2014年最全初中数学导学案——数学:人教版九年级上 25.1概率(两课时)教案(人教新课标九年级上)
人教版数学九年级上册25.1.2《概率》教学设计

人教版数学九年级上册25.1.2《概率》教学设计一. 教材分析人教版数学九年级上册第25.1.2节《概率》是学生在学习了统计学基础知识之后,进一步了解和掌握概率学的基本概念和简单计算方法。
本节内容主要包括概率的定义、条件概率以及独立事件的概率计算。
通过本节课的学习,学生能够理解概率的概念,掌握利用树状图和列表法求解概率的方法,为后续深入学习概率论打下基础。
二. 学情分析学生在学习本节内容之前,已经掌握了统计学的一些基本知识,如平均数、中位数、众数等。
在思维方式上,学生已经具备了一定的逻辑分析能力和抽象概括能力。
但概率概念较为抽象,学生理解起来可能存在一定的困难。
因此,在教学过程中,教师需要运用生动具体的实例,帮助学生直观地理解概率的概念,引导学生运用已有的知识解决新问题。
三. 教学目标1.知识与技能:使学生理解概率的概念,掌握利用树状图和列表法求解概率的方法。
2.过程与方法:通过实例分析,培养学生运用概率知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习概率的兴趣,培养学生的合作交流意识。
四. 教学重难点1.重点:概率的定义,条件概率,独立事件的概率计算。
2.难点:概率公式的灵活运用,解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解概率的概念。
2.合作学习法:分组讨论,培养学生团队合作精神。
3.问题驱动法:设置问题,激发学生思考,引导学生主动探究。
六. 教学准备1.教学素材:准备与概率相关的实例,如抽奖、投篮等。
2.教学工具:多媒体课件,黑板,粉笔。
3.学生活动:提前分组,准备进行合作学习。
七. 教学过程1.导入(5分钟)教师通过一个简单的抽奖实例,引导学生思考:如何计算抽中一等奖的概率?从而引出本节课的主题——概率。
2.呈现(10分钟)教师讲解概率的定义,通过PPT展示概率的符号表示方法,如P(A)、P(B)等。
同时,介绍条件概率和独立事件的概率计算方法,并用具体的例子进行说明。
人教版-数学-九年级上册 25.1随机事件与概率导学案

25.1随机事件与概率学习目标、重点、难点【学习目标】1、掌握事件的分类(确定事件、随机事件);2、掌握概率的计算;【重点难点】1、掌握事件的分类(确定事件、随机事件);2、掌握概率的计算;知识概览图必然事件:在一定条件下,一定发生的事件确定事件不可能事件:在一定条件下,一定不发生的事件事件的分类概率随机事件:在一定条件,可能了生也可能不发生的事件概率的计算:()AP A 事件出现的次数试验总次数新课导引如右图所示,小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.【问题探究】掷一次骰子,在骰子朝上的一面上:(1)可能出现哪些点数?(2)出现的点数大于0吗?(3)出现的点数会是7吗?(4)出现的点数会是4吗?【解析】 (1)可能出现的点数有1,2,3,4,5,6.(2)出现的点数一定大于0. (3)出现的点数不会是7. (4)出现的点数可能是4.教材精华知识点1确定事件与随机事件的概念确定事件:必然事件和不可能事件都是确定事件.(1)必然事件:在一定条件下,有些事件我们事先能肯定它一定发生,这样的事件是必然事件.例如:太阳东升西落.(2)不可能事件:在一定条件下,有些事件我们事先能肯定它一定不会发生,这样的事件是不可能事件.例如:掷一个质地均匀的骰子,朝上面的点数是7.随机事件:在一定条件下,可能发生,也可能不发生的事件,称为随机事件.例如:任意抛掷一枚硬币,“正面向上”是随机事件,它可能发生,也可能不发生.又如:在8:00时拨打查号台,“线路接通”就是随机事件.一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.例如:已知地球表面陆地面积与海洋面积的比约为3:7,若宇宙中飞来一块陨石落在地球上,则落在海洋里的可能性较大.规律方法小结 必然事件和不可能事件都是事先可以确定的,一定发生的是必然事件,一定不发生的是不可能事件.知识点 2 概率 概率的含义:一般地,对于一个随机事件A ,我们把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记为()P A .概率的范围:一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性相等,事件A 包含其中的m 种结果,那么事件A 发生的概率()m P A n =,在()m P A n =中,由m 和n 的含义可知0≤m ≤n ,进而有0≤m n≤1,因此0≤()P A ≤1. 探究交流1、当A 是必然事件时,()P A 是多少?当A 是不可能事件时,()P A 是多少?【解析】 当A 是必然事件时,m =n ,()P A =1.当A 是不可能事件时,m 的值是0,即()P A =0.事件发生的可能性越大,它的概率越接近1;反之,事件发生的可能性越小,则它的概率越接近0(如图所示).事件发生的可能性越来越小 0 概率的值不可能事件 必然事件事件发生的可能性越来越大拓展 (1)事件一般用大写英文字母,,,C B A …表示.(2)概率从数量上刻画了一个事件发生的可能性大小,随机事件A 的概率范围是0<()P A <1.(3)概率是反映事件发生可能性大小的一般规律.课堂检测基本概念题1、下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)13个人中至少有两个人出生的月份相同;(2)十五的月亮像一条弯弯的小船;(3)标准大气压下,水在0℃时就开始结冰;(4)小明买福利彩票,中500万奖金;(5)将一本300页的书任意翻到一页,其页码是85页.基础知识应用题2、如图所示,转盘停止转动后,指针落在哪个颜色区域的可能性最大?为什么?(转盘被均分成六份)综合应用题3、李先生家客厅的地毯上的图案是由如图所示的图形拼成的,图中的O为BD与AC的中点,E,F分别为AO,CO的中点,向地毯上随意掷一枚硬币,落在阴影部分的可能性大,还是落在空白部分的可能性大?探索创新题4、以前,有推着小货车走街串巷叫卖的,为了吸引顾客,卖货人设计了一种碰运气、赌输赢的转盘,凑热闹的人还真是不少,卖货人的生意自然红火.卖货人的转盘是什么样的呢?(1)制作准备:一块圆形纸板,一根粗铁丝,一根细绳,绳子的一头系一重物.(2)制作方法:在圆形纸板上画12个扇形格子,顺次编上号,做成一个圆盘;粗铁丝穿过中心,做成一个可以转动的轴;轴的一端向外垂直伸出一根悬臂(可将粗铁丝折成90°),悬臂端吊一根绳子,绳子的一头上系着的重物作为指针,如图所示.(3)游戏规则:在圆盘的l号、3号、5号、7号、9号、11号格子里均放上价值10元钱的物品;在圆盘的2号、4号、6号、8号、10号、12号格子里均放上价值5角钱的物品.谁交上l元钱,谁就可以转一下圆盘,待圆盘停止转动后,指针落在哪一格,便根据该格上的数,从下一格起,按格往下数这个数,数到哪一格,放在格子里的物品就归谁.如果让你来转动圆盘,你能赢吗?和其他同学一起动手制作并试验一下,你能发现其中的秘密吗?