圆轴扭转综合习题

合集下载

材料力学专项习题练习4扭转

材料力学专项习题练习4扭转

扭 转1. 一直径为1D 的实心轴,另一内径为d , 外径为D , 内外径之比为22d D α=的空心轴,若两轴横截面上的扭矩和最大切应力均分别相等,则两轴的横截面面积之比12/A A 有四种答案:(A) 21α-; (B)(C);(D)。

2. 圆轴扭转时满足平衡条件,但切应力超过比例极限,有下述四种结论: (A) (B) (C) (D) 切应力互等定理: 成立 不成立 不成立 成立 剪切胡克定律: 成立 不成立 成立 不成立3. 一内外径之比为/d D α=的空心圆轴,当两端承受扭转力偶时,若横截面上的最大切应力为τ,则内圆周处的切应力有四种答案:(A) τ ; (B) ατ; (C) 3(1)ατ-; (D) 4(1)ατ-。

4. 长为l 、半径为r 、扭转刚度为p GI 的实心圆轴如图所示。

扭转时,表面的纵向线倾斜了γ角,在小变形情况下,此轴横截面上的扭矩T 及两端截面的相对扭转角ϕ有四种答案:7. 图示圆轴料的切变模量(A) 43π128d G a ϕ(C) 43π32d G a ϕ8. 一直径为D 重量比21W W 9. 想弹塑性材料, 等直圆轴的极限扭矩是刚开始出现塑性变形时扭矩的 倍。

10. 矩形截面杆扭转变形的主要特征是 。

1-10题答案9. 横截面上的切应力都达到屈服极限时圆轴所能承担的扭矩;4/3 10. 横截面翘曲11. 已知一理想弹塑性材料的圆轴半径为R ,扭转加载到整个截面全部屈服,将扭矩卸掉所产生的残余应力如图所示,试证明图示残余应力所构成的扭矩为零。

证:截面切应力 41 03s R R ρρττρ⎛⎫=-≤≤ ⎪⎝⎭截面扭矩 04d 12πd 03Rs s A T A R ρρτρτρρ⎛⎫==-⋅= ⎪⎝⎭⎰⎰ 证毕。

12. 图示直径为d 的实心圆轴,两端受扭转力偶e M 用1/m C τγ=表示,式中C ,m 为由实验测定的已知常数,试证明该轴的扭转切应力计算公式为:1/e (31)/2π()23m 1mm mM m d ρρτ+=+ s /3证:几何方面 d d xρϕγρ= 物理方面 1/1/d d mmC C x ρϕτγρ⎛⎫== ⎪⎝⎭静力方面 1//21/e 0d d 2πd d md mAM T A C x ρϕρτρρρρ⎛⎫==⋅⋅=⋅⋅ ⎪⎝⎭⎰⎰1//221/0d 2πd d m d mC x ϕρρ+⎛⎫= ⎪⎝⎭⎰(31)/1/()d 22π(31)d m mmd C m x mϕ+⎛⎫= ⎪+⎝⎭1/e (31)/(31)d d 2π()2mm m M m d x Cm ϕ++⋅⎛⎫=⎪⎝⎭⋅ 所以 1/e (31)/2π()23m 1mm mM m d ρρτ+=+ 证毕。

扭转典型习题解析

扭转典型习题解析

扭转典型习题解析1 一内径d =100mm 的空心圆轴如图示,已知圆轴受扭矩m kN 5⋅=T ,许用切应力][τ=80MPa ,试确定空心圆轴的壁厚。

解题分析:因为不知道壁厚,所以不能确定是不是薄壁圆管。

分别按薄壁圆管和空心圆轴设计。

解: 1、按薄壁圆管设计薄壁圆管扭转时,假设切应力沿壁厚均匀分布,设壁厚为δ,平均半径为2/0)(δ+=d R ,则扭转切应力为 δτ20π2R T=强度条件为][ττ≤,于是得][π22τδδTd =+)( ][π22223τδδδTd d =++ ()Pa1080πm N 1052m 10100m 1010026323233××⋅××=×+××+−−δδδ解得 mm 70.3m 1070.33=×=−δ 2、按空心圆轴设计强度条件为 ][pmax ττ≤=W T将δ216π44p +=−=d D d D DW );(代入得][π16][π][π164444=−−≤−τττd TD D d D DT,)(0Pa)108(m 1.0πm N 10516Pa 1080π64346=××−×⋅××−×××)(D D解得mm 107.7m 10107.73=×=−Dmm 85.32mm100mm 7.1072=−=−=d D δ 比较可知,两种设计的结果非常接近。

