水箱变高了-课后作业

合集下载

北师大版七年级数学上册5.3 应用一元一次方程——水箱变高了 一课一练

北师大版七年级数学上册5.3  应用一元一次方程——水箱变高了 一课一练

5.3 应用一元一次方程——水箱变高了一、选择题(每小题4分,共12分)1.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出了这块矿石的体积.如果他量出玻璃杯的内直径是d,把矿石完全浸没在水中,测出杯中水面上升的高度为h,则小明的这块矿石体积是( )A.d2hB.d2hC.πd2hD.4πd2h2.小明用长250cm的铁丝围成一个长方形,并且长方形的长比宽多25cm,设这个长方形的长为x cm,则x等于( )A.75 cmB.50 cmC.137.5 cmD.112.5 cm3.请根据图中给出的信息,可得正确的方程是( )A.π·()2x=π·()2·(x+5)B.π·()2x=π·()2·(x-5)C.π·82x=π·62(x+5)D.π·82x=π·62×5二、填空题(每小题4分,共12分)4.一根内径为3cm的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8cm、高为1.8cm的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了cm.5.用直径为4cm的圆钢,铸造三个直径为2cm,高为16cm的圆柱形零件,则需要截取的圆钢长cm.6.用5个一样大小的小长方形恰好可以拼成如图所示的大长方形,若大长方形的周长是14,则小长方形的长是,宽是.答案解析1.【解析】选A.根据圆柱的体积公式可得这块矿石的体积为:d2h.2.【解析】选A.根据题意得:2(x+x-25)=250,解得:x=75.3.【解析】选 A.根据圆柱的体积公式求得大量筒中的水的体积为:π×()2x.小量筒中的水的体积为:π×()2×(x+5).根据等量关系列方程得:π×()2x=π×()2(x+5).4.【解析】设试管中的水的高度下降了xcm,根据题意得:π·1.52·x=π·42×1.8,解方程得:x=12.8.答案:12.85.【解析】设截取的圆钢长xcm.根据题意得:π×()2x=3×π×()2×16,解方程得:x=12.答案:126.【解析】设小长方形的宽为x,则长为2x,由题意得:(5x+2x)×2=14,解方程得x=1,即小长方形的宽为1,长为2. 答案:2 1。

数学北师大版七年级上册《水箱变高了》课后作业

数学北师大版七年级上册《水箱变高了》课后作业

七年级上《5.3应用一元一次方程——水箱变高了》课后作业
1.已知长方形的周长是30 cm,长比宽多3 cm,这个长方形的面积是________.
2.用一根铁丝围成一个长24 cm,宽12 cm的长方形,如果要制成一个正方形,那么这个正方形的面积是________cm2.
3.班级筹备运动会要做直角边分别为0.4 m和0.3 m的三角形小旗64面,则需要长1.6 m,宽1.2 m的长方形红纸________张.4.一个长方形的周长是26 cm,把它的长减少3 cm,而宽增加2 cm 后就得到一个正方形,则这个正方形的面积为________.
5.把一个半径为3的铁球融化后,能铸造________个半径为1的小铁球.(球体积公式为:V=πr3)
6.有一个底面半径为5 cm的圆柱形储油器,油液中浸有钢珠,若从中捞出546πg钢珠,问液面下降多少厘米(1 cm3钢珠为7.8 g)?
7.用一根长为10 m的铁丝围成一个长方形,
(1)使该长方形的长比宽多1.4 m,此时长方形的面积是多少?
(2)使该长方形的长与宽相等,此时正方形的面积是多少?
(3)比较(1)与(2)的大小,请说出用这根铁丝围成什么样的图形面积最大?。

