2012年福建高考数学试题(理数)

合集下载

2012年福建省高考数学试卷(理科)答案与解析

2012年福建省高考数学试卷(理科)答案与解析

2012年福建省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出分四个选项中,只有一项是符合题目要求的.===≤的充要条件是,但是4.(5分)(2012•福建)一个几何体的三视图形状都相同,大小均相等,那么这个几何体不sinx+≥(x∈R)时,不等式两边相等;sinx+6.(5分)(2012•福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()By=((﹣=取自阴影部分的概率为=7.(5分)(2012•福建)设函数,则下列结论错误的是()=(8.(5分)(2012•福建)已知双曲线﹣=1的右焦点与抛物线y2=12x的焦点重合,则B∵双曲线的右焦点与抛物线∴双曲线的一条渐近线方程为∴双曲线的焦点到其渐近线的距离等于9.(5分)(2012•福建)若函数y=2x图象上存在点(x,y)满足约束条件,B10.(5分)(2012•福建)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有在[1,3]上具有性质P,现给出如下命题:①f(x)在[1,3]上的图象是连续不断的;②f(x2)在[1,]上具有性质P;③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];④对任意x1,x2,x3,x4∈[1,3],有[f(x1)+f(x2)+f(x3)+f(x4)]其中真命题的序号是()在](≤=[f二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置.11.(4分)(2012•福建)(a+x)4的展开式中x3的系数等于8,则实数a=2.×12.(4分)(2012•福建)阅读图所示的程序框图,运行相应地程序,输出的s值等于﹣3.13.(4分)(2012•福建)已知△ABC得三边长成公比为的等比数列,则其最大角的余弦值为.据三角形三边长成公比为,aaa﹣14.(4分)(2012•福建)数列{a n}的通项公式a n=ncos+1,前n项和为S n,则S2012= 3018.cos ncos的规律,即可求出数列的规律即可求出结ncos=0ncos的每四项和为15.(4分)(2012•福建)对于实数a和b,定义运算“*”:a*b=设f(x)=(2x﹣1)*(x﹣1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是.=)轴的左边,得到,),又在,)上成立,y=(,即故答案为:三、解答题:本大题共5小题,共80分,解答题写出文字说明,证明过程或演算步骤.16.(13分)(2012•福建)受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为(Ⅰ)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;(Ⅱ)若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;(Ⅲ)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由.××+3×=2.86×+2.9×××+3×=2.86××=2.7917.(13分)(2012•福建)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)sin213°+cos217°﹣sin13°cos17°(2)sin215°+cos215°﹣sin15°cos15°(3)sin218°+cos212°﹣sin18°cos12°(4)sin2(﹣18°)+cos248°﹣sin2(﹣18°)cos48°(5)sin2(﹣25°)+cos255°﹣sin2(﹣25°)cos55°(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.﹣,可得这个常数的=++sin2,化简可得结果.sin30..++sin sin﹣sin=++()﹣﹣+cos2﹣=1﹣+.18.(13分)(2012•福建)如图,在长方体ABCD﹣A1B1C1D1中AA1=AD=1,E为CD中点.(Ⅰ)求证:B1E⊥AD1;(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.(Ⅲ)若二面角A﹣B1E﹣A1的大小为30°,求AB的长.为原点,,,为原点,,,的方向为,,,==(•.此时的法向量=⊥平面⊥,⊥=,﹣,﹣,只要⊥,即有•,有此得t=,AP=的一个法向量,此时与==|,解得19.(13分)(2012•福建)如图,椭圆E:的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.,;,,∴的方程为.(Ⅱ)由===,),此时,,,,﹣),交20.(14分)(2012•福建)已知函数f(x)=e x+ax2﹣ex,a∈R.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;(Ⅱ)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.==,则c=,使得四、选考题(题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分。

福建历年高考数学试卷 (08、09、 10含文理含答案)

福建历年高考数学试卷 (08、09、 10含文理含答案)