讨论: 当10/0R ≤δ时,即认为是薄壁圆管,可以直接使用薄壁管扭转公式。

2 图示受扭圆杆,沿平面ABCD 截取下半部分为研究对象,如图b 所示。

试问截面ABCD 上的切向内力所形成的力偶矩将由哪个力偶矩来平衡?解题分析:由切应力互等定理可知截面ABCD 上的切向内力分布及其大小。

该截面上切向内力形成一个垂直向上的力偶矩。

在图b 中,左右两个横截面上的水平切向内力分量形成垂直于截面ABCD 的竖直向下的力偶矩,正好与截面ABCD 上切向内力的合力偶矩平衡。

材料力学 扭转2 习题及参考答案

材料力学  扭转2 习题及参考答案

扭转 第二次 作业1. 已知图示实心圆轴的直径d = 100mm 。

材料的剪切弹性模量G = 80GPa 。

(1)求1-1横截面上A 、B 、C 三点的切应力;(2)求1-1横截面上A 点的切应变;(3)整个圆轴上最大的切应力。

2kN·m6kN·m10kN·m2kN·m1-1截面2kN·m4kN·m10kN·m解:由圆轴的扭矩图可知,1-1截面的扭矩T 1 = 4kN·m ,最大扭矩T max = 10kN·m圆截面的极惯性矩 4464π 3.140.19.8110m 3232P d I -⨯===⨯扭矩截面系数 3343π 3.140.1 1.9610m 1616P d W -⨯===⨯(1) 3714410 2.0410Pa 20.4MPa 1.9610A B P T W ττ-⨯====⨯=⨯ 1110.2MPa 2C A P T I ρττ=== (2)由剪切胡克定律 Gτγ=得63920.4100.255108010AA G τγ-⨯===⨯⨯ (3)对于等截面圆轴,最大切应力出现在扭矩最大截面的最外缘37max max41010 5.1010Pa 51.0MPa 1.9610P T W τ-⨯===⨯=⨯ 2. 阶梯状圆轴如图所示,AE 段为空心,外直径D = 140mm ,内直径d = 100mm ;BC 段为实心,直径d = 100mm 。

外力偶矩M A = 18kN·m ,M B = 32kN·m ,M C = 14kN·m 。

已知许用切应力[τ ] = 80MPa 。

试校核该轴的强度。

18kN·m14kN·m解:由扭矩图可知T AB = 18kN·m , |T BC | =14kN·mAE 段()4334431π 3.140.1410011 3.9810m 1616140P D W α-⎛⎫⨯⎛⎫=-=-=⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭[]36max41181045.210Pa 45.2MPa<3.9810AB P T W ττ-⨯===⨯=⨯ BC 段33432π 3.140.1 1.9610m 1616P d W -⨯===⨯ []36max 42141071.410Pa 71.4MPa<1.9610BC P T W ττ-⨯===⨯=⨯ 故,该轴安全。

