红外检测技术在医药学中的应用

合集下载

浅谈近红外光谱分析在药品检测中的应用

浅谈近红外光谱分析在药品检测中的应用

浅谈近红外光谱分析在药品检测中的应用近红外光谱分析是一种基于分子振动谱的无损检测技术,广泛应用于化工、食品、医药等领域。

在药品检测中,近红外光谱分析技术具有快速、准确、无损、高效等优点,已经成为药品行业中不可或缺的检测手段。

本文将就近红外光谱分析在药品检测中的应用进行浅谈。

一、近红外光谱分析原理近红外光谱分析原理是通过物质与光的相互作用,分析物质内部的分子振动、转动和延伸振动等信息,从而实现对样品成分、结构、性质等的分析。

在近红外光谱区域,分子内的一些结合键和官能团吸收、散射、辐射电磁波所产生的光谱可用于分析物质的成分和性质。

近红外光谱分析技术可以快速、准确地获取样品的光谱信息,并通过专门的数据处理软件进行定量和定性分析。

1. 药品成分分析在制药过程中,药品的成分及其含量是非常重要的参数。

通过近红外光谱分析技术可以快速准确地确定药品中各种成分的含量,包括药物成分、助剂成分等。

通过建立合适的光谱库和定量模型,可以对药品的成分进行快速检测,保证药品的质量。

2. 药品质量控制药品的质量受到制备工艺、原材料选择、存储条件等多方面因素的影响,通过近红外光谱分析技术可以对药品的质量进行实时监测和控制。

可以通过光谱分析技术对药片的含量均匀性、药液的稳定性等进行检测,及时发现并解决质量问题,保证药品的质量稳定性。

3. 药品真伪鉴别随着全球药品贸易的不断增加,药品的真伪鉴别成为一个重要的问题。

通过近红外光谱分析技术可以对药品进行快速鉴别,包括原材料鉴定、药品真伪鉴别等。

通过建立光谱库和模型,可以对不同药品进行快速鉴别,保障患者用药安全。

4. 药品生产过程控制近红外光谱分析技术还可以用于药品生产过程中的实时监测和控制,包括原材料检测、反应过程监控、成品检验等。

通过光谱分析技术可以实现对制药过程中各个环节的快速、无损检测,保障药品的生产质量和安全性。

1. 多模式光谱采集技术当前,近红外光谱分析已经不仅仅局限于单一的样品分析,而是发展为多模式光谱采集技术,包括透射光谱、反射光谱、光纤光谱等。

红外光谱技术在医学中的应用

红外光谱技术在医学中的应用

红外光谱技术在医学中的应用
红外光谱技术是一种非常重要的物质分析方法,它可以进行快速、便捷、高效的定性和定量测定,以及组分和状态分析等诸多方面的分析。

在医学领域,红外光谱技术也有着广泛的应用。

首先,红外光谱技术可以用于医学诊断。

红外光谱技术可以判定不同化学物质的光谱图,与疾病相关的化学成分通常具有标志性的谱带,在固体、液体和气体等多种样品中都有应用。

例如,肿瘤细胞与正常细胞之间的谱带差异,红外光谱可以用于检测人体组织中生化分子的变化,从而进行多种疾病的诊断。

其次,红外光谱技术可用于药物研究与开发。

在药品研发中,红外光谱技术不仅可以分析药品的纯度,同时还可以对药品表观形态进行表征和监控,从而判断药品的稳定性。

这对于研发中的药物改进和剂型制备的完善非常重要。

再次,红外光谱技术在食品、生物、化学和医药等领域广泛应用,如 DNA、蛋白质、酶、细胞分析、糖尿病、肝病、癌症
等疾病检测。

红外光谱技术还有助于对药物代谢、毒性、剂型中的成分分析等进行研究。