08福建高考数学卷(理工农医类)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若复数(a 2-3a +2)+(a-1)i 是纯虚数,则实数a 的值为 A.1B.2C.1或2D.-1(2)设集合A={x |1xx -<0},B={x |0<x <3=,那么“m ∈A ”是“m ∈B ”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件(3)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为 A.63B.64C.127D.128(4)函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为 A.3B.0C.-1D.-2(5)某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是 A.16625B.96625C. 192625D. 256625(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为A.63B.265C.155D.105(7)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(8)若实数x 、y 满足 {10,x y -+≤则yx的取值范围是 (9)函数f (x )=cos x (x )(x ∈R )的图象按向量(m,0) 平移后,得到函数y =-f ′(x )的图象,则m 的值可以为A.2πB.πC.-πD.-2π(10)在△ABC 中,角ABC 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为A. 6π B.3π C.6π或56πD.3π或23π(11)又曲线22221x y ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞(12)已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.(13)若(x -2)5=a 3x 5+a 5x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 1+a 2+a 3+a 4+a 5=__________.(用数字作答) x =1+cos θ(14)若直线3x+4y+m=0与圆 y =-2+sin θ(θ为参数)没有公共点,则实数m 的取值范围是 .(153,则其外接球的表面积是 . (16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈R ,都有a +b 、a -b , ab 、ab∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集{}2,F a b b Q =+∈也是数域.有下列命题: ①整数集是数域;②若有理数集Q M ⊆,则数集M 必为数域;③数域必为无限集; ④存在无穷多个数域.其中正确的命题的序号是 .(把你认为正确的命题的序号填填上)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知向量m =(sin A ,cos A ),n =(3,1)-,m ·n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域.如图,在四棱锥P-ABCD 中,则面PAD ⊥底面ABCD ,侧棱PA =PD =2,底面ABCD 为直角梯形,其中BC ∥AD ,AB⊥AD ,AD =2AB =2BC =2,O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PD 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD 的距离为32?若存在,求出AQQD的值;若不存在,请说明理由.(19)(本小题满分12分) 已知函数321()23f x x x =+-. (Ⅰ)设{a n }是正数组成的数列,前n 项和为S n ,其中a 1=3.若点211(,2)n n n a a a ++-(n ∈N*)在函数y =f ′(x )的图象上,求证:点(n ,S n )也在y =f ′(x )的图象上;(Ⅱ)求函数f (x )在区间(a -1,a )内的极值.(20)(本小题满分12分)某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科 目B 的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证 书.现某人参加这项考试,科目A 每次考试成绩合格的概率均为23,科目B 每次考试 成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响. (Ⅰ)求他不需要补考就可获得证书的概率;(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望E ξ.如图、椭圆22221(0)x y ab a b+=的一个焦点是F (1,0),O 为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F 的直线l 交椭圆于A 、B 两点.若直线l 绕点F 任意转动,值有222OA OBAB +,求a 的取值范围.(22)(本小题满分14分)已知函数f (x )=ln(1+x )-x 1 (Ⅰ)求f (x )的单调区间;(Ⅱ)记f (x )在区间[]0,π(n ∈N*)上的最小值为b x 令a n =ln(1+n )-b x . (Ⅲ)如果对一切n ,不等式22nn n ca a a ++-恒成立,求实数c 的取值范围; (Ⅳ)求证: 131321122424221 1.n n na a a a a a a a a a a a a -++++-【参考答案】一、选择题:本大题考查基本概念和基本运算.