2021年秋北师大版七年级上册数学习题课件:应用一元一次方程——水箱变高了

2021年秋北师大版七年级上册数学习题课件:应用一元一次方程——水箱变高了

14.用直径为40 mm的圆钢1 m,拉成直径为4 mm的钢丝,则钢丝的长为 ___1_0_0____m.
15.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部 更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节 能灯有____5_5__盏.
三、解答题(共32分) 16.(10分)用两根等长的铁丝,分别绕成一个正方形和一个圆.已知正方 形的边长比圆的半径长2(π-2)米,求这两根等长的铁丝的长度,并通过计 算说明哪个的面积大? 解:设圆的半径为r,则2πr=4(r+2π-4),解得r=4.则圆的面积为π·42= 16π,正方形面积4π2,16π>4π·π=4π2,∴圆的面积较大
2021年秋北师大版七年 级上册数学习题课件: 应用一元一次方程——
水箱变高了
1.等_不__变_____,利用变化前的体积=变化后的体积列方程求解.
2.等长变形:如一根铁丝围成不同的图形,形状面积发生变化但周长 ____不__变_____,利用变化前的周长=变化后的周长列方程求解.
7.(4分)如图所示的是用铁丝围成的一个梯形,将其改成一个长和宽比为 2∶1的长方形,那么该长方形的长为___1_1___,宽为_5_._5____.
8.(8分)用长为10 m的铁丝沿墙围成一个长方形(墙的一面为长方形的长 ,不用铁丝),长方形的长比宽长1 m,求长方形的面积.
解:设宽为x m,长为(x+1)m,根据题意,得2x+(x+1)=10.解方程, 得x=3.所以x+1=4(m).故长方形的面积为:3×4=12(m2).答:长方形的 面积为12 m2
10.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面 积分别为80 cm2,100 cm2,且甲容器装满水,乙容器是空的.若将甲中的 水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8 cm,甲的 容积为( C )

5.3水箱变高了

5.3水箱变高了

周长一定的长方形,长和宽的 差值越小,长方形的面积越大.
当长和宽相等时(即为正方形 时),长方形(正方形)的面 积最大.
应用方程解决问题的一般步骤:
审 设 列 解 答
审清题意,找出等量关系 设出未知数把有关的量用含有未知 数的代数式表示 根据等量关系列出方程。 解方程
检验作答
P142 随堂练习
(3)使得该长方形的长和宽相等,即 围成一个正方形,此时正方形的边长是 多少米?围成的面积与(2)所围成的 面积相比,又有什么变化? 解:设正方形的边长为x米. 由题意得 4x = 10. 解,得 x=2.5. 边长为:2.5米; 面积为:2.5×2.5=6.25(平方米). 面积增加:6.25-6.09=0.16(平方米)
提示:变化前的体积=变化后的体积
例 用一根长10米的铁丝围成一个长方形 (1)使得该长方形的长比宽多1.4 米, 此时长方形的长、宽各是多少米呢? 等量关系: (长+宽)× 2 = 周长. 解:(1)设长方形的宽为x米,则 它的长为(x+1.4) 米, 2 ( x+1.4 +x ) =10. 解,得 x=1.8. 长为:1.8+1.4=3.2(米); 答:长方形的长为3.2米,宽为1.8米.
(1) 正方形的周长公式 . S=a2 (2)长方形的周长公式 . S=ab (3)圆的周长公式 式 S=πr2 .
C=4a
面积公式
C=2(a+b) 面积公式
面积公 .
C=2πr
1 2 (a+b)h
(4)梯形的面积公式 S=
(5)长方体的体积公式 V=abc
(6)圆柱体的体积公式
.
.
2h V= πr
习题5.6 144页 问题解决 2 3 (必做) 数学理解 1 (选做) 全品53页(选做5,8)

应用一元一次方程水箱变高了课后作业

应用一元一次方程水箱变高了课后作业

5.3 应用一元一次方程——水箱变高了1.小英的爸爸买回家两块地毯,他告诉小英,小地毯的面积正好是大地毯面积的13,且两块地毯的面积和为20平方米,小英很快算出了大、小地毯的面积分别为(单位:平方米)( ) A .403,203B .30,10C .15,5D .12,82.要锻造直径为2厘米,高为16厘米的圆柱形机器零件10件,则需直径为4厘米的圆钢柱长( )A .10厘米B .20厘米C .30厘米D .40厘米3.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的15,水中部分是淤泥中部分的2倍多1米,露出水面的竹竿长1米.设竹竿的长度为x 米,则可列出方程( )A .15x +25x +1=xB .15x +25x +1+1=xC .15x +25x +1-1=xD .15x +25x =14.已知长方形的周长是30 cm ,长比宽多3 cm ,这个长方形的面积是________.5.用一根铁丝围成一个长24 cm ,宽12 cm 的长方形,如果要制成一个正方形,那么这个正方形的面积是________cm 2.6.班级筹备运动会要做直角边分别为0.4 m 和0.3 m 的三角形小旗64面,则需要长1.6 m ,宽1.2 m 的长方形红纸________张.7.一个长方形的周长是26 cm ,把它的长减少3 cm ,而宽增加2 cm 后就得到一个正方形,则这个正方形的面积为________.8.把一个半径为3的铁球融化后,能铸造________个半径为1的小铁球.(球体积公式为:V =43πr 3) 9.有一个底面半径为5 cm 的圆柱形储油器,油液中浸有钢珠,若从中捞出546π g 钢珠,问液面下降多少厘米(1 cm 3钢珠为7.8 g )?10.用一根长为10 m的铁丝围成一个长方形,(1)使该长方形的长比宽多1.4 m,此时长方形的面积是多少?(2)使该长方形的长与宽相等,此时正方形的面积是多少?(3)比较(1)与(2)的大小,请说出用这根铁丝围成什么样的图形面积最大?11、图①是边长为30 cm的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________cm3.。