综上所述,红外光谱技术是一种功能强大的分析方法,可用于医学领域的多种应用,覆盖了从诊断、研究到开发和生产的各个环节。

随着红外光谱技术的不断发展和应用,相信它将为医学领域的研究和发展提供更多的帮助和支持。

光谱仪近红外

光谱仪近红外

光谱仪近红外指的是一类光谱仪器,用于检测和分析近红外波段的光谱信息。

近红外波段通常包括700纳米到2500纳米的范围。

近红外光谱仪通过测量物质在近红外光波段的吸收、散射或透射等特性,获取样品的光谱数据,并进一步分析和解释。

近红外光谱具有许多应用领域,包括但不限于以下几个方面:
1.化学分析:近红外光谱仪可以用于化学成分分析、质量控制、反应动力学等方面的研究。

通过检测样品在近红外波段的吸收特性,可以识别和定量分析化合物的种类和含量。

2.农业和食品领域:近红外光谱仪可用于农作物和食品品质的分析。

例如,可以通过近红外光谱技术判断水果的成熟度、检测农产品中的营养成分、预测食品的新鲜度等。

3.药物和生物医学研究:近红外光谱可用于医药领域的药物分析和生物医学研究。

例如,可以通过近红外光谱检测药物的纯度、质量等;同时,在生物医学研究中,近红外光谱被用作非侵入性的、实时的生物体监测工具。

4.环境监测:近红外光谱仪可以用于水质、空气质量、土壤污染等环境领域的监测和分析,帮助评估环境中的污染物含量和类型。

近红外光谱仪的使用使得对物质的分析更加简便、高效、准确,广泛应用于科学研究、工业生产、环境监测等领域。

红外光谱仪的应用范围

红外光谱仪的应用范围

红外光谱仪的应用范围
稿子一:
嘿,亲爱的小伙伴们!今天咱们来聊聊红外光谱仪这个神奇的家伙,它的应用范围那可真是广得不得了!
你知道吗?在化学领域,它可是大显身手。

比如说,能帮科学家们分析各种化合物的结构,就像侦探一样,找出分子中的秘密。

不管是有机的还是无机的化合物,它都能轻松搞定。

在医药行业,红外光谱仪也是个厉害角色。

能检测药品的成分和纯度,确保咱们吃的药安全有效。

想象一下,它就像个超级卫士,守护着咱们的健康。

还有哦,在材料科学里,它可以研究材料的组成和性质。

比如说,判断塑料、橡胶这些材料的质量好坏,是不是超级厉害?
食品行业也少不了它。

能检测食品中的添加剂、污染物啥的,让咱们吃得放心。

感觉它就像个食品安全的小天使。

在环境监测方面,它能监测大气中的污染物,帮助咱们保护美丽的地球家园。

简直就是地球的小卫士呀!
红外光谱仪在好多领域都发挥着重要作用,是不是很神奇?
稿子二:
嗨呀,朋友们!今天来给大家讲讲红外光谱仪,这东西可太有用啦!
在石油化工领域,它能分析石油产品的成分,看看油的质量好不好。

对于化工生产中的各种原料和产物,它也能精确分析,保证生产过程顺顺利利。

在刑侦方面,它也能派上用场呢!可以检测犯罪现场留下的微量物质,帮助警察叔叔破案,是不是很厉害?
对于化妆品行业,它能检测化妆品的成分是否安全,爱美的小姐姐们用起来就更放心啦。

就连纺织业也离不开它,能分辨不同的纤维材料,让咱们穿上更舒服的衣服。

哇塞,红外光谱仪的应用范围简直太广泛啦,感觉它无处不在,为我们的生活提供了好多帮助呢!。

现代近红外光谱技术及应用进展

现代近红外光谱技术及应用进展

现代近红外光谱技术及应用进展一、本文概述近红外光谱(Near-Infrared Spectroscopy,NIRS)是一种基于物质对近红外光的吸收和散射特性的分析技术。