体验中考1、“a是实数,|a|≥0”这一事件是 ( )A.必然事件 B.不确定事件 C.不可能事件 D.随机事件2、已知粉笔盒里只有2支黄色粉笔和3支红色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,则取出黄色粉笔的概率是 ( )A.15B.25C.35D.233、某同学午觉醒来发现钟表停了,他打开收音机想听电台整点报时,则他等待的时间不超过15分钟的概率是 ( )A.12B.13C.14D.15学后反思附:课堂检测及体验中考答案课堂检测1、分析此题涉及必然事件、不可能事件、随机事件的概念,属于概率中的基础题,可依据定义作出判断.解:(1)(3)是必然事件;(2)是不可能事件;(4)(5)是随机事件.2、分析 本题主要考查的是公式.()A P A 种颜色所占面积种颜色=总面积. 解:落在黄色区域的可能性最大.理由如下: 黄色区域的面积占整个转盘面积的12; 红色区域的面积占整个转盘面积的13; 蓝色区域的面积占整个转盘面积的16. 由于黄色区域所占比例最大,所以指针落在黄色区域的可能性最大.3、分析 本题主要比较P (落在阴影部分)与P (落在空白部分)谁大.解:因为O 为AC 与BD 的中点,所以四边形ABCD 是平行四边形.又E ,F 分别为AO ,CO 的中点, 所以1128ABE BOE AOB ABCD S SS S ===, 18ADE DOE DOF BOF BFC DFC ABCD S S S S S S S ======,因此3S S 阴影空白=,所以落在空白部分的可能性大.【解题策略】 本题直接根据平行四边形的判定方法和三角形的中线分三角形所成的两部分面积相等的性质来解答.4、分析 本题主要考查赢的机会的大小与输的机会的大小比较.解:卖货人是精明的,玩他的转盘不可能赢.假如指针落在圆盘的5号格子里,从6 号格子开始往下数5个数,恰好数到10号格子,那只能是花1元钱买到价值5角钱的物品.假如指针落在圆盘的4号格子里,从5号格子开始往下数4个数,恰好数到8号格子,又是花l 元钱买到价值5角钱的物品.至此,你也许发现,这种转盘的玩法看上去具有随机性,而玩转盘的规则却利用了“偶数+偶数=偶数,奇数+奇数=偶数”的数学道理,这道理尽管十分浅显,但碰运气心切的人们却很少去想,可见,无论怎么转,都只能拿到价值5角钱的物品,不可能拿到价值10元钱的物品.因此这种转盘的玩法是不公平的.当你遇到类似于这样的欺骗行为时,要利用数学知识进行揭穿,以维护消费者的合法权益.体验中考 1、分析 本题主要考查必然事件、不确定事件、不可能事件和随机事件的概念,由“a 是实数,|a |≥0”永远成立知这是必然事件.故选A .2、分析 5支粉笔中,黄色的有两支,所以任取一支是黄色粉笔的概率为25.故选B .3、分析在整点到整点之间共有60分钟,而不超过15分钟的可能性占14,所以他等待的时间不超过15分钟的概率是14.故选C.。
[精选]人教版九年级上册数学25.1.2 概率导学案
![[精选]人教版九年级上册数学25.1.2 概率导学案](https://img.taocdn.com/s3/m/fd893879964bcf84b8d57b23.png)
25.1.2 概率自学目标:1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义3.让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系. 重、难点:1.在具体情境中了解概率意义.2.对频率与概率关系的初步理解 自学过程:一、课前准备:1、当A 是必然事件时,P (A )= ; 当A 是不可能事件时,P (A )= ; 任一事件A 的概率P (A )的范围是 ; 2.事件发生的可能性越大,则它的概率越接近________;反之,•事件发生的可能性越小, 则它的概率越接近_________.3、一般地,在大量重复试验中,如果 ,那么这个常数p 就叫做事件A 的概率,记作 。
4、在上面的定义中,m 、n 各代表什么含义?mn的范围如何?为什么?5.下列事件中哪些事件是随机事件?哪些事件是必然事件?哪些是不可能事件? (1)抛出的铅球会下落 (2)某运动员百米赛跑的成绩为2秒(3)买到的电影票,座位号为单号 (4)x 2+1是正数 (5)投掷硬币时,国徽朝上6.频率与概率有什么区别与联系?二、自主学习:1.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据: (1)计算并完成表格;(2)请估计,当n 很大时,频率将会接近多少?转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”的次数m 68 111 136 345 564 701落在“铅笔”的频率nm(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?2.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据: 摸球的次数n 100 150 200 500 800 1000 摸到白球的次数m 58 96 116 295 484601摸到白球的频率nm 0.580.640.580.590.605 0.601(1)请估计:当n 很大时,摸到白球的频率将会接近______;(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______; (3)试估算口袋中黑、白两种颜色的球各有多少只?三、达标检测:1.在抛掷一枚普通正六面体骰子的过程中,出现点数为2的概率是______.2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为______.3.袋中有5个黑球,3个白球和2个红球,摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球的概率为______. 4.袋子中装有24个黑球2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出一个球,摸到黑球的概率大,还是摸到白球的概率大一些呢?说明理由,并说明你能得到什么结论?(要判断哪一个概率大,只要看哪一个可能性大.)5.设计如下游戏:将转盘分为A 、B 、C 区域(如图所示)转动转盘一次,•指针在A 区域小王得40分,小明失40分,指针在B 区域,小王失60分,小明60BCA得60分,指针在C区域,小王失30分,小明得30分,这一游戏对小王有利吗?四、尝试小结:。
人教版九年级数学上册导学案 第二十五章 概率初步 25.1.1 随机事件