第六章 圆轴扭转练习带

第六章 圆轴扭转练习带

第六章圆轴的扭转一、填空题1、圆轴扭转时的受力特点是:一对外力偶的作用面均_______于轴的轴线,其转向______。

2、圆轴扭转变形的特点是:轴的横截面积绕其轴线发生________。

3、在受扭转圆轴的横截面上,其扭矩的大小等于该截面一侧(左侧或右侧)轴段上所有外力偶矩的_______。

4、圆轴扭转时,横截面上任意点的切应力与该点到圆心的距离成___________。

5、试观察圆轴的扭转变形,位于同一截面上不同点的变形大小与到圆轴轴线的距离有关,显然截面边缘上各点的变形为最_______,而圆心的变形为__________。

6、圆轴扭转时,在横截面上距圆心等距离的各点其切应力必然_________。

7、从观察受扭转圆轴横截面的大小、形状及相互之间的轴向间距不改变这一现象,可以看出轴的横截面上无____________力。

8、圆轴扭转时,横截面上切应力的大小沿半径呈______规律分布。

10、圆轴扭转时,横截面上内力系合成的结果是力偶,力偶作用于面垂直于轴线,相应的横截面上各点的切应力应垂直于_________。

11、受扭圆轴横截面内同一圆周上各点的切应力大小是_______的。

12、产生扭转变形的一实心轴和空心轴的材料相同,当二者的扭转强度一样时,它们的_________截面系数应相等。

13、横截面面积相等的实心轴和空心轴相比,虽材料相同,但_________轴的抗扭承载能力要强些。

16、直径和长度均相等的两根轴,其横截面扭矩也相等,而材料不同,因此它们的最大剪应力是________同的,扭转角是_______同的。

17、产生扭转变形的实心圆轴,若使直径增大一倍,而其他条件不改变,则扭转角将变为原来的_________。

18、两材料、重量及长度均相同的实心轴和空心轴,从利于提高抗扭刚度的角度考虑,以采用_________轴更为合理些。

二、判断题1、只要在杆件的两端作用两个大小相等、方向相反的外力偶,杆件就会发生扭转变形。

(修订)第7章 圆轴的扭转-习题解答

(修订)第7章 圆轴的扭转-习题解答

第7章 圆轴的扭转 习题解答题7-1 (a) 解: 题7-1 (b) 解:题7-2 (a) 解:4.5kN ·m 1.5kN ·m 2kN ·kN 125.15.41⋅-=++-=T 1.5kN ·m 2kN ·mT 2m kN 5.325.12⋅=+=T2kN ·mT m kN 23⋅=T 3题7-3 解:(1)计算各轮的转矩:(2)计算各段轴的扭矩:AB 段 m N 59.114e ⋅-=-=A AB M TBC 段 m 152.78N m N 37.267m N 59.114e e ⋅=⋅+⋅-=+-=B A BC M M T CD 段 m N 29.57e ⋅==D CD M T (3)绘制扭矩图题7-4 解:(1)计算各段轴的扭矩AB 段 BC 段CD 段(2)计算各截面上的最大切应力1-1截面 ()53M P a Pa 103.5mm kN 3.11616733P max 1=⨯=10⨯50π⋅⨯=π==3-AB AB AB D T W T A B τ 2-2截面 ()20.5M P a Pa 1005.2mmkN 7.11616733P max 2=⨯=10⨯75π⋅⨯=π==3-BC BC BC D T W T B C τm57.29N m N 2505.195499549m 95.49N m N 2505.295499549m 114.59N m N 250395499549e e e ⋅=⋅==⋅=⋅==⋅=⋅==n P M n P M n P M D D C CA A m267.37N m N 250795499549e ⋅=⋅==n P M B B m kN 7.0m1.7kN m 3kN m kN 3.1m kN 3.1e e e e ⋅==⋅=⋅+⋅-=+-=⋅-=-=D CD B A BC A AB M T M M T M T3-3截面 ()28.5M P a Pa 1085.2m1050m kN 7.016167333P max 3=⨯=⨯π⋅⨯=π==-CD CD CD D T W T CD τ (3)绘制扭矩图题7-5 解:(1)计算轴上扭矩m 716.18N m N 1005.795499549⋅=⋅==n P T (2)计算实心轴D 1[]45m m m 104.5m 18.71616162-331=⨯=10⨯40⨯π⨯=π≥6τT D (3)计算空心轴D 2[]46m m m 106.4m )18.71616)1(162342=⨯=0.5-(1⨯10⨯40⨯π⨯=-π≥-463ατT D题7-6 解:(1)校核轴的强度()51M P aPa 10519025.2901m mN 105.116)1(16643343P max=⨯=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⨯--⨯10⨯90⨯π⋅⨯⨯=-π==3-ατD T W T []M P a60MPa 51max =<=ττ (2)计算实心轴D 153m m m 105.3m 1051105.116162-63max 1=⨯=⨯⨯π⨯⨯=π≥33τT D (3)比较空心轴与实心轴的重量之比()()()()31.0mm 26.5mm 42.5452D 5.22D 2D 222222122=-=⎪⎭⎫ ⎝⎛π--π==实心轴空心轴实心轴空心轴A A W W题7-7 解:(1)计算最大起重载荷W(2)计算轴的直径由于轴上各段的扭矩绝对值相等,故只需计算一段轴的直径即可。