近年来,随着光谱仪器设备的不断改进和计算机技术的飞速发展,现代近红外光谱技术在分析化学、生物医学、农业食品等领域的应用日益广泛。

本文旨在综述现代近红外光谱技术的最新进展,特别是在仪器设备、数据处理方法、化学计量学以及应用领域的最新发展。

文章首先介绍了近红外光谱的基本原理和技术特点,然后重点论述了现代近红外光谱技术在不同领域的应用实例和取得的成果,最后展望了未来发展方向和潜在应用前景。

通过本文的阐述,旨在为读者提供一个全面、深入的现代近红外光谱技术及应用进展的概述。

二、现代近红外光谱技术的理论基础现代近红外光谱技术,作为一种高效、无损的分析手段,其理论基础源自电磁辐射与物质相互作用的原理。

近红外光谱区域通常是指波长在780 nm至2500 nm范围内的电磁波,其能量恰好对应于分子振动和转动能级间的跃迁。

因此,当近红外光通过物质时,分子中的化学键和官能团会吸收特定波长的光,产生振动和转动跃迁,从而形成独特的光谱。

现代近红外光谱技术的理论基础主要包括量子力学、分子振动理论和光谱学原理。

量子力学为近红外光谱提供了分子内部电子状态和行为的基本描述,而分子振动理论则详细阐述了分子在不同能级间的跃迁过程。

光谱学原理则将这些理论应用于实际的光谱测量和分析中,通过测量物质对近红外光的吸收、反射或透射特性,来获取物质的结构和组成信息。

现代近红外光谱技术还涉及到光谱预处理、化学计量学方法以及光谱解析等多个方面。

光谱预处理包括平滑、去噪、归一化等步骤,旨在提高光谱的质量和稳定性。

化学计量学方法则通过多元统计分析、机器学习等手段,实现对光谱数据的深入挖掘和信息提取。

光谱解析则依赖于专业的光谱数据库和算法,对光谱进行定性和定量分析,从而确定物质中的成分和含量。

现代近红外光谱技术及应用进展

现代近红外光谱技术及应用进展

现代近红外光谱技术及应用进展近红外光谱技术是一种快速、高效、无损的分析技术,广泛应用于化学、食品、药物等领域。

尤其是随着科学技术的发展,现代近红外光谱技术在样品制备、光谱采集、数据处理等方面都有了显著的提升,极大地扩展了近红外光谱技术的应用范围。

近红外光谱是指介于可见光和中红外光之间的电磁波,波长范围为700-2500nm。

现代近红外光谱技术利用近红外光子的能量和量子力学中的跃迁原理,通过对样品进行照射,使样品中的分子吸收近红外光子的能量后从基态跃迁到激发态,再返回基态时发出特征光谱。