《水箱变高了》教案

《水箱变高了》教案

《水箱变高了》教案《《水箱变高了》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教学目标:1.能找到图形问题中的基本等量关系,并由此关系列方程解相关的应用题.2.进一步体会运用方程解决问题的关键是抓住等量关系,认识方程模型的重要性.教学重点:1.寻找图形问题中的等量关系,建立方程.2.根据具体问题列出的方程,掌握其简单的解方程的方法.教学难点:寻找图形问题中的等量关系,建立一元一次方程,使实际问题数学化.教学方法:直观——自主探索的方法在教师的引导下,通过学生亲自动手制作模型,自主探索在模型变化过程中的等量关系,建立方程,从而将图形问题代数化.课时安排:1课时教学过程:一、创新问题情境,引入新课在我们的现代社会里,人们不经意地就会听到或看到一些“减肥”的广告.一听别人说自己最近胖了,就考虑怎样减去多余的脂肪.我们今天就来研究“减肥”——水箱变高了二、引导操作,探索新知1.做一做现在拿出你们准备好的橡皮泥,先用这块橡皮泥捏出一个“矮胖”的圆柱体;然后再让这个“矮胖”的圆柱“变瘦”,变成一个又高又瘦的圆柱,随后思考两个问题:(1)在你操作的过程中,圆柱由“瘦”变“胖”的过程中,圆柱的底面直径变了没有?圆柱的高度呢?(2)在这个变化过程,是否有不变的量?是什么没变?(让学生亲自动手操作,在动手操作的过程中,体会哪些量发生了变化,哪些量没有变化?教师对基础差的同学可适当引导) 学生自由讨论两分钟,举手回答问题:这个问题的等量关系:旧水箱的体积=新水箱的体积.下面我们如果设新水箱的高为x米,通过填写下表来看一下锻压前的体积和锻压后的体积.(请一位同学填写)旧水箱新水箱底面半径高体积由等量关系我们便可得到方程:π×22×4=π×1.62×x.列出方程我们只是走完“万里长征”的重要的第一步,如何解这个方程呢?此时要注意提醒学生:(1)π的取值相关细节问题,此类题目中的π值由等式的基本性质就已约去,无须带具体值;(2)若是题目中的π值约不掉,也要看题目中对近似数有什么要求,再确定π值取到什么精确程度.下面我们共同把这个题的过程写一下.解:设锻压后圆柱的高为x米,根据题意,列出方程:π×22×4=π×1.62×x.解得x=6.25答:高变成了6.25米.我们再来看一个例子.(课本P141例1)〔例1〕用一根长为10米的铁丝围成一个长方体.(1)使得该长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它围成的长方形与(1)中所围成的长方形相比,面积有何变化?(3)使得该长方形的长与宽相等,围成一个正方形,此时,正方形的边长是多少米?它所围成的面积与(2)中相比有何变化?〔分组讨论〕(1)用你手里的铁丝亲自动手操作,根据你的生活经验和操作过程以及用一元一次方程解决实际问题的基础,分组独立完成例1中的(1)(2)(3)三个问题.(2)请每一小组派一个代表汇报三个小问题的解答过程.(3)反思各组的解答过程讨论:解决这道题的关键是什么?从解这道题中你有何收获和体验.我们解答这个题的关键是我们在改变长方形的长和宽的同时,长方形的周长不变,始终是铁丝的长度10米.由此便可建立“等量关系”.但是我们可以发现,虽然长方形的周长不变,改变长方形的长和宽,长方形的面积却在发生变化,而且围成正方形的时候面积达到最大.想一想:是不是用10米长的铁丝围成的正方形的面积最大.同学们不妨下去继续讨论这个问题练一练:一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?分析:是否符合实际关键看和墙相对的一边不能超过14米,所以我们就需要根据小王和小赵的设计求出这一边的长度和14米比较.而此时就需找到“等量关系”建立方程.解:根据小王的设计可以设宽为x米,长为(x+5)米,2x+(x+5)=35x=10因此小王设计的长为x+5=10+5=15(米),而墙的长度只有14米,小王的设计是不符合实际的.再来看小赵的设计可以设宽为x米,长为(x+2)米,根据题意,得2x+(x+2)=35x=11因此小赵的设计的长为x+2=11+2=13(米).而墙的长度是14米,显然小赵的设计符合要求.此时,鸡场的面积为11×13=143(米2).三、课堂练习课本P142第一题四、课时小结本节课通过分析一些图形如圆柱、长方形等的数量关系,建立方程解决问题.进一步体会到运用方程解决问题的关键是抓住等量关系,认识方程模型的重要性.五、课后作业1.课本习题5.6,2.预习下一节《打折销售》并作市场调查.板书设计§5.3水箱变高了一、1.水箱变化中的等量关系:旧水箱的体积=新水箱的体积2.根据等量关系列方程3.解方程二、例1.(课本P141)《水箱变高了》教案这篇文章共6161字。