每小题5分,满分60分.(1)B (2)A (3)C (4)B (5)B (6)D (7)A (8)C (9)A (10)D (11)B (12)D 二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分.(13)31(14)(,0)(10,)-∞⋃+∞(15)9π(16)③④三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.(17)本小题主要考查平面向量的数量积计算、三角函数的基本公式、三角恒等变换、一元二次函数的最值等基本知识,考查运算能力.满分12分. 解:(Ⅰ)由题意得3sin cos 1,m n A A =-=12sin()1,sin().662A A ππ-=-=由A 为锐角得,.663A A πππ-==(Ⅱ)由(Ⅰ)知1cos ,2A =所以2213()cos 22sin 12sin 2sin 2(sin ).22f x x x x s x =+=-+=--+因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值32.当sin x =-1时,f (x )有最小值-3,所以所求函数f (x )的值域是33,2⎡⎤-⎢⎥⎣⎦.(18)本小题主要考查直线与平面的位置关系、异面直线所成角、点到平面的距离等基本知识,考查空间想象能力、逻辑思维能力和运算能力.满分12分.解法一:(Ⅰ)证明:在△PAD 中PA =PD ,O 为AD 中点,所以PO ⊥AD ,又侧面PAD ⊥底面ABCD ,平面PAD ⋂平面ABCD =AD , PO ⊂平面PAD , 所以PO ⊥平面ABCD .(Ⅱ)连结BO ,在直角梯形ABCD 中、BC ∥AD ,AD =2AB =2BC ,有OD ∥BC 且OD =BC ,所以四边形OBCD 是平行四边形, 所以OB ∥DC .由(Ⅰ)知,PO ⊥OB ,∠PBO 为锐角, 所以∠PBO 是异面直线PB 与CD 所成的角.因为AD =2AB =2BC =2,在Rt △AOB 中,AB =1,AO =1,所以OB =2,在Rt △POA 中,因为AP =2,AO =1,所以OP =1, 在Rt △PBO 中,tan ∠PBO =122,arctan .222PG PBO BC ==∠=所以异面直线PB 与CD 所成的角是2arctan2. (Ⅲ)假设存在点Q ,使得它到平面PCD 的距离为32. 设QD =x ,则12DQC S x ∆=,由(Ⅱ)得CD =OB =2, 在Rt △POC 中, 222,PC OC OP =+=所以PC =CD =DP , 233(2),42PCD S ∆==由V p-DQC =V Q-PCD ,得2,所以存在点Q 满足题意,此时13AQ QD =. 解法二:(Ⅰ)同解法一.(Ⅱ)以O 为坐标原点,OC OD OP 、、的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O-xyz ,依题意,易得A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0), P (0,0,1),所以110111CDPB ---=(,,),=(,,). 所以异面直线PB 与CD 所成的角是arccos63, (Ⅲ)假设存在点Q ,使得它到平面PCD 的距离为32, 由(Ⅱ)知(1,0,1),(1,1,0).CP CD =-=- 设平面PCD 的法向量为n =(x 0,y 0,z 0).则0,0,n CP n CD ⎧=⎪⎨=⎪⎩所以00000,0,x z x y -+=⎧⎨-+=⎩即000x y z ==,取x 0=1,得平面PCD 的一个法向量为n =(1,1,1). 设(0,,0)(11),(1,,0),Q y y CQ y -≤≤=-由32CQ n n=,得13,23y -+=解y =-12或y =52(舍去), 此时13,22AQ QD ==,所以存在点Q 满足题意,此时13AQ QD =.题和解决问题的能力.满分12分.(Ⅰ)证明:因为321()2,3f x x x =+-所以f ′(x )=x 2+2x , 由点211(,2)(N )n n n a a a n +++-∈在函数y =f ′(x )的图象上, 又0(N ),n a n +>∈所以11()(2)0,n n n n a a a a -+---=所以2(1)32=22n n n S n n n -=+⨯+,又因为f ′(n )=n 2+2n ,所以()n S f n '=, 故点(,)n n S 也在函数y=f ′(x )的图象上.(Ⅱ)解:2()2(2)f x x x x x '=+=+, 由()0,f x '=得02x x ==-或.当x 变化时,()f x '﹑()f x 的变化情况如下表: 注意到(1)12a a --=<,从而①当212,21,()(2)3a a a f x f -<-<-<<--=-即时的极大值为,此时()f x 无极小值; ②当10,01,()a a a f x -<<<<即时的极小值为(0)2f =-,此时()f x 无极大值; ③当2101,()a a a f x ≤--≤≤≥或或时既无极大值又无极小值.(20)本小题主要考查概率的基本知识与分类思想,考查运用数学知识分析问题/解愉问题的能力.满分12分. 解:设“科目A 第一次考试合格”为事件A ,“科目A 补考合格”为事件A 2;“科目B 第一次考试合格”为事件B ,“科目B 补考合格”为事件B .(Ⅰ)不需要补考就获得证书的事件为A 1·B 1,注意到A 1与B 1相互独立,则1111211()()()323P A B P A P B =⨯=⨯=. 