通过对特征光谱进行定性和定量分析,可以获取样品的组成、结构和性质等信息。

化学分析:现代近红外光谱技术在化学分析领域的应用主要体现在有机物和无机物的定性和定量分析上。

例如,利用近红外光谱技术对石油样品进行定性和定量分析,可以有效地识别石油中的不同组分,同时也可以对石油中的含硫量、含氮量等进行快速准确的测定。

食品质量检测:在食品质量检测方面,现代近红外光谱技术可以用于食品成分分析、食品质量评估和食品掺假检测等。

例如,利用近红外光谱技术对奶粉进行检测,可以快速准确地检测出奶粉中的蛋白质、脂肪、糖等主要成分的含量。

药物研究:现代近红外光谱技术在药物研究方面的应用主要体现在药物成分分析、药物代谢研究和药物疗效评估等方面。

例如,利用近红外光谱技术对中药材进行检测,可以快速准确地测定中药材中的有效成分含量,为中药材的质量控制提供了一种有效的手段。

近年来,现代近红外光谱技术在国内外都取得了显著的研究进展。

在国内,中国科学院上海药物研究所利用近红外光谱技术对中药材进行有效成分的快速检测,取得了重要的成果。

国内的一些高校和研究机构也在近红外光谱技术的研究和应用方面开展了大量的工作,推动了近红外光谱技术的发展。

在国外,近红外光谱技术已经成为药物研发和食品质量检测的重要手段。

例如,荷兰的菲利普公司成功开发出了一款基于近红外光谱技术的药物代谢研究仪器,可以为新药的开发和疗效评估提供快速准确的数据支持。

医用红外热成像系统技术应用

医用红外热成像系统技术应用

医用红外热成像系统前言随着我国经济的快速发展,人民生活水平的提高以及健康意识的不断加强,人们对于体检的早期、快速、准确、方便、无创有了更高的要求。

开创绿色健康检查评估也是各个医疗机构及体检中心的一个新兴项目,并且有了快速的发展和进步。

中国健康体检产业无疑是当前的朝阳产业,得到了国家卫生部及中华医学会等有关部门和领导的大力支持和肯定。

医用红外热成像技术无疑是医疗影像领域的一支奇葩。

由于它是被动接收检查者自身的热量,因为没有辐射,又被行业中称为“绿色检查”。

如今,数字式医用红外热像仪已与B超、MRI、CT、X线等组成了现代医学影像体系。

目前,医用红外热成像技术主要用于医疗机构和体检中心的健康普查、疾病的初筛、肿瘤的早期预警、心脑血管疾病、疼痛、神经疾病、中医“治未病”等方面。

做到了疾病的早期发现和疗效评估作用,为现代医学作出了杰出的贡献。

医用红外热像仪技术一、医用红外热像仪发展综述红外热像技术被应用到医学领域已有40多年历史,自从1956年英国医生Lawson 用红外热像技术诊断乳腺癌以来,医用红外热像技术逐步受到人们的关注。

中华医学会成立了中华医学会红外热像分会,并将红外热成像技术列入医科大学课程2011年红外热成像被中华医学会疼痛分会列入二级以上挂牌医院五项基本设备之一,同年被国家卫生部中医药管理局列入二级及三级中医院设备配置标准案中的医院共有诊断设备之一。

2012年中国中医药管理局将红外热成像正式列入中医医院诊疗配置表中,成为中医医院必备的仪器。

二、红外热像诊断技术的基本原理任何温度大于绝对零度(-273.1 5℃)的物体都要向外辐射能量,而人体所辐射电磁波的波长主要是在远红外区域,其波长范围为4~14µm,峰值为9.34µm,故利用波长为8~14µm的红外探测器可以方便地检测到人体辐射的红外线。

通过接收人体辐射的红外线,利用影像光学和计算机技术,将人体表面的不同温度分布以黑白或伪彩色图像显示并记录下来。

红外光谱原理及应用的使用教程

红外光谱原理及应用的使用教程

红外光谱原理及应用的使用教程一、红外光谱原理红外光谱是研究物质分子结构和化学键状态的重要工具。

红外光谱的原理基于物质分子的振动和转动。

当红外辐射通过样品时,样品分子吸收特定波长的红外辐射能量,产生振动能级的跃迁。

这些振动能级的跃迁对应着不同的红外吸收峰,从而可以通过分析吸收峰的位置和强度来推测样品的化学成分。

在红外光谱的测量中,常用的仪器是傅里叶变换红外光谱仪(FTIR)。

该仪器通过将红外光分解成各个波长的组成部分,再通过样品,最后通过傅里叶变换将得到的信号转换为红外光谱图。

二、红外光谱的应用红外光谱广泛应用于化学、生物学、环境科学等领域。

以下将重点介绍红外光谱在有机化学和医药领域的应用。

1. 有机化学中的红外光谱应用红外光谱在有机化学中有着广泛的应用,可以用于分析和鉴定化合物。

通过对物质的红外吸收峰位置和强度进行分析,可以判断有机化合物中的功能基团类型和存在状态,从而帮助确定化合物的结构。

2. 医药领域中的红外光谱应用红外光谱在医药领域的应用十分重要。

它可以用于药物成分的分析和质量控制。

通过红外光谱仪的测定,可以得到药物中各成分的红外光谱图,从而进行药物的质量评估。

此外,红外光谱还可以用于药物的相似性研究和药代动力学的研究。

通过比较不同药物的红外光谱图,可以判断药物的相似性和差异性。

而通过红外光谱分析药物在体内的代谢过程,可以研究药物的药代动力学,了解药物在体内的吸收、分布、代谢和排泄等过程。

三、红外光谱的使用教程1. 采集样品首先,我们需要准备样品进行红外光谱的测量。

将待测样品制备成均匀的薄片或粉末形式。

确保样品的制备过程中不会有其他杂质的干扰。

2. 调整仪器参数接下来,将样品放置于红外光谱仪的样品室中,并确认光谱仪的相关参数。

一般来说,光谱仪会自动进行扫描,但我们也可以手动调整扫描范围和积分时间,以获取更准确的结果。

3. 开始扫描确认仪器的参数后,可以开始进行红外光谱的扫描。

光谱仪会自动扫描样品,并将得到的信号转换为红外光谱图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外检测技术在医药学中的应用1摘要近红外(NIR)谱区是人类认识最早的非可见光谱区,波长范围在0.75—2.5 m之间,用波数表示时则在13330—4000cm-1之间。