北师版七年级数学上册作业课件(BS) 第五章 一元一次方程 应用一元一次方程——水箱变高了 (2)

数学 七年级上册 北师版
第五章 一元一次方程
5.3 应用一元一次方程——水箱变高了
等积变形问题
1.(3分)要锻造一个半径为5 cm,高为8 cm的圆柱毛坯,应截取半径为4 cm的 圆钢的高度为( A)
A.12.5 cm B.13 cm C.13.5 cm D.14 cm 2.(3分)有一个底面半径长为10 cm,高为30 cm的圆柱形大杯中存满了水,把 它里边的水倒入一个底面直径长为10 cm的圆柱形小杯中,刚好倒满12杯,则小杯 的高为_1_0__cm.
3.(6分)把一个长、宽、高分别为8 cm,7 cm,5 cm的长方体铁块和一个棱长 为5cm的正方体铁块熔炼成一个直径为10 cm的圆柱体,则熔炼成的圆柱体的高是 多少?(结果保留两位小数)
解:设熔炼成的圆柱体的高是 x cm,根据题意,得 8×7×5+53=(120 )2πx,解得 x=58π1 ≈5.16,所以熔炼成的圆柱体的高约是 5.16 cm
7.(4分)如图所示的是用铁丝围成的一个梯形,将其改成一个长和宽的比为 2∶1的长方形,那么该长方形的长为__1_1_,宽为_5_._5_.
8.(7分)某农场拟建两间长方形饲养室,一面靠现有墙(墙足够长),中间用一道 墙隔开,已知计划中的材料可建墙பைடு நூலகம்的总长为26 m,且AB∶BF=3∶2,求建成 的每间饲养室的面积.
平面图形的变化问题
4.( 3分)某小区在规划设计时,准备在两幢楼房之间设置一块周长为120 m的长 方形绿地,并且长比宽多10 m.设绿地的宽为x m,根据题意,下面列出的方程 正确的是(D )
A.2(x-10)=120 B.2[x+(x-10)]=120 C.2(x+10)=120 D.2[x+(x+10)]=120

水箱变高了-课后作业

课后练习:
1、用直径为40mm 、长为1m 的圆钢,能拉成直径为4mm 、长为_______m 的钢丝。

2、用一根铁丝可围成一个长24厘米、宽12厘米的长方形。

若将它围成一个正方形,则这个 正方形的面积是( )
A 、81cm ²
B 、18cm ²
C 、324cm ²
D 、326cm ²
3、将底面直径为12厘米,高为30厘米的圆柱水桶装满水,倒人一个长方体水箱中,水只占水箱容积的3
2,设水箱容积为x 立方厘米,则可列方程_________________. 4、将一个底面直径是10厘米,高为40厘米的圆柱锻压成底面直径为l5厘米的圆柱,求它的高?若设高为x 厘米,则所列的方程为_____________.
5、把一块长、宽、高分别为5cm 、3cm 、3cm 的长方体铁块,浸入半径为4cm 的圆柱形水杯中(盛有水),水面将增高多少?(不外溢)
6.填空:
长方形的周长=_________. 面积=__________ .
长方体的体积=_________. 正方体的体积=__________. 圆的周长=___________. 面积=_______________. 圆柱的体积=_______________. 解决以下问题:
(1).将一个底面直径是20厘米、高为9厘米的“矮胖”形圆柱锻压成底面直径为l0厘米的“瘦长”形圆柱,高变成了多少?。