答:该考生不需要补考就获得证书的概率为13. (Ⅱ)由已知得,ξ=2,3,4,注意到各事件之间的独立性与互斥性,可得1112(2)()()P P A B P A A ξ==+2111114.3233399=⨯+⨯=+= x (-∞,-2)-2 (-2,0) 0 (0,+∞) f ′(x ) + 0 - 0 + f (x )↗极大值↘极小值↗112112122(3)()()()P P A B B P A B B P A A B ξ==++2112111211114,3223223326693=⨯⨯+⨯⨯+⨯⨯=++= 12221212(4)()()P P A A B B P A A B B ξ==+12111211111,3322332218189=⨯⨯⨯+⨯⨯⨯=+= 故4418234.9993E ξ=⨯+⨯+⨯=答:该考生参加考试次数的数学期望为83.(21)本小题主要考查直线与椭圆的位置关系、不等式的解法等基本知识,考查分类与整合思想,考查运算能力和综合解题能力.满分12分.解法一:(Ⅰ)设M ,N 为短轴的两个三等分点,因为△MNF 为正三角形, 所以32OF MN =, 即1=32, 3.23bb 解得= 2214,a b =+=因此,椭圆方程为221.43x y += (Ⅱ)设1122(,),(,).A x y B x y (ⅰ)当直线 AB 与x 轴重合时,2222222222,4(1),.OA OB a AB a a OA OB AB +==>+<因此,恒有(ⅱ)当直线AB 不与x 轴重合时,设直线AB 的方程为:22221,1,x y x my a b=++=代入整理得22222222()20,a b m y b my b a b +++-=所以222212122222222,b m b a b y y y y a b m a b m-+==++ 因为恒有222OA OB AB +<,所以∠AOB 恒为钝角. 即11221212(,)(,)0OA OB x y x y x x y y ==+<恒成立.22222222222222222222222(1)()210.m b a b b m a b m a b m m a b b a b a a b m +-=-+++-+-+=<+又a 2+b 2m 2>0,所以-m 2a 2b 2+b 2-a 2b 2+a 2<0对m ∈R 恒成立,即a 2b 2m 2> a 2 -a 2b 2+b 2对m ∈R 恒成立.当m ∈R 时,a 2b 2m 2最小值为0,所以a 2- a 2b 2+b 2<0. a 2<a 2b 2- b 2, a 2<( a 2-1)b 2= b 4,因为a >0,b >0,所以a <b 2,即a 2-a -1>0, 解得a 15+或a 15-(舍去),即a 15+, 综合(i )(ii),a 的取值范围为(152+,+∞). 解法二:(Ⅰ)同解法一, (Ⅱ)解:(i )当直线l 垂直于x 轴时,x =1代入22222221(1)1,A y b a y a b a -+===1.因为恒有|OA |2+|OB |2<|AB |2,2(1+y A 2)<4 y A 2,y A 2>1,即21a a->1,解得a 15+或a 15-(舍去),即a 15+. (ii )当直线l 不垂直于x 轴时,设A (x 1,y 1), B (x 2,y 2).设直线AB 的方程为y =k (x -1)代入22221,x y a b+=得(b 2+a 2k 2)x 2-2a 2k 2x + a 2k 2- a 2b 2=0,故x 1+x 2=222222222222222,.a k a k a b x x b a k b a k -=++因为恒有|OA |2+|OB |2<|AB |2, 所以x 21+y 21+ x 22+ y 22<( x 2-x 1)2+(y 2-y 1)2, 得x 1x 2+ y 1y 2<0恒成立.x 1x 2+ y 1y 2= x 1x 2+k 2(x 1-1) (x 2-1)=(1+k 2) x 1x 2-k 2(x 1+x 2)+ k 2=(1+k 2)2222222222222222222222222()a k a b a k a a b b k a b k k b a k b a k b a k--+--+=+++. 由题意得(a 2- a 2 b 2+b 2)k 2- a 2 b 2<0对k ∈R 恒成立.②当a 2- a 2b 2+b 2=0时,a =152+; ③当a 2- a 2b 2+b 2<0时,a 2- a 2(a 2-1)+ (a 2-1)<0,a 4- 3a 2+1>0, 解得a 235+a 235-,a >152,因此a ≥152+. 综合(i )(ii ),a 的取值范围为(152+,+∞). (22)本小题主要考查函数的单调性、最值、不等式、数列等基本知识,考查运用导数研究函数性质的方法,考查分析问题和解决问题的能力,满分14分. 解法一:(I )因为f(x)=ln(1+x )-x ,所以函数定义域为(-1,+∞),且f 〃(x)=11x +-1=1x x-+. 由f 〃(x )>0得-1<x <0,f (x )的单调递增区间为(-1,0); 由f 〃(x )<0得x >0,f (x )的单调递增区间为(0,+∞). (II)因为f (x )在[0,n]上是减函数,所以b n =f (n )=ln(1+n )-n , 则a n =ln(1+n )-b n =ln(1+n )-ln(1+n )+n =n . (i)222(2(2)22n n n a a a n n n n n n++=++=+++221.22n n n +=+++又2(2)12112x n n n n ++==+-+,因此c <1,即实数c 的取值范围是(-∞,1). (II )由(i 212 1.21n n n <+-+因为[135(21)246(2)n n ⋅⋅⋅⋅-⋅⋅⋅⋅⋅]2=3222133557(21)(21)11,246(2)2121n n n n n ⋅⋅⋅-+=⋅⋅⋅⋅⋅++< 所以135(21)246(2)21n n n -+<2121n n -(n ∈N *),则113135(21)224246(2)n n -+++<1313211222423153212121 1.n nna n n a a a a a a a a a a a a -++-=++++即<211(n a n +∈N *)解法二:(Ⅰ)同解法一.