材料力学典型例题及解析 3.扭转典型习题解析

材料力学典型例题及解析 3.扭转典型习题解析

的切向内力所形成的力偶矩将由哪个力偶矩来平衡?
A M
B
A
M
B
C
z
D
A
(a)
C

ρ
R
(c)
D
题2图
BC Dx
(b)
θ dθ
(d)
解题分析:由切应力互等定理可知截面ABCD上的切向内力分布及其大小。该截面上切向内
力形成一个垂直向上的力偶矩。在图b中,左右两个横截面上的水平切向内力分量形成垂直
于截面ABCD的竖直向下的力偶矩,正好与截面ABCD上切向内力的合力偶矩平衡。
应力相等的条件下,试确定空心轴的外径,并比较实心轴和空心轴的重量。
解题分析:用空心轴代替实心轴,须保证二者强度相同。根据强度条件可求出D值,再用面
积比得出重量比。
解:1、根据两轴切应力相等的条件,确定空心轴外径
Tmax = Tmax = [τ ] WP实 WP空
πd 3 = πD3 (1 − α 4 ) 16 16
解得 D = 107.7 ×10−3 m = 107.7 mm
δ = D − d = 107.7mm −100mm = 3.85 mm
2
2
比较可知,两种设计的结果非常接近。
讨论: 当 δ ≤ R0 /10 时,即认为是薄壁圆管,可以直接使用薄壁管扭转公式。
2 图示受扭圆杆,沿平面ABCD截取下半部分为研究对象,如图b所示。试问截面ABCD上
4
即在强度相同条件下,空心轴可以节约近30%的材料。
讨论:在实际工程中常用空心圆轴代替实心圆轴,在保障安全运行的前提下,可以节约材料。
5 已知钻探机杆的外径D = 60 mm,内径d = 50 mm,功率P = 7.46 kW,转速n =180 r/min, 钻杆入土深度l = 40 m,G = 80 GPa,[τ]= 40 MPa。设土壤对钻杆的阻力是沿长度均匀分布 的,试求:(1) 单位长度上土壤对钻杆的阻力矩M;(2) 作钻杆的扭矩图,并进行强度校核; (3) 求A、B两截面相对扭转角。 解题分析:根据题意,为圆轴扭转问题。土壤对钻杆的阻力形成扭力矩作用在钻杆上,并沿

材料力学专项习题练习扭转

材料力学专项习题练习扭转

扭 转1. 一直径为1D 的实心轴,另一内径为d , 外径为D , 内外径之比为22d D α=的空心轴,若两轴横截面上的扭矩和最大切应力均分别相等,则两轴的横截面面积之比12/A A 有四种答案:(A) 21α-; (B)(C); (D)。

2. 圆轴扭转时满足平衡条件,但切应力超过比例极限,有下述四种结论: (A) (B) (C) (D) 切应力互等定理: 成立 不成立 不成立 成立 剪切胡克定律: 成立 不成立 成立 不成立3. 一内外径之比为/d D α=的空心圆轴,当两端承受扭转力偶时,若横截面上的最大切应力为τ,则内圆周处的切应力有四种答案:(A) τ ; (B) ατ; (C) 3(1)ατ-; (D) 4(1)ατ-。

4. 长为l 、半径为r 、扭转刚度为p GI 的实心圆轴如图所示。

扭转时,表面的纵向线倾斜了γ角,在小变形情况下,此轴横截面上的扭矩T 及两端截面的相对扭转角ϕ有四种答案:7. 图示圆轴料的切变模量(A) 43π128d G a ϕ(C) 43π32d G a ϕ8. 一直径为D重量比21W W 9. 想弹塑性材料, 等直圆轴的极限扭矩是刚开始出现塑性变形时扭矩的 倍。

10. 矩形截面杆扭转变形的主要特征是 。

1-10题答案:1. D 2. D 3. B 4. C 5. B 6. C 7. B 8. 0.479. 横截面上的切应力都达到屈服极限时圆轴所能承担的扭矩;4/3 10. 横截面翘曲11. 已知一理想弹塑性材料的圆轴半径为R ,扭转加载到整个截面全部屈服,将扭矩卸掉所产生的残余应力如图所示,试证明图示残余应力所构成的扭矩为零。

证:截面切应力 4103s R R ρρττρ⎛⎫=-≤≤ ⎪⎝⎭截面扭矩 04d 12πd 03Rs s A T A R ρρτρτρρ⎛⎫==-⋅= ⎪⎝⎭⎰⎰ 证毕。