北师大版七年级数学上册第五章《应用一元一次方程—水箱变高了》课时练习题(含答案)

北师大版七年级数学上册第五章《3.应用一元一次方程—水箱变高了》课时练习题(含答案)一、单选题1.某阶梯教室开会,设座位有x 排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是( )A .30x ﹣8=31x ﹣26B .30x+8=31x+26C .30x+8=31x ﹣26D .30x ﹣8=31x+262.有一所寄宿制学校,开学安排宿舍时,如果每间宿舍安排4人,将会空出5间宿舍;如果每间宿舍安排3人,就有100人没床位,那么在学校住宿的学生有多少人?若设在学校住宿的学生有x 人,那么根据题意,可列出的方程为( )A .100543x x -+=B .510043x x +-= C .453100x x -=+ D .100543x x +-= 3.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电量15万度.如果设上半年每月平均用电x 度,则所列方程正确的是( )A .6x +6(x -2000)=150000B .6x +6(x +2000)=150000C .6x +6(x -2000)=15D .6x +6(x +2000)=154.某学校组织师生去衢州市中小学素质教育实践学校研学.已知此次共有n 名师生乘坐m 辆客车前往目的地,若每辆客车坐40人,则还有15人没有上车;若每辆客车坐45人,则刚好空出一辆客车.以下四个方程:①()4015451m m +=-;②()4015451m m -=-;③1514045n n -=-;④1514045n n -=+.其中正确的是( ) A .①③B .①④C .②③D .②④ 5.一个底面半径为10cm 、高为30cm 的圆柱形大杯中存满了水,把水倒入底面直径为10cm 的圆柱形小杯中,刚好倒满12杯,则小杯的高为( )A .6cmB .8cmC .10cmD .12 cm6.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .727.小明用长16cm 的铁丝围成一个长方形,并且长方形的长比宽多2cm ,设这个长方形的长为xcm ,则x 的值为()A .9B .5C .7D .108.闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%,设把x 公顷旱地改造为林地,则可列方程为( )A .60-x =20%(120+x)B .60+x =20%×120C .180-x =20%(60+x)D .60-x =20%×120二、填空题9.一个蓄水池可蓄水240吨,现有一个进水管和一个排水管,单独打开进水管8小时可以把水池注满,单独打开排水管6小时可以把满池水排空.若原有满池水,设两管齐开,x 小时可把满池水排空,则可列方程________.10.某小学女生占全体学生52%,比男生多a 人,这个学校一共有______人学生. 11.已知一个两位数,其十位上的数字是个位上数字的3倍还少1,且它们的和是11,那么这个两位数是________.12.如图,一个尺寸为3604(⨯⨯单位:)dm 密封的铁箱中,有3dm 高的液体.当此铁箱竖起来(以34⨯为底面)时,箱中液体的高度是________dm .13.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x 人,可列方程为_______________.14.一个圆锥与一个圆柱的底面积相等,已知圆锥与圆柱的体积比是1:4,圆锥的高是4.8厘米,则圆柱的高是___厘米.三、解答题15.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?16.10位同学在植树节这天共种了26棵树苗,其中男生每人种3棵,女生每人种2棵,则男生和女生分别有多少人?17.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)18.足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?19.有一个两位数,它的十位上的数字比个位上的数字大5,且这个两位数比它的两个数位上的数字之和的8倍还要多5,求这个两位数.20.冰墩墩是2022年北京冬季奥运会的吉祥物,将熊猫形象与富有超能量的冰晶外壳相结合,体现了追求卓越、引领时代,以及面向未来的无限可能.某学校购进了一批冰墩墩吉祥物分配给各班,若每班分4个,则剩余2个;若每班分5个,则还缺16个.求这个学校有几个班级?参考答案1.C2.A3.A4.B5.C6.D7.B8.A9.240240240 68x⎛⎫-=⎪⎝⎭10.25a11.8312.45.13.2x+56=589-x14.6.415.解:设长方形的长为cmx,根据题意,得2(10)10462x+=⨯+⨯.25220,x∴=-解得:16,x=所以长方形的长为16cm,宽为10cm.16.解:设男生x人,则女生(10-x)人,根据题意,得3x+2(10-x)=26,解得:x=6,10-x=10-6=4(人),答:男生6人,女生4人.17.解:设支援拔草的有x人,由题意得:31+x=2[18+(20-x)].18.解:设黑色皮块有3x个,则白色皮块有5x个,根据题意列方程:3x+5x=32,解得:x=4,则黑色皮块有:3x=12个,白色皮块有:5x=20个.答:黑色皮块有12个,白色皮块有20个.19.解:设个位上的数字为x,则十位上的数字为(x+5),那么这个两位数为10(x+5)+x,依题意,可列方程10(x+5)+x=8[ (x+5)+x ]+5.解方程可得:x=1代入可得这个两位数为61.答:这个两位数为61.20.解:设这个学校有x个班级,则+=-,x x42516x=.解得18答:这个学校有18个班级。