由于近红外的吸收谱带复杂,谱峰重叠,信号弱,在分析上难以应用,长期以来没有受到人们的重视。

近十多年来,随着近红外仪器的改良,新的光谱理论和光度分析方法的建立,特别是计算机技术和化学计量学的广泛应用和迅速发展,使近红外光谱技术成为目前发展最快、最引人注目的分析技术,并以其简单快速、实时在线、无损伤无污染分析等特点,在复杂物质的分析上得到广泛应用。

在包括制糖和制药的许多与化学分析和品质管理有关的行业中的应用前景极其广阔。

2现代红外光谱分析技术现代近红外光谱(NIR)分析技术是近年来分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析“巨人”,它的出现可以说带来了又一次分析技术的革命。

我国对近红外光谱技术的研究及应用起步较晚,除一些专业分析工作人员以外,近红外光谱分析技术还鲜为人知。

但1995年以来已受到了多方面的关注,并在仪器的研制、软件开发、基础研究和应用等方面取得了较为可喜的成果。

但是目前国内能够提供整套近红外光谱分析技术(近红外光谱分析仪器、化学计量学软件、应用模型)的公司仍是寥寥无几。

随着中国加入WTO及经济全球化的浪潮,国外许多大型分析仪器生产商纷纷登陆中国,想在第一时间占领中国的近红外光谱分析仪器市场。

由此也可以看出近红外光谱分析技术在分析界炙手可热的发展趋势。

在不久的未来,近红外光谱分析技术在分析界必将为更多的人所认识和接受。

现代近红外光谱分析是将光谱测量技术、计算机技术、化学计量学技术与基础测试技术的有机结合。

是将近红外光谱所反映的样品基团、组成或物态信息与用标准或认可的参比方法测得的组成或性质数据采用化学计量学技术建立校正模型,然后通过对未知样品光谱的测定和建立的校正模型来快速预测其组成或性质的一种分析方法。

与常规分析技术不同,近红外光谱是一种间接分析技术,必须通过建立校正模型(标定模型)来实现对未知样品的定性或定量分析。

具体的分析过程主要包括以下几个步骤:一是选择有代表性的样品并测量其近红外光谱;二是采用标准或认可的参考方法测定所关心的组分或性质数据;三是将测量的光谱和基础数据,用适当的化学计量方法建立校正模型;四是未知样品组分或性质的测定。

由近红外光谱分析技术的工作过程可见,现代近红外光谱分析技术包括了近红外光谱仪、化学计量学软件和应用模型三部分。

三者的有机结合才能满足快速分析的技术要求,是缺一不可的。

与传统分析技术相比,近红外光谱分析技术具有诸多优点,它能在几分钟内,仅通过对被测样品完成一次近红外光谱的采集测量,即可完成其多项性能指标的测定(最多可达十余项指标)。

光谱测量时不需要对分析样品进行前处理;分析过程中不消耗其它材料或破坏样品;分析重现性好、成本低。

对于经常的质量监控是十分经济且快速的,但对于偶然做一两次的分析或分散性样品的分析则不太适用。

因为建立近红外光谱方法之前必须投入一定的人力、物力和财力才能得到一个准确的校正模型。

近红外光谱主要是反映C-H、O-H、N-H、S-H等化学键的信息,因此分析范围几乎可覆盖所有的有机化合物和混合物。

加之其独有的诸多优点,决定了它应用领域的广阔,使其在国民经济发展的许多行业中都能发挥积极作用,并逐渐扮演着不可或缺的角色。

主要的应用领域包括:石油及石油化工、基本有机化工、精细化工、冶金、生命科学、制药、医学临床、农业、食品、饮料、烟草、纺织、造纸、化妆品、质量监督、环境保护、高校及科研院所等。

