正方形 OA1A2B1,再 以正方形的对角线 OA2 作正方形 OA1A2B1,…,依此 规律,则点 A8 的坐标是( )
交于点 F,S△DEF:S△ABF=4:25,则 DE:EC= ______ .
18. 如图,在扇形 AOB 中,∠AOB=90°,正方形 CDEF 的顶点 C 是弧 AB 的中点,点 D 在 OB 上,点 E 在 OB 的延长线上,当 正方形 CDEF 的边长为 2 时,阴影部分的面积为______.
母刚好配套,那么可列方程为( )
A. 12×m=18×(28-m)×2
B. 12×(28-m)=18×m×2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省长沙市中考数学试卷一、选择题(在下列各题的四个选项中,只有一项是符合要求的,请在答题卡中填涂符合题意的选项,本大题共12个小题,每小题3分,共36分)1.(3.00分)﹣2的相反数是()A.﹣2 B.﹣ C.2 D.2.(3.00分)据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()A.0.102×105B.10.2×103C.1.02×104D.1.02×1033.(3.00分)下列计算正确的是()A.a2+a3=a5 B.3 C.(x2)3=x5D.m5÷m3=m24.(3.00分)下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm 5.(3.00分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.(3.00分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3.00分)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.8.(3.00分)下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件9.(3.00分)估计+1的值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间10.(3.00分)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min11.(3.00分)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米B.15平方千米 C.75平方千米 D.750平方千米12.(3.00分)若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P()A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个二、填空题(本大题共6个小题,每小题3分,共18分)13.(3.00分)化简:=.14.(3.00分)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为度.15.(3.00分)在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是.16.(3.00分)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是.17.(3.00分)已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为.18.(3.00分)如图,点A,B,D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD的延长线交BC于点C,则∠OCB=度.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第22、23题每小题6分,第25、26题每小题6分,共66分。
解答时写出必要的文字说明、证明过程或演算步骤)19.(6.00分)计算:(﹣1)2018﹣+(π﹣3)0+4cos45°20.(6.00分)先化简,再求值:(a+b)2+b(a﹣b)﹣4ab,其中a=2,b=﹣.21.(8.00分)为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图(得分为整数,满分为10分,最低分为6分)请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品?22.(8.00分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈141,≈1.73)23.(9.00分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?24.(9.00分)如图,在△ABC中,AD是边BC上的中线,∠BAD=∠CAD,CE∥AD,CE交BA 的延长线于点E,BC=8,AD=3.(1)求CE的长;(2)求证:△ABC为等腰三角形.(3)求△ABC的外接圆圆心P与内切圆圆心Q之间的距离.25.(10.00分)如图,在平面直角坐标系xOy中,函数y=(m为常数,m>1,x>0)的图象经过点P(m,1)和Q(1,m),直线PQ与x轴,y轴分别交于C,D两点,点M(x,y)是该函数图象上的一个动点,过点M分别作x轴和y轴的垂线,垂足分别为A,B.(1)求∠OCD的度数;(2)当m=3,1<x<3时,存在点M使得△OPM∽△OCP,求此时点M的坐标;(3)当m=5时,矩形OAMB与△OPQ的重叠部分的面积能否等于4.1?请说明你的理由.26.(10.00分)我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①=;②=;③“十字形”ABCD的周长为12.湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一项是符合要求的,请在答题卡中填涂符合题意的选项,本大题共12个小题,每小题3分,共36分)1.(3.00分)﹣2的相反数是()A.﹣2 B.﹣ C.2 D.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2的相反数是2,故选:C.2.(3.00分)据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()A.0.102×105B.10.2×103C.1.02×104D.1.02×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:10200=1.02×104,故选:C.3.(3.00分)下列计算正确的是()A.a2+a3=a5 B.3 C.(x2)3=x5D.m5÷m3=m2【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、3﹣2=,故此选项错误;C、(x2)3=x6,故此选项错误;D、m5÷m3=m2,正确.故选:D.4.(3.00分)下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm 【分析】结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.5.(3.00分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.6.(3.00分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出各不等式的解集,再求出其公共解集即可.【解答】解:解不等式x+2>0,得:x>﹣2,解不等式2x﹣4≤0,得:x≤2,则不等式组的解集为﹣2<x≤2,将解集表示在数轴上如下:故选:C.7.(3.00分)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.【分析】根据面动成体以及圆台的特点进行逐一分析,能求出结果.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.8.(3.00分)下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【解答】解:A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选:C.9.(3.00分)估计+1的值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.【解答】解:∵32=9,42=16,∴,∴+1在4到5之间.故选:C.10.(3.00分)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min【分析】根据函数图象判断即可.【解答】解:小明吃早餐用了(25﹣8)=17min,A错误;小明读报用了(58﹣28)=30min,B正确;食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.11.(3.00分)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米B.15平方千米 C.75平方千米 D.750平方千米【分析】直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.【解答】解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为:×5×500×12×500=7500000(平方米)=7.5(平方千米).故选:A.12.(3.00分)若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P()A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个【分析】根据题意可以得到相应的不等式,然后根据对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),即可求得点P的坐标,从而可以解答本题.【解答】解:∵对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),∴x02﹣16≠a(x0﹣3)2+a(x0﹣3)﹣2a∴(x0﹣4)(x0+4)≠a(x0﹣1)(x0﹣4)∴(x0+4)≠a(x0﹣1)∴x0=﹣4或x0=1,∴点P的坐标为(﹣7,0)或(﹣2,﹣15)故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3.00分)化简:=1.【分析】根据分式的加减法法则:同分母分式加减法法则:同分母的分式想加减,分母不变,把分子相加减计算即可.【解答】解:原式==1.故答案为:1.14.(3.00分)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为90度.【分析】根据圆心角=360°×百分比计算即可;【解答】解:“世界之窗”对应扇形的圆心角=360°×(1﹣10%﹣30%﹣20%﹣15%)=90°,故答案为90.15.(3.00分)在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(1,1).【分析】直接利用平移的性质分别得出平移后点的坐标得出答案.【解答】解:∵将点A′(﹣2,3)向右平移3个单位长度,∴得到(1,3),∵再向下平移2个单位长度,∴平移后对应的点A′的坐标是:(1,1).故答案为:(1,1).16.(3.00分)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是.【分析】先统计出偶数点的个数,再根据概率公式解答.【解答】解:正方体骰子共六个面,点数为1,2,3,4,5,6,偶数为2,4,6,故点数为偶数的概率为=,故答案为:.17.(3.00分)已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为2.【分析】设方程的另一个根为m,根据两根之和等于﹣,即可得出关于m的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=2.故答案为:2.18.(3.00分)如图,点A,B,D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD的延长线交BC于点C,则∠OCB=50度.【分析】由圆周角定理易求∠BOC的度数,再根据切线的性质定理可得∠OBC=90°,进而可求出求出∠OCB的度°°【解答】解:∵∠A=20°,∴∠BOC=40°,∵BC是⊙O的切线,B为切点,∴∠OBC=90°,∴∠OCB=90°﹣40°=50°,故答案为:50.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第22、23题每小题6分,第25、26题每小题6分,共66分。