(Ⅱ)因为f (x )在[]0,n 上是减函数,所以()ln(1),n b f n n n ==+- 则ln(1)ln(1)ln(1).n n a n b n n n n =+-=+-++= (i 22n n n a a a ++-n ∈N*恒成立.22n n n +-+n ∈N*恒成立.则222cn n n +-+n ∈N*恒成立.设2()22,g n n n n =++ n ∈N*,则c <g (n )对n ∈N*恒成立. 考虑[)2()22,1,.g x x x x x =++∈+∞因为122211()1(2)?(22)11212x g x x x x x x x-+=-++=-++′=0, 所以[)()1,g x +∞在内是减函数;则当n ∈N*时,g (n )随n 的增大而减小,又因为2242lim ()lim(22)limlim222211x x x x ng n n n n n n nn n→∞→∞→∞→∞+=+-+==++++++ 1.所以对一切*N ,() 1.n g n ∈>因此c ≤1,即实数c 的取值范围是(-∞,1]. (ⅱ) 由(ⅰ)212 1.21n n n <+-+ 下面用数学归纳法证明不等式135(21)N ).246(2)21n n n n +-<∈+①当n =1时,左边=123,左边<右边.不等式成立. ②假设当n=k 时,不等式成立.即135(21)k -<当n=k +1时,32122321222122212121)22(2642)12(12531++++=++=++++⋯+⋯••••••k k k k k k k k k k k k k <)()-(=,1)1(2132132148243824++=++++++•k k k k k k k <即n =k +1时,不等式成立综合①、②得,不等式*)N (121)2(642)12(531∈+⋯-⋯••••••••n n n n <成立.所以1212)2(642)12(531--+⋯-⋯••••••••n n n n <)2(642)12(531423121n n ••••••••••⋯-⋯⋯+++.112123513-+=-⋯n n +=-+-< 即*)N (1212421231423121∈-⋯⋯⋯+++-n a a a a a a a a a a a a a n nn <+.08福建高考数学试卷(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.¢ (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 (3)设|a n |是等左数列,若a 2=3,a 1=13,则数列{a n }前8项的和为 A.128 B.80 C.64 D.56(4)函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为 A.3 B.0 C.-1 D.-2 (5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 A.12125 B.16125 C.48125 D.96125(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为A.22 B.2 C.2 D.1(7)函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 A.-sin x B.sin x C.-cos x D.cos x (8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 23ac ,则角B 的值为A.6π B.3π C.6π或56π D.3π或23π(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(10)若实数x 、y 满足10,0,2,x y x x -+≤⎧⎪⎨⎪≤⎩则y x 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) (11)如果函数y=f (x )的图象如右图,那么导函数y=f (x )的图象可能是(12)双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞]第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)(x +1x)9展开式中x 2的系数是 .(用数字作答) (14)若直线3x+4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是 . (15)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是 . (16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a+b 、a-b 、ab 、ab∈P (除数b ≠0)则称P 是一个数域,例如有理数集Q 是数域,有下列命题: ①数域必含有0,1两个数; ②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域;④数域必为无限集.