在石化领域可测定油品的辛烷值、族组成、十六烷值、闪点、冰点、凝固点、馏程、MTBE含量等;在农业领域可以测定谷物的蛋白质、糖、脂肪、纤维、水分含量等;在医药领域可以测定药品中有效成分,组成和含量;亦可进行样品的种类鉴别,如酒类和香水的真假辨别,环保废弃物的分检等。

3近红外光谱技术的发展历史近红外光谱技术的发展大体上可分为5个阶段。

在发现近红外谱区后的150年中,其应用极为有限,被行内人士称为“被遗忘的谱区”。

直到20世纪50年代,由于近红外仪器的进步和Norris等人所做的大量研究工作,近红外光谱分析技术首先在农产品品质快速分析中得到广泛应用。

由于经典近红外光谱分析的灵敏度低、抗干扰性差,该项技术的研究和应用进入了一个沉默时期。

80年代以后,计算机技术的飞速发展,带动了仪器数字化和化学计量学(Chemometrics)学科的发展,也使以弱信号和多元信息处理为基本特征的近红外光谱分析获得了技术支持和依靠。

90年代以后,近红外光谱技术步入快速发展时期。

计算机技术、数字化仪器和化学计量学方法的有机结合,形成了现代近红外光谱技术。

化学计量学方法和分析软件成为现代近红外光谱技术的重要组成部分。

在欧美等发达国家中近红外光谱分析仪已成为品管实验中必备的仪器。

4红外光的区划红外线:波长在0.76~500μm (1000μm) 范围内的电磁波近红外区(NIR):0.76~2.5μm(760~ 2500nm)-OH和-NH倍频吸收区中红外区(MIR):2.5~25μm (4000~ 400cm-1)振动、伴随转动光谱远红外区(FIR):25~500μm 纯转动光谱紫外-可见(UV-VIS):190 ~900nm 电子光谱5红外光谱的作用绝大多数有机化合物的基频吸收带出现在MIR光区。

基频振动是红外光谱中吸收最强的振动,最适于进行红外光谱的定性和定量分析。

中红外光谱仪最为成熟、简单,因此它是应用极为广泛的光谱区。

通常,中红外光谱法又简称为红外光谱法。

红外光谱是鉴别物质和分析物质化学结构的有效手段,已被广泛应用于物质的定性鉴别、物相分析和定量测定,并用于研究分子间和分子内部的相互作用6近红外光谱技术的特点与传统化学分析方法相比,近红外光谱分析技术有鲜明的技术特点1、分析速度快。

扫描速度快,可在数十秒内获得一个样品的全光谱图,通过数学模型既可快速计算出样品的浓度。

2、多种成分同时分析。

一次全光谱扫描,可获得多种成分的光谱信息,通过建立不同的数学模型,就可定量分析样品的多种物质成分。

3、无污染分析。

样品不需特别的预处理,不使用有毒有害试剂。

根据样品的物质状态和透光能力采用透射或漫反射方式测定,可直接测定不经预处理的液态、固态或气态样品。

4、无损伤分析。

测定过程不破坏或消耗样品,不影响外观、内在结构和性质。

5、实时分析和远距离测定。

实时在线分析特别适合工业生产上应用。

利用光导纤维技术远离主机取样,将光谱信号实时传送回主机,直接计算出样品成分的含量。

6、操作简单,分析成本低。

除需要电能外,不需要任何耗材,大大地降低测试费用。

操作上不需要专门技能和特别训练。

近红外光谱分析技术也有其固有的弱点。

该项技术是一种间接的分析技术,它必须依赖常规的化学分析方法,测定出特定背景范围内多个标准样品成分的化学值,利用化学计量学方法建立数学模型,并通过数学模型计算待测样品的成分含量。