《第五章3应用一元一次方程——水箱变高了》作业设计方案-初中数学北师大版12七年级上册

《应用一元一次方程——水箱变高了》作业设计方案(第一课时)一、作业目标本作业设计旨在通过《应用一元一次方程——水箱变高了》的课程内容,使学生能够:1. 掌握一元一次方程的基本概念及其在生活中的应用;2. 理解水箱问题中的变化规律,并能利用方程进行描述与解决;3. 培养学生的逻辑思维能力和解决实际问题的能力。

二、作业内容本课时的作业内容主要包括以下方面:1. 基础概念:让学生回顾一元一次方程的定义、基本形式和求解方法。

2. 情景模拟:创设水箱高度变化的问题情境,例如一个正在加水的鱼缸,其水位变化情况,用图形表示出变化规律。

3. 建模练习:引导学生将实际问题抽象为数学模型,即一元一次方程。

例如,通过水箱水位变化规律,建立关于时间t和水位h的方程。

4. 实践应用:让学生通过具体案例,运用所学知识解决实际问题。

如通过给定的初始条件(水速、水箱高度等),预测经过一段时间后的水位变化情况。

5. 反思总结:要求学生就作业过程中遇到的问题和收获进行反思和总结,并准备下一次课的讨论。

三、作业要求针对上述作业内容,特提出以下要求:1. 基础概念部分:学生需准确理解并掌握一元一次方程的基本概念和求解方法。

2. 情景模拟部分:学生需根据所给情境,正确理解并描述水箱水位的变化规律。

3. 建模练习部分:学生应根据实际问题的变化情况,将实际问题转化为一元一次方程模型。

需注重等式关系的把握,正确设定变量并建立等式关系。

4. 实践应用部分:学生需独立思考解决问题,学会根据时间变化预测水位变化情况,并给出相应的解释和理由。

5. 反思总结部分:学生应认真总结本次作业的收获和不足,为下一课时的学习做好准备。

四、作业评价本作业的评价标准包括:1. 正确性:是否准确理解和掌握了本课知识点;2. 创新性:在实践应用部分是否能够创造性地解决问题;3. 完整性:答案是否完整,思路是否清晰;4. 规范性:书写是否规范,格式是否正确。

五、作业反馈在完成作业后,教师应及时进行作业反馈,针对学生的完成情况进行点评和指导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课后练习:
1、用直径为40mm 、长为1m 的圆钢,能拉成直径为4mm 、长为_______m 的钢丝。

2、用一根铁丝可围成一个长24厘米、宽12厘米的长方形。

若将它围成一个正方形,则这个 正方形的面积是( )
A 、81cm ²
B 、18cm ²
C 、324cm ²
D 、326cm ²
3、将底面直径为12厘米,高为30厘米的圆柱水桶装满水,倒人一个长方体水箱中,水只占水箱容积的3
2,设水箱容积为x 立方厘米,则可列方程_________________. 4、将一个底面直径是10厘米,高为40厘米的圆柱锻压成底面直径为l5厘米的圆柱,求它的高?若设高为x 厘米,则所列的方程为_____________.
5、把一块长、宽、高分别为5cm 、3cm 、3cm 的长方体铁块,浸入半径为4cm 的圆柱形水杯中(盛有水),水面将增高多少?(不外溢)
6.填空:
长方形的周长=_________. 面积=__________ .
长方体的体积=_________. 正方体的体积=__________. 圆的周长=___________. 面积=_______________. 圆柱的体积=_______________. 解决以下问题:
(1).将一个底面直径是20厘米、高为9厘米的“矮胖”形圆柱锻压成底面直径为l0厘米的“瘦长”形圆柱,高变成了多少?。

相关文档
最新文档