人教版九年级数学上册导学案第二十五章概率初步25.1.1 随机事件【学习目标】1、归纳出必然事件,不可能事件和随机事件的特点,会根据这些特点对有关事件作出准确判断;2、形成对事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素;【课前预习】1.下列事件:①打开电视机,正在播广告;②从只装红球的口袋中,任意摸出一个球恰好是白球;③同性电荷,相互排斥;④抛掷硬币1000次,第1000次正面向上.其中为随机事件的是()A.①②B.①④C.②③D.②④2.下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°3.下列说法正确的是()A.“任意画出一个三角形,其内角和为180 ”为必然事件B.可能性是1%的事件在一次试验中一定不会发生C.检测某批次灯泡的使用寿命,适宜用全面检查D.“任意画出一个等边三角形,它是轴对称图形”是随机事件4.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数5.下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.“x2<0(x是实数)”是随机事件C.掷一枚质地均匀的硬币10次,可能有5次正面向上D.为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查6.某班四个小组进行辩论比赛,赛前三位同学预测比赛结果如下:甲说:“第二组得第一,第四组得第三”;乙说:“第一组得第四,第三组得第二”;丙说:“第三组得第三,第四组得第一”;赛后得知,三人各猜对一半,则冠军是()A.第一组B.第二组C.第三组D.第四组7.下列事件中,必然事件是()A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角相等C.366人中至少有2人的生日相同D.实数的绝对值是非负数8.下列说法错误的是()A.某商场对顾客健康码的审查,选择抽样调查B.在复学后,某校为了检查全校学生的体温,选择全面调查C.为了记录康复后的新冠肺炎病人的体温情况,适合选用折线统计图D.“发热病人的核酸检测呈阳性”是随机事件9.下列事件中,属于必然事件的是()A.掷一枚硬币,正面朝上B.三角形任意两边之差小于第三边C.一个三角形三个内角之和大于180°D.在只有红球的盒子里摸到白球10.下列事件中必然发生的事件是()A.明天会下雨B.射击运动员射击一次,命中10环C.随意翻到一本书的某页,这页的页码一定是偶数D.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品【学习探究】自主学习阅读课本,完成下列问题1、下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边下山;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)三个人性别各不相同;(7)一元二次方程x2+2x+3=0无实数解。
人教版九年级数学上册25.1.2《概率》教案

人教版九年级数学上册25.1.2《概率》教案一. 教材分析人教版九年级数学上册第25.1.2节《概率》是概率统计部分的重要内容。
本节主要介绍了概率的定义、计算方法以及如何运用概率解决实际问题。
通过本节的学习,学生能够理解概率的概念,掌握基本的概率计算方法,并能够运用概率知识解决生活中的问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算方法有一定的了解。
但是,对于概率这一抽象的概念,学生可能难以理解和接受。
因此,在教学过程中,需要注重引导学生从实际问题中理解概率的概念,并通过大量的实例让学生掌握概率的计算方法。
三. 教学目标1.知识与技能:让学生理解概率的概念,掌握基本的概率计算方法,能够运用概率知识解决实际问题。
2.过程与方法:通过实例分析,让学生体验概率的计算过程,培养学生的逻辑思维能力。
3.情感态度与价值观:让学生感受数学与生活的紧密联系,培养学生的数学应用意识。
四. 教学重难点1.重点:概率的定义,概率的计算方法。
2.难点:如何从实际问题中抽象出概率模型,运用概率解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入概率的概念,让学生感受数学与生活的联系。
2.启发式教学法:在教学过程中,引导学生主动思考,通过讨论、交流等方式,让学生理解概率的计算方法。
3.巩固练习法:通过大量的练习,让学生掌握概率的计算方法,并能够运用到实际问题中。
六. 教学准备1.教学课件:制作相关的教学课件,以便于直观地展示概率的计算过程。
2.练习题:准备一些与本节课内容相关的练习题,以便于学生在课堂上进行操练。
七. 教学过程1.导入(5分钟)通过一个简单的实例引入概率的概念,如抛硬币、抽签等,让学生思考:这些事件的结果是随机的,那么我们如何来描述这种随机性呢?2.呈现(10分钟)讲解概率的定义,让学生理解概率的意义。
如:抛一枚硬币,正面朝上的概率是1/2。
同时,介绍如何用数学符号表示概率,如P(A)、P(B)等。
【人教版】九年级上册数学:全册导学案-25.1.1 随机事件2

第二十五概率初步25.1 随机事件与概率25.1.1 随机事件自学目标:1.通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。
2.历经“猜测—动手操作—收集数据—数据处理—验证结果”,及时发现问题,解决问题,总结出随机事件发生的可能性大小的特点以及影响随机事件发生的可能性大小的客观条件。
重、难点:1.对随机事件发生的可能性大小的定性分析2.理解大量重复试验的必要性。
自学过程:一、课前准备:1.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中同时摸出1个小球,请你写出这个摸球活动中的一个随机事件_________________.2.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性______摸到J、Q、K 的可能性.(填“<,>或=”)3.下列事件为必然发生的事件是( )(A)掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是1(B)掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是偶数(C)打开电视,正在播广告(D)抛掷一枚硬币,掷得的结果不是正面就是反面4.同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能发生的事件是( )(A)点数之和为12 (B)点数之和小于3(C)点数之和大于4且小于8 (D)点数之和为135.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是( )(A)抽出一张红心(B)抽出一张红色老K(C)抽出一张梅花J (D)抽出一张不是Q的牌6.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a、抽到一名住宿女生;b、抽到一名住宿男生;c、抽到一名男生.其中可能性由大到小排列正确的是( )(A)cab(B)acb(C)bca(D)cba一、自主探究:1、袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。
人教版数学九年级上册第二十五章《概率初步》导学案