数学模型预测的准确性与常规化学分析的准确性、建模样品的代表性、模型使用的合理性有很大关系。

另外,近红外光谱分析的测试灵敏度较低,待测样品的成分含量一般不少于0.1%。

7近红外仪器的类型和特点近红外光谱仪器已由传统的滤光片型、光栅色散型,发展到目前流行的主导产品傅立叶变换型。

滤光片型仪器是主要用于专用分析仪器。

该类仪器的波长准确性差,测量准确性也就差,建立的数学模型不能转移。

由于滤光片镀膜分子经常变化,引起内部波长漂移,所建立的分析数学模型要经常校正误差,使用很麻烦,应用局限性大,数学模型不能传递。

该类仪器的价格也便宜。

光栅色散型仪器是70-80年代常用的仪器类型,其采用全息光栅分光、PbS或其他光敏元件作检测器,有较高的信噪比,但波长准确度仍较低,数学模型仍不能传递。

仪器中可动部分可能磨损,影响光谱采集的可靠性,不适合在线分析。

该类仪器的价格较滤光片型仪器贵。

傅立叶变换近红外光谱仪是90年代中期以后市场的主导产品,其较传统的滤光片型和光栅色散型近红外光谱仪有更为明显的优点,表现为波长准确度和分辨率更高、扫描速度更快、不受自然散光影响、检出限量高等;由于这些优点,用户在使用时不需要对仪器进行外部校准,数学模型在同类型仪器间转移和传递成为可能。

另外,光导纤维探头和积分球采样系统等附件的应用,对不规则样品的分析测定就更加方便。

样品的形态可以是固体、粉末状、颗粒状、液体,甚至气体。

可远距离提取样品光谱信息,从而实现在线分析。

这些技术的发展,大大拓宽了近红外光谱分析的应用范围。

该类仪器价格较贵。

8 NIR-AOTF光谱技术近红外光谱最突出的研究进展是能够实现药品和食品生产的在线过程控制,因此在多种物质品质检测方面有着良好的应用前景和市场潜力。

NIR-AOTF是20世纪90年代近红外光谱(near-infrared spectroscopy,NIR)最突出的进展——声光可调(acousto-optic tunable filter,AOTF)近红外光谱仪。

它不仅结构简单、体积小、重现性好,而且采用了全固态一体化的密封设计,具有优异的抗震性能,且对温度、湿度、灰尘均有较好的适应性。

NIR-AOTF在国外主要用于制药过程控制,推广NIR-AOTF 光谱技术在制药过程控制领域的应用,对提高药品质量有重要意义。

8.1 NIR-AOTF光谱技术的原理和性能NIR-AOTF的核心分光器件AOTF采用单晶体设计。

因设备内部构造简单、光径最短,保证了最大光学效能输出,满足了生产在线快速无损检测需求。

近红外光谱区(780~2 526 nm)的光谱信息来源于分子内部振动的倍频吸收和合频吸收。

传统的近红外光谱分析的专一性差、模型性能不稳定、难以实现在线检测[1,2]。

随着计算机技术和光学技术的迅速发展,NIR-AOTF除具有传统近红外傅立叶变换分光系统的优点外[3],还具有以下性能:(1)信噪比比傅立叶变换技术高10~100倍,可以检测药物中痕量物质的含量;(2)采用全固化设计,没有任何可移动和转动的部件,具有很好的抗震性能,不仅可随混合器一起转动,而且仪器不需要定期校准,长时间运行数据稳定可靠,适用于在线连续长时间检测;(3)在中药提取和浓缩的在线检测中,仪器不受温度、湿度、灰尘等外界环境的影响,不受管路中气泡的影响,不需预处理就能准确测定提取液和浓缩液中万分之几的低含量指标;(4)光谱测量技术与化学计量学学科有机结合,具有强大的软件功能,包括光谱采集软件SNAP!2.03和化学计量学软件The Unscrambler,这些软件集成仪器能够在线实时显示各项指标数据,精度高,移植性好8.2 NIR-AOTF光谱技术在制药过程控制中的应用进展NIR-AOTF在制药工业中的应用日趋广泛,从药物的定性、定量分析,到生产过程各阶段如提取、浓缩、合成、混合、干燥、压片及包装等的在线监控,表现出巨大的潜力。

相关文档
最新文档