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知向量(sin ,cos ),(1,2)m A A n ==-,且0.m n = (Ⅰ)求tan A 的值;(Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域.(18)(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为111,,,543且他们是否破译出密码互不影响. (Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.(19)(本小题满分12分) 如图,在四棱锥P —ABCD 中,侧面PAD ⊥底面ABCD ,侧棱PA =PD 2,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC=2,O 为AD 中点. (Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的余弦值; (Ⅲ)求点A 到平面PCD 的距离.(20)(本小题满分12分)已知{a n }是正数组成的数列,a 1=11,n n a a +)(n ∈N *)在函数y =x 2+1的图象上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2n a,求证:b n ·b n +2<b 2n +1.(21)(本小题满分12分)已知函数32()2f x x mx nx =++-的图象过点(-1,-6),且函数()()6g x f x x '=+的图象关于y 轴对称. (Ⅰ)求m 、n 的值及函数y =f (x )的单调区间;(Ⅱ)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值.(22)(本小题满分14分)如图,椭圆2222:1x y C a b+=(a >b >0)的一个焦点为F (1,0),且过点(2,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)若AB 为垂直于x 轴的动弦,直线l :x =4与x 轴交于点N , 直线AF 与BN 交于点M . (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求△AMN 面积的最大值.【数学试题(文史类)参考答案】一、选择题:本大题考查基本概念和基本运算.每小题5分,满分60分. (1)A (2)C (3)C (4)B (5)C (6)D (7)A (8)A (9)A (10)D (11)A (12)B 二、填空题:本大题考查基础知识和基本运算,每小题4分,满分16分. (13)84(14)(,0)(10,)-∞⋃+∞ (15)9π (16)①④三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.(17)本小题主要考查平面向量的数量积计算、三角函数的基本公式、三角恒等变换、一元二次函数的最值等基本知识,考查运算能力,满分12分. 解:(Ⅰ)由题意得 m ·n =sin A -2cos A =0,因为cos A ≠0,所以tan A =2. (Ⅱ)由(Ⅰ)知tan A =2得2213()cos 22sin 12sin 2sin 2(sin ).22f x x x x x x =+=-+=--+因为x ∈R,所以[]sin 1,1x ∈-. 当1sin 2x =时,f (x )有最大值32, 当sin x =-1时,f (x )有最小值-3, 所以所求函数f (x )的值域是33,.2⎡⎤-⎢⎥⎣⎦(18)本小题主要考查概率的基本知识与分类思想,考查运用数学知识分析问题、解决问题的能力.满分12分. 解:记“第i 个人破译出密码”为事件A 1(i =1,2,3),依题意有123111(),(),(),54.3P A P A P A ===且A 1,A 2,A 3相互独立.(Ⅰ)设“恰好二人破译出密码”为事件B ,则有B =A 1·A 2·3A ·A 1·2A ·A 3+1A ·A 2·A 3且A 1·A 2·3A ,A 1·2A ·A 3,1A ·A 2·A 3彼此互斥于是P (B )=P (A 1·A 2·3A )+P (A 1·2A ·A 3)+P (1A ·A 2·A 3)=314154314351324151⨯⨯+⨯⨯+⨯⨯ =203.答:恰好二人破译出密码的概率为203.(Ⅱ)设“密码被破译”为事件C ,“密码未被破译”为事件D .D =1A ·2A ·3A ,且1A ,2A ,3A 互相独立,则有 P (D )=P (1A )·P (2A )·P (3A )=324354⨯⨯=52.而P (C )=1-P (D )=53,故P (C )>P (D ). 答:密码被破译的概率比密码未被破译的概率大.(19)本小题主要考查直线与平面的位置关系、异面直线所成角、点到平面的距离等基本知识,考查空间想象能力,逻辑思维能力和运算能力.满分12分. 解法一:(Ⅰ)证明:在△PAD 卡中PA =PD ,O 为AD 中点,所以PO ⊥AD . 又侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,PO ⊂平面PAD , 所以PO ⊥平面ABCD.(Ⅱ)连结BO ,在直角梯形ABCD 中,BC ∥AD ,AD =2AB =2BC , 有OD ∥BC 且OD =BC ,所以四边形OBCD 是平行四边形, 所以OB ∥DC.由(Ⅰ)知PO ⊥OB ,∠PBO 为锐角,所以∠PBO 是异面直线PB 与CD 所成的角.