第二十五章概率初步25.1随机事件与概率25.1.1随机事件1.了解必然发生的事件、不可能发生的事件、随机事件的特点.2.能根据随机事件的特点,辨别哪些事件是随机事件.3.有对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.重点:对生活中的随机事件作出准确判断,对随机事件发生的可能性大小作定性分析.难点:对生活中的随机事件作出准确判断,理解大量重复试验的必要性.一、自学指导.(10分钟)自学:阅读教材P127~129.归纳:在一定条件下必然发生的事件,叫做__必然事件__;在一定条件下不可能发生的事件,叫做__不可能事件__;在一定条件下可能发生也可能不发生的事件,叫做__随机事件__.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边落下;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)自然条件下,水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解.解:(1)(4)(6)是必然发生的;(2)(3)(5)是不可能发生的.2.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中随机摸出1个小球,请你写出这个摸球活动中的一个随机事件:__摸出红球__.3.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性__>__摸到J,Q,K 的可能性.(填“>”“<”或“=”)4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是(D)A.抽出一张红桃B.抽出一张红桃KC.抽出一张梅花J D.抽出一张不是Q的牌5.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a.抽到一名住宿女生;b.抽到一名住宿男生;c.抽到一名男生.其中可能性由大到小排列正确的是(A)A.cab B.acb C.bca D.cba点拨精讲:一般的,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数.请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?点拨精讲:必然事件和不可能事件统称为确定事件.事先不能确定发生与否的事件为随机事件.2.袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B.(1)事件A和事件B是随机事件吗?哪个事件发生的可能性大?(2)20个小组进行“10次摸球”的试验中,事件A发生的可能性大约有几组?“20次摸球”的试验中呢?你认为哪种试验更能获得较正确结论呢?(3)如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性?(4)通过上述试验,你认为,要判断同一试验中哪个事件发生的可能性较大、必须怎么做?点拨精讲:(4)进行大量的、重复的试验.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.下列事件中是必然事件的是(A)A.早晨的太阳一定从东方升起B.中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目D.小红今年14岁了,她一定是初中生2.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破(B)A.可能性很小B.绝对不可能C.有可能D.不太可能3.下列说法正确的是(C)A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生4.20张卡片分别写着1,2,3,…,20,从中任意抽出一张,号码是2的倍数与号码是3的倍数的可能性哪个大?解:号码是2的倍数的可能性大.5.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)两直线平行,内错角相等;(2)刘翔再次打破110米跨栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球;(8)物体在重力的作用下自由下落;(9)抛掷一千枚硬币,全部正面朝上.解:必然事件:(1)(5);随机事件:(2)(3)(4)(6)(8)(9);不可能事件:(7).6.已知地球表面陆地面积与海洋面积的比值为3∶7.如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?解:“落在海洋里”可能性更大.学生总结本堂课的收获与困惑.(2分钟)1.必然事件、随机事件、不可能事件的特点.2.对随机事件发生的可能性大小进行定性分析.3.理解大量重复试验的必要性.学习至此,请使用本课时对应训练部分.(10分钟)25.1.2 概率(1)1.了解从数量上刻画一个事件发生的可能性的大小.2.理解P(A)=m n(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的意义.重点:对概率意义的正确理解.难点:对P(A)=m n(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的正确理解.一、自学指导.(10分钟)自学:阅读教材第130至132页.归纳:1.当A 是必然事件时,P(A)=__1__;当A 是不可能事件时,P(A)=__0__;任一事件A 的概率P(A)的范围是__0≤P(A)≤1__.2.事件发生的可能性越大,则它的概率越接近__1__;反之,事件发生的可能性越小,则它的概率越接近__0__.3.一般地,在一次试验中,如果事件A 发生的可能性大小为__m n __,那么这个常数m n就叫做事件A 的概率,记作__P(A)__.4.在上面的定义中,m ,n 各代表什么含义?m n的范围如何?为什么? 点拨精讲:(1)刻画事件A 发生的可能性大小的数值称为事件A 的概率.(2)__必然__事件的概率为1,__不可能__事件的概率为0,如果A 为__随机__事件,那么0<P(A)<1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.在抛掷一枚普通正六面体骰子的过程中,出现点数为2的概率是__16__. 2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为__112__. 3.袋中有5个黑球,3个白球和2个红球,它们除颜色外,其余都相同.摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球的概率为__15__.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)1.掷一个骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.解:(1)16;(2)12;(3)13. 2.一个桶里有60个弹珠,其中一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?