12. 图示直径为d 的实心圆轴,两端受扭转力偶e M 用1/m C τγ=表示,式中C ,m 为由实验测定的已知常数,试证明该轴的扭转切应力计算公式为:1/e (31)/2π()23m 1mm mM m d ρρτ+=+s /3证:几何方面 d d xρϕγρ= 物理方面 1/1/d d mmC C x ρϕτγρ⎛⎫== ⎪⎝⎭静力方面 1//21/e 0d d 2πd d md mAM T A C x ρϕρτρρρρ⎛⎫==⋅⋅=⋅⋅ ⎪⎝⎭⎰⎰1//221/0d 2πd d m d mC x ϕρρ+⎛⎫= ⎪⎝⎭⎰(31)/1/()d 22π(31)d m mmd C m x mϕ+⎛⎫= ⎪+⎝⎭1/e (31)/(31)d d 2π()2mm m M m d x Cm ϕ++⋅⎛⎫=⎪⎝⎭⋅ 所以 1/e (31)/2π()23m 1mm mM m d ρρτ+=+ 证毕。

材料力学 扭转习题

材料力学 扭转习题

IP2
T1 G1IP1 T2 G2IP2
2
1
扭转练习题
圆轴由两种材料组成,其剪切模量分别为G1和G2。设受扭时二者 之间无相对滑动,G1 2G2,则其横截面上的剪应力分布为( )。
T oG1 G2 d
G1 o G2
( A)
G1 o G2
(B)
D
答案: D
G1 o G2
(C )
处于线弹性、小变形状态,则(c)加载情况下的应力
与变形等于(a)和(b)两种情况的叠加。 ( )
m1
d l
m2
d l/2 l/2
m2 m1
d l/2 l/2
(a)
(b)
(c)
答案:

一内径为d、外径为D=2d的空心圆管与一直径为d的实
心圆杆结合成一组合圆轴,共同承受转矩Me。圆管与圆 杆的材料不同,其切变模量分别为G1和G2,且G1=G2/2, 假设两杆扭转变形时无相对转动,且均处于线弹性范围。
扭转练习题
一、填空
1.空心圆轴外径为D,内径为d=D/2,两端受扭转力偶 mx 作 用,则其横截面上剪应力呈( )分布, max ( ), min ( )。
答案:
线性,12556mDx3
,1
/
2

max
2.圆截面杆扭转时,其变形特点是变形过程中横截面始 终保持( ),即符合( )。非圆截面杆扭转时,其 变形特点是变形过程中横截面发生( ),即不符合 ( )。
试问两杆横截面上的最大切应力之比τ1/τ2为多大?并画 出沿半径方向的切应力变化规律。
因两杆扭转变形时无相对转动
Me 1 2
1 2
T1

D 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选择题
1.若矩形截面梁的高度和宽度分别增大一倍,其抗弯截面系数将增大()
A.2倍B.4倍C.8倍D.16倍
2.一般机械零件的工作应力应该小于(),以免受力过大,产生塑性变形而失效。

( )
A.强度极限B.最大拉力C.内力D.屈服强度
3、受扭空心圆轴截面上扭转切应力的分布图中,正确的是()
4、图3悬臂梁受力。

其中()。

A.AB段是纯弯曲,BC段是剪切弯曲 B.AB段是剪切弯曲,BC段是纯弯曲;C.全梁均是纯弯曲; D.全梁均为剪切弯曲
5、一等截面铸铁梁的弯矩图如图所示,设计梁的截面时,最合理的截面应该是
图()
6、实心圆轴扭转,其他条件不变,若要最大切应力变为原来的8倍,则轴的直径应变为原来的()A、1╱2 B、不变C、2倍D、8倍
判断题
1.受弯矩的杆件,弯矩最大处最危险。

(×)
2、剪切和挤压总是同时产生,所以剪切面和挤压面是同一个面。

(×)简答题
1、三根材料的σ——ε曲线如图所示,试说明哪种材料的强度高?哪种材
料的塑性好?在弹性范围内哪种材料的弹性模量大?( 3分)
2.什么是危险应力?(极限应力)(2分)
填空题
1.杆件的基本变形有,,,。

2、直径为4mm的钢筋,一端固定,另一端施加20KN的拉力,则钢筋横截面上的正应力为 MPa
计算题
1. 矩形截面的木拉杆的接头如图所示。

已知轴向拉力F=50kN,截面宽度b=250mm,木材的顺纹许用挤压应力[σbs]=10MPa,顺纹许用切应力[τ]=1MPa。

求接头处所需的尺寸l和a。

相关文档
最新文档