因为AD =2AB =2BC =2,在Rt △AOB 中,AB =1,AO =1,所以OB =2, 在Rt △POA 中,因为AP =2,AO =1,所以OP =1, 在Rt △PBO 中,PB =322=+OB OP , cos ∠PBO =3632==PB OB , 所以异面直线PB 与CD 所成的角的余弦值为36. (Ⅲ)由(Ⅱ)得CD =OB =2, 在Rt △POC 中,PC =222=+OP OC ,所以PC =CD =DP ,S △PCD =43·2=23. 又S △=,121=•AB AD 设点A 到平面PCD 的距离h , 由V P-ACD =V A-PCD , 得31S △ACD ·OP =31S △PCD ·h , 即31×1×1=31×23×h ,解得h =332.(Ⅱ)以O 为坐标原点,OP OD OC 、、的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O -xyz . 则A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),P (0,0,1). 所以CD =(-1,1,0),PB =(t ,-1,-1), ∞〈PB 、CD 〉362311-•--==CDPB CD PB , 所以异面直线PB 与CD 所成的角的余弦值为36, (Ⅲ)设平面PCD 的法向量为n =(x 0,y 0,x 0), 由(Ⅱ)知CP =(-1,0,1),CD =(-1,1,0), 则 n ·CP =0,所以 -x 0+ x 0=0,n ·CD =0, -x 0+ y 0=0,即x 0=y 0=x 0,取x 0=1,得平面的一个法向量为n =(1,1,1). 又AC =(1,1,0).从而点A 到平面PCD 的距离d .33232==•nnAC (20)本小题主要考查等差数列、等比数列等基本知识,考查转化与化归思想,考查推理与运算能力.满分12分. 解法一:(Ⅰ)由已知得a n +1=a n +1、即a n +1-a n =1,又a 1=1,所以数列{a n }是以1为首项,公差为1的等差数列. 故a n =1+(a -1)×1=n.(Ⅱ)由(Ⅰ)知:a n =n 从而b n +1-b n =2n. b n =(b n -b n -1)+(b n -1-b n -2)+···+(b 2-b 1)+b 1=2n -1+2n -2+···+2+1=2121--n =2n -1. 因为b n ·b n +2-b 21+n =(2n -1)(2n +2-1)-(2n -1-1)2=(22n +2-2n +2-2n +1)-(22n +2-2-2n +1-1)=-5·2n +4·2n=-2n<0,所以b n ·b n +2<b 21+n ,(Ⅱ)因为b 2=1,b n ·b n +2- b 21+n =(b n +1-2n )(b n +1+2n +1)- b 21+n=2n +1·b n -1-2n ·b n +1-2n ·2n +1=2n (b n +1-2n +1) =2n (b n +2n -2n +1) =2n (b n -2n) = (2)(b 1-2)=-2n〈0, 所以b n -b n +2<b 2n +1(21)本小题主要考察函数的奇偶性、单调性、极值、导数、不等式等基础知识,考查运用导数研究函数性质的方法,以及分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力.满分12分. 解:(1)由函数f (x )图象过点(-1,-6),得m -n =-3, ……①由f (x )=x 3+mx 2+nx -2,得f ′(x )=3x 2+2mx +n ,则g (x )=f ′(x )+6x =3x 2+(2m +6)x +n ; 而g (x )图象关于y 轴对称,所以-3262⨯+m =0,所以m =-3, 代入①得n =0.于是f ′(x )=3x 2-6x =3x (x -2). 由f ′(x )>得x>2或x <0,故f (x )的单调递增区间是(-∞,0),(2,+∞); 由f ′(x )<0得0<x <2,故f (x )的单调递减区间是(0,2). (Ⅱ)由(Ⅰ)得f ′(x )=3x (x -2), 令f ′(x )=0得x =0或x=2.当变化时,()、()的变化情况如下表:X(-∞.0) 0 (0,2) 2 (2,+ ∞) f ′(x ) + 0 - 0 + f (x )极大值极小值由此可得:当0<a <1时,f (x )在(a -1,a +1)内有极大值f (O )=-2,无极小值; 当a =1时,f (x )在(a -1,a +1)内无极值;当1<a <3时,f (x )在(a -1,a +1)内有极小值f (2)=-6,无极大值; 当a ≥3时,f (x )在(a -1,a +1)内无极值.综上得:当0<a <1时,f (x )有极大值-2,无极小值,当1<a <3时,f (x )有极小值-6,无极大值;当a=1或a ≥3时,f (x )无极值.(22)本小题主要考查直线与椭圆的位置关系、轨迹方程、不等式等基本知识,考查运算能力和综合解题能力,满分14分, 解法一:(Ⅰ)由题设a =2,c =1,从而b 2=a 2-c 2=3,所以椭圆C 前方程为122=+y x .(Ⅱ)(i)由题意得F (1,0),N (4,0).设A (m,n ),则B (m ,-n )(n ≠0),3422n m +=1. ……① AF 与BN 的方程分别为:n (x -1)-(m -1)y =0, n (x -4)-(m -4)y =0.设M (x 0,y 0),则有 n (x 0-1)-(m -1)y 0=0, ……②n (x 0-4)+(m -4)y 0=0, ……③由②,③得x 0=523,52850-=--m ny m m .所以点M 恒在椭圆G 上.(ⅱ)设AM 的方程为x =xy +1,代入3422y x +=1得(3t 2+4)y 2+6ty -9=0.