解:红:21;蓝:15;白:24.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(12分钟)1.袋子中装有24个和黑球2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出一个球,摸到黑球的概率大,还是摸到白球的概率大一些呢?说明理由,并说明你能得到什么结论?解:摸到黑球的概率大.摸到黑球的可能性为1213,摸到白球的可能性为113,1213>113,故摸到黑球的概率大.(结论略)点拨精讲:要判断哪一个概率大,只要看哪一个可能性大.学生总结本堂课的收获与困惑.(2分钟)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P(A)=__m n__且 __0__≤P(A)≤__1__.学习至此,请使用本课时对应训练部分.(10分钟)25.1.2 概率(2)1. 进一步在具体情境中了解概率的意义;能够运用列举法计算简单事件发生的概率,并阐明理由.2.运用P(A)=m n解决一些实际问题.重点:运用P(A)=m n解决实际问题. 难点:运用列举法计算简单事件发生的概率.一、自学指导.(10分钟)自学:阅读教材P 133.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?抽到1的概率为多少?解:5种;15. 2.掷一个骰子,向上一面的点数有多少种可能?向上一面的点数是1的概率是多少?解:6种;16.3.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止.指针恰好指向其中的某个扇形(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率.(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.解:(1)14;(2)34;(3)12. 点拨精讲:转一次转盘,它的可能结果有4种——有限个,并且各种结果发生的可能性相等.因此,它可以运用“P(A)=m n”,即“列举法”求概率.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.如图是计算机中“扫雷”游戏的画面,在一个有9×9个小方格的正方形雷区中,随机埋藏着3颗地雷,每个小方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A 区域(划线部分),A 区域外的部分记为B 区域,数字3表示在A 区域中有3颗地雷,每个小方格中最多只能藏一颗.那么,第二步应该踩在A 区域还是B 区域?思考:如果小王在游戏开始时踩中的第一个方格上出现了标号1,则下一步踩在哪个区域比较安全?2.(1)掷一枚质地均匀的硬币的试验有几种可能的结果?它们的可能性相等吗?由此怎样确定“正面朝上”的概率?(2)掷两枚硬币,求下列事件的概率:A .两枚硬币全部正面朝上;B .两枚硬币全部反面朝上;C .一枚硬币正面朝上,一枚硬币反面朝上.思考:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?点拨精讲:“同时掷两枚硬币”与“先后两次掷一枚硬币”,两种试验的所有可能结果一样.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是( D )A .116B .516C .38D .582.冰柜中装有4瓶饮料、5瓶特种可乐、12瓶普通可乐、9瓶桔子水、6瓶啤酒,其中可乐是含有咖啡因的饮料,那么从冰柜中随机取一瓶饮料,该饮料含有咖啡因的概率是( D )A .536B .38C .1536D .17363.从8,12,18,32中随机抽取一个,与2是同类二次根式的概率为__34__. 4.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率:(1)牌上的数字为3;(2)牌上的数字为奇数;(3)牌上的数字大于3且小于6.解:(1)16;(2)12;(3)13.学生总结本堂课的收获与困惑.(2分钟)当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列举法.学习至此,请使用本课时对应训练部分.(10分钟)25.2 用列举法求概率1. 会用列表法求出简单事件的概率.2. 会用树状图法求出一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率.重点:运用列表法或树状图法计算简单事件的概率.难点:用树状图法求出所有可能的结果.一、自学指导.(10分钟)自学:阅读教材P 136~139.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出1个球,共有几种可能的结果?解:两种结果:白球、黄球.2.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出2个球,这样共有几种可能的结果?解:三种结果:两白球、一白一黄两球、两黄球.3.一个盒子里有4个除颜色外其余都相同的玻璃球,一个红色,一个绿色,两个白色,现随机从盒子里一次取出两个球,则这两个球都是白球的概率是__16__. 4.同时抛掷两枚正方体骰子,所得点数之和为7的概率是__16__. 点拨精讲:这里2,3,4题均为两次试验(或一次两项),可直接采用树状图法或列表法.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同;(2)两个骰子点数的和是9;(3)至少有一个骰子的点数为2.讨论:(1)上述问题中一次试验涉及到几个因素?你是用什么方法不重不漏地列出了所有可能的结果,从而解决了上述问题?(2)能找到一种将所有可能的结果不重不漏地列举出来的方法吗?(介绍列表法求概率,让学生重新利用此法做上题).(3)如果把上例中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得到的结果有变化吗?点拨精讲:当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列表法. 列表法是将两个步骤分别列在表头中,所有可能性写在表格中,再把组合情况填在表内各空格中.2.甲口袋中装有2个相同的小球,他们分别写有A 和B ;乙口袋中装有3个相同的小球,分别写有C ,D 和E ;丙口袋中装有2个相同的小球,他们分别写有H 和I .从3个口袋中各随机取出1个小球.(1)取出的3个小球上恰好有1个、2个、3个元音字母的概率分别是多少?(2)取出3个小球上全是辅音字母的概率是多少?点拨:A ,E ,I 是元音字母;B ,C ,D ,H 是辅音字母.分析:弄清题意后,先让学生思考从3个口袋中每次各随机地取出一个球,共3个球,这就是说每一次试验涉及到3个因素,这样的取法共有多少种呢?打算用什么方法求得?点拨精讲:第一步可能产生的结果会是什么?——(A 和B ),两者出现的可能性相同吗?分不分先后?写在第一行.第二步可能产生的结果是什么?——(C ,D 和E ),三者出现的可能性相同吗?分不分先后?从A 和B 分别画出三个分支,在分支下的第二行分别写上C ,D 和E .第三步可能产生的结果有几个?——是什么?——(H 和I ),两者出现的可能性相同吗?分不分先后?从C ,D 和E 分别画出两个分支,在分支下的第三行分别写上H 和I .(如果有更多的步骤可依上继续)第四步按竖向把各种可能的结果竖着写在下面,就得到了所有可能的结果的总数.再找出符合要求的种数,就可计算概率了.合作完成树状图.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.将一个转盘分成6等份,分别是红、黄、蓝、绿、白、黑,转动转盘两次,两次能配成“紫色”(提示:只有红色和蓝色可配成紫色)的概率是__118__.2.抛掷两枚普通的骰子,出现数字之积为奇数的概率是__14__,出现数字之积为偶数的概率是__34__. 3.第一盒乒乓球中有4个白球2个黄球,第二盒乒乓球中有3个白球3个黄球,分别从每个盒中随机的取出一个球,求下列事件的概率:(1)取出的两个球都是黄球;(2)取出的两个球中有一个白球一个黄球.解:16;12. 4.在六张卡片上分别写有1~6的整数,随机地抽取一张后放回,再随机的抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?解:718. 点拨精讲:这里第4题中如果抽取一张后不放回,则第二次的结果不再是6,而是5.5.小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?解:P(积为奇数)=13,P(积为偶数)=23.13×2=1×23.∴这个游戏对双方公平.学生总结本堂课的收获与困惑.(2分钟)1. 一次试验中可能出现的结果是有限多个,各种结果发生的可能性是相等的.通常可用列表法和树状图法求得各种可能的结果.2.注意第二次放回与不放回的区别.3.一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,通常采用树状图法.学习至此,请使用本课时对应训练部分.(10分钟)25.3用频率估计概率1. 理解当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2. 了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.重点:了解用频率估计概率的必要性和合理性.难点:大量重复试验得到频率稳定值的分析,对频率与概率之间关系的理解.一、自学指导.(20分钟)自学:阅读教材P142~146.归纳:对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.当重复试验的次数大量增加时,事件发生的频率就稳定在相应的概率附近,因此,可以通过大量重复试验,用一个事件发生的频率来估计这一事件发生的概率.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(2分钟)1.小强连续投篮75次,共投进45个球,则小强进球的频率是__0.6__.2.抛掷两枚硬币,当抛掷次数很多以后,出现“一正一反”这个不确定事件的频率值将稳定在__0.5左右.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)红星养猪场400头猪的质量(质量均为整数:千克)频率分布如下,其中数据不在分点上.从中任选一头猪,__0.1 .二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)【答案】:(2)0.69;(3)0.69;(4)0.69×360°≈248°.尽管随机事件在每次试验中发生与否具有不确定性,但只要保持试验条件不变,那么这一事件出现的频率就会随着试验次数的增大而趋于稳定,这个稳定值就可以作为该事件发生概率的估计值.学习至此,请使用本课时对应训练部分.(10分钟)。
人教版数学九年级上册-25.1.2概率(教案)
一、教学内容
人教版数学九年级上册-25.1.2概率:本节课将围绕以下内容展开教学:
1.事件的分类:确定事件、不确定事件;
2.概率的定义:事件A的概率,记为P(A),表示事件A发生的可能性大小;
3.概率的计算:通过直接计算、树状图和列表法来求解简单事件的概率;
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了概率的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对概率的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-例如:互斥事件指两个事件不可能同时发生,如抛硬币出现正面和反面;对立事件指两个事件中必有一个发生,如抛硬币出现正面和反面。
2.教学难点
-列表法与树状图的应用:学生在运用列表法和树状图求解概率问题时,往往难以把握各种可能性的列出,导致结果不准确;
-例如:在掷两个骰子的实验中,列出所有可能的结果,并计算两个骰子点数之和为7的概率。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与概率相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的抛硬币实验。这个操作将演示概率的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“概率在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
人教版九年级数学上册导学案 25-1-2 概率【含答案】
人教版九年级数学上册导学案 第二十五章 概率初步 25.1.2 概率【学习目标】1.理解什么是随机事件的概率,了解概率是反映随机事件发生可能性大小的量.2.理解“事件A 发生的概率是P (A )=(在一次试验中有n 种等可能的结果,其中事件A 包含m 种)”的求概率的方nm 法,并能求出简单问题的概率.【课前预习】1.从﹣2,0,1,2,3中任取一个数作为a ,既要使关于x 一元二次方程ax 2+(2a ﹣4)x+a ﹣8=0有实数解,又要使关于x 的分式方程=3有正数解,则符合条件的概率是( )211x a ax x ++--A .B .C .D .152535452.下列说法正确的是( )A .为了解三名学生的视力情况,采用抽样调查B .任意画一个三角形,其内角和是360°是必然事件C .甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s甲2、s乙2,若x 甲x 乙=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定x 甲x 乙D .一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖1203.掷一枚普通的正六面体骰子,出现的点数中,以下结果机会最大的是( )A .点数为3的倍数B .点数为奇数C .点数不小于4D .点数不大于44.下列说法中错误的是( )A .掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是16B .从装有10个红球的袋子中,摸出1个白球是不可能事件C .为了解一批日光灯的使用寿命,可采用抽样调查的方式D .某种的中奖率为1%,买100张一定有1张中奖5.下列命题正确的是().A .任何事件发生的概率为1B .随机事件发生的概率可以是任意实数C .可能性很小的事件在一次实验中有可能发生D .不可能事件在一次实验中也可能发生6.抛掷一枚质地均匀的硬币,“反面朝上”的概率为,那么抛掷一枚质地均匀的硬币100次,下列理解正确的是(12)A .每两次必有1次反面朝上B .可能有50次反面朝上C .必有50次反面朝上D .不可能有100次反面朝上7.在一个不透明的口袋中,装有3个相同的球,它们分别写有数字1,2,3,从中随机摸出一个球,若摸出的球上的数字为2的概率记为,摸出的球上的数字小于4的记为,摸出的球上的数字为5的概率记为,则,,1P 2P 3P 1P 2P 的大小关系是()3P A .B .C .D .123P P P <<321P P P <<213P P P <<312P P P <<8.在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是 ( )A .李东夺冠的可能性较小B .李东和他的对手比赛10局时,他一定会赢8局C .李东夺冠的可能性较大D .李东肯定会赢9.下列说法正确的是().A .投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次B .天气预报“明天降水概率10%,是指明天有10%的时间会下雨”C .一种福利中奖率是千分之一,则买这种1000张,一定会中奖D .连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上10.某班共有40名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学回答问题,则习惯用左手写字的同学被选中的概率是( )A .0B .C .D .1120140【学习探究】自主学习阅读课本,完成下列问题1、当A 是必然事件时,P (A )= ; 当A 是不可能事件时,P (A )= ;任一事件A 的概率P (A )的范围是 ;2、事件发生的可能性越大,则它的概率越接近________;反之, 事件发生的可能性越小,则它的概率越接近_________.3、一般地,在大量重复试验中,如果 ,那么这个常数p 就叫做事件A 的概率,记作 。
人教版数学九年级上册导学案25.1 概率初步
第二十五章概率初步年级:九年级内容:25.1.1 随机事件(第1课时)课型:新授执笔:审核:定稿:使用时间:学习目标:知识与技能:通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。
过程与方法:历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。
情感态度和价值观:体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象。
学习重点:随机事件的特点学习难点:对生活中的随机事件作出准确判断学习过程一、学前准备1.自学课本,写下疑惑摘要。
2.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边下山;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)三个人性别各不相同;(7)一元二次方程x2+2x+3=0无实数解。
3.引发思考我们把上面的事件(1)、(4)、(5)、(7)称为必然事件,把事件(2)、(3)、(6)称为不可能事件,那么请问:什么是必然事件?什么又是不可能事件呢?它们的特点各是什么?二、自学、合作探究(一)自学、相信自己活动1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。
签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。
小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。
请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?根据学生回答的具体情况,教师适当地加点拔和引导。
活动2:小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。
请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?(二)思索、交流(1)上述两个活动中的两个事件(3)与必然事件和不可能事件的区别在哪里?(2)怎样的事件称为随机事件呢?三、应用练习,巩固新知练习:指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.1概率
25.1.1随机事件(第一课时)
知识与技能:通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。
过程与方法:历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。
情感态度和价值观:体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象。
重点:随机事件的特点
难点:对生活中的随机事件作出准确判断
教学程序设计
一、创设情境,引入课题
1.问题情境
下列问题哪些是必然发生的?哪些是不可能发生的?
(1)太阳从西边下山;
(2)某人的体温是100℃;
(3)a2+b2=-1(其中a,b都是实数);
(4)水往低处流;
(5)酸和碱反应生成盐和水;
(6)三个人性别各不相同;
(7)一元二次方程x2+2x+3=0无实数解。
【设计意图:首先,这几个事件都是学生能熟知的生活常识和学科知识,通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性。
】
2.引发思考
我们把上面的事件(1)、(4)、(5)、(7)称为必然事件,把事件(2)、(3)、(6)称为不可能事件,那么请问:什么是必然事件?什么又是不可能事件呢?它们的特点各是什么?
【设计意图:概念也让学生来完成,把课堂尽量多地还给学生,以此来体现自主学习,主动参与原理念。
】
二、引导两个活动,自主探索新知
活动1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。
签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。
小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。
请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?
(2)抽到的序号小于6,可能吗?这是什么事件?
(3)抽到的序号是1,可能吗?这是什么事件?
(4)你能列举与事件(3)相似的事件吗?
根据学生回答的具体情况,教师适当地加点拔和引导。
【设计意图:“抽签”这个活动是学生容易理解或亲身经历过的,操作简单省时,又具有很好的经济性,最主要的是活动中含有丰富的随机事件,事件(3)就是一个典型的事件,它的提出,让学生产生新的认知冲突,从而引发探究欲望】
活动2:小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。
请考虑以下问题,掷一次骰子,观察骰子向上的一面:
(1)出现的点数是7,可能吗?这是什么事件?
(2)出现的点数大于0,可能吗?这是什么事件?
(3)出现的点数是4,可能吗?这是什么事件?
(4)你能列举与事件(3)相似的事件吗?
【设计意图:随机事件对学生来说是陌生的,它不同于其他数学概念,因此要理解随机事件的含义,由学生来描述随机事件的概念,进行活动2很有必要,便于学生透过随机事件的表象,概括出随机事件的本质特性,从而自主描述随机事件这一概念】提出问题,探索概念
(1)上述两个活动中的两个事件(3)与必然事件和不可能事件的区别在哪里?
(2)怎样的事件称为随机事件呢?
【设计意图:教师让学生充分发表意见,相互补充,相互交流,然后引导学生建构随机事件的定义,充分发挥学生的主观能动性。
】
三、应用练习,巩固新知
练习:指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。
(1)两直线平行,内错角相等;
(2)刘翔再次打破110米栏的世界纪录;
(3)打靶命中靶心;
(4)掷一次骰子,向上一面是3点;
(5)13个人中,至少有两个人出生的月份相同;
(6)经过有信号灯的十字路口,遇见红灯;
(7)在装有3个球的布袋里摸出4个球
(8)物体在重力的作用下自由下落。
(9)抛掷一千枚硬币,全部正面朝上。
【设计意图:第(9)题可能出现不同答案,这是意料之中的,意在让学生明白,只要可能性存在,哪怕可能性很小,我们也不能认定它为不可能事件;同样,尽管某些事件发生的可能性很大,也不能等同于必然事件。
】
四、小结并布置作业。
教学反思
25.1.1 随机事件(第二课时)
知识技能:通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。
过程和方法:历经“猜测—动手操作—收集数据—数据处理—验证结果”,及时发现问题,解决问题,总结出随机事件发生的可能性大小的特点以及影响随机事件发生的可能性大小的客观条件。
情感态度和价值观:在试验过程中,感受合作学习的乐趣,养成合作学习的良好习惯;得出随机事件发生的可能性大小的准确结论。
需经过大量重复的试验,让学生从中体验到科学的探究态度。
教学重点:对随机事件发生的可能性大小的定性分析
教学难点:理解大量重复试验的必要性。
一、创设情境,引入课题
1、摸球试验:袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。
2、提出问题:我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B,提问:
(1)事件A和事件B是随机事件吗?
(2)哪个事件发生的可能性大?
【设计意图:“摸球”试验操作方便、简单且可重复,又为学生所熟知,学生做起来感觉亲切,有趣,并且容易依据生活经验猜到正确结论,这样易于激发学生的学习热情。
】
二、分组试验、收集数据,验证结果
【设计意图:设计“10次摸球”和“20次摸球”,意在引起结果的变化。
】
注:结果1指事件A发生的次数多,结果2指事件B发生的次数多。
3、提出问题
(1)“10次摸球”的试验中,事件A发生的可能性大的有几组?“20次摸球”的试验中呢?
(2)你认为哪种试验更能获得较正确结论呢?
(3)为了能够更大可能地获得正确结论,我们应该怎样做?
【设计意图:对“10次摸球”得到正确结论的组数和“20次摸球”得到的正确结论的组数进行比较,使学生明白,增加摸球次数更宜于接近正确结论,本小节也可以让学生再进行“40次摸球”试验。
】
4、进行大量重复试验,验证猜测的正确性。
教师请同学们进行400次重复的“摸球”试验,教师提问:
如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会
不会影响试验的正确性?
【设计意图:让学生养
成动脑筋,想办法的学习习
惯,明白小组合作的优势。
】
5、对表中的数据进行分析,得出结论。
提问:通过上述试验,你认为,要判断同一试验中哪个事件发生可能性的较大,必须怎么做?
先让学生回答,回答时教师注意纠正学生的不准确的用语,最后由教师总结:要判断随机事件发生的可能性大小,必须经过大量重复试验。
【设计意图:本小节是教学难点,这个结论由学生得出,体现了自主学习的理念,有利于学生思维的发展。
】
6、对试验结果作定性分析。
在经过大量重复摸球以后,我们可以确定,事件A发生的可能性大于事件B发生的可能性,请同学们分析一下其原因是什么?
【设计意图:这是本节课的主要内容之一,是本节课的出发点,也是本节课的归宿,把这个问题留给学生,也是体现了以学生为主体,让学生自主探索、自主学习的理念。
】
三、练习反馈
1、一个袋子里装有20个形状、质地、大小一样的球,其中4个白球,2个红球,3个黑球,其它都是黄球,从中任摸一个,摸中哪种球的可能性最大?
2、一个人随意翻书三次,三次都翻到了偶数页,我们能否说翻到偶数页的可能性就大?
3、袋子里装有红、白两种颜色的小球,质地、大小、形状一样,小明从中随机摸出一个球,然后放回,如果小明5次摸到红球,能否断定袋子里红球的数量比白球多?怎样做才能判断哪种颜色的球数量较多?
4、已知地球表面陆地面积与海洋面积的比均为3:7。
如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?
四、小结并布置作业。
教学反思。