设A (x 1,y 1),M (x 2,y 2),则有:y 1+y 2=.439,4362212+-=+-t y y x x |y 1-y 2|=.4333·344)(2221221++=-+t t y y y y 令3t 2+4=λ(λ≥4),则 |y 1-y 2|=,+)--(=+)-(=- 412113411341·3432λλλλλ 因为λ≥4,0<时,,=,即=所以当04411,41≤1=t λλλ |y 1-y 2|有最大值3,此时AM 过点F . △AMN 的面积S △AMN=.292323y ·212121有最大值y y y y y FN -=-=- 解法二:(Ⅰ)问解法一: (Ⅱ)(ⅰ)由题意得F (1,0),N (4,0).设A (m ,n ),则B (m ,-n )(n ≠0), .13422=+n m ……① AF 与BN 的方程分别为:n (x -1)-(m -1)y =0, ……②n (x -4)-(m -4)y =0, ……③由②,③得:当≠523,528525-=--=x yn x x m 时,. ……④ 1)52(4936)85()52(412)85()52(3)52(4)85()52(3)52(4)85(34222222222222222020=--+-=-+-=-+--=-+--=+m m m m n m m n m m m n m m y x 由于由④代入①,得3422y x +=1(y ≠0). 当x=52时,由②,③得:3(1)023(4)0,2n m y n m y ⎧--=⎪⎪⎨⎪-++=⎪⎩解得0,0,n y =⎧⎨=⎩与a ≠0矛盾. 所以点M 的轨迹方程为221(0),43x x y +=≠即点M 恒在锥圆C 上. (Ⅱ)同解法一.2009年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)一、选择题:本小题共10小题,每小题5分,共50分。

2012年高考数学试题分类汇编第二部分基本初等函数

2012年高考数学试题分类汇编第二部分基本初等函数

第二部分 基本初等函数(2012年安徽卷理)(2)下列函数中,不满足:(2)2()f x f x =的是( )()A ()f x x = ()B ()f x x x =- ()C ()f x x =+1 ()D ()f x x =-【解析】选C()f x kx =与()f x k x =均满足:(2)2()f x f x =得:,,A B D 满足条件(2012年上海卷文)6、方程14230x x +--=的解是(2012年上海卷文)9、已知()y f x =是奇函数,若()()2g x f x =+且(1)1g =,则(1)g -=(2012年天津卷理)(4)函数3()=2+2x f x x -在区间(0,1)内的零点个数是 (A )0 (B)1 (C)2 (D)34.B【命题意图】本试题主要考查了函数与方程思想,函数的零点的概念,零点存在定理以及作图与用图的数学能力.,即(0)(1)<0f f ⋅且函数()f x B 正确.. 1()2xy =1. (2012年福建卷理设函数⎩⎨⎧=为无理数为有理数x x x D ,0,1)(,则下列结论错误的是( )A .)(x D 的值域为}1,0{B .)(x D 是偶函数C .)(xD 不是周期函数 D .)(x D 不是单调函数 (2012年安徽文) (3)(2l o g 9)·(3log 4)=(A )14(B )12(C ) 2 (D ) 4 【解析】选D23lg 9lg 42lg 32lg 2log 9log 44lg 2lg 3lg 2lg 3⨯=⨯=⨯=(2012年安徽文)(13)若函数()|2|f x x a =+的单调递增区间是),3[+∞,则a =________. 【解析】_____a =6- 由对称性:362a a -=⇔=-(2012年山东卷理) 3 设a >0 a ≠1 ,则“函数f(x)= a x在R 上是减函数 ”,是“函数g(x)=(2-a) 3x 在R 上是增函数”的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件解析:p :“函数f(x)= a x在R 上是减函数 ”等价于10<<a ;q :“函数g(x)=(2-a) 3x 在R上是增函数”等价于02>-a ,即,20<<a 且a ≠1,故p 是q 成立的充分不必要条件. 答案选A 。

基于新知识背景的2012高考数学试题研析

基于新知识背景的2012高考数学试题研析

基于新知识背景的2012高考数学试题研析课标课程背景下,数学教学日益注重思维能力的培养和思想方法的渗透.为了考查学生数学能力以及学习潜能,高考数学试题越来越注重以“新知识”为背景来命制试题.2012年的高考试题中不乏基于“新知识”为背景的试题.这类试题通过创设新颖的知识情境考查知识迁移能力,通常没有固定形式化的解法,强调多思少算,以知识为载体侧重考查思维能力和思想方法,突出试题“立意鲜明,背景新颖,设问灵活,层次清晰”的特色.本文将对新知识背景下的2012高考数学试题进行一些初步的研析.1 基于图论知识的高考试题研析例1 (2012高考福建卷·文16)某地图规划道路建设,考虑道路铺设方案,方案设计图中,点表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小.例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为.评析试题命制背景源于数学的一个分支——图论.图论以图为研究对象.其中的图是由若干给定的点及连结两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系.本题以实际问题为背景考查学生应用意识,以图论知识为载体考查学生分析问题和解决问题的能力.该题内涵深刻,思想丰富.它既考查了学生自然语言与数学语言的互译能力,又考查了学生合情猜想与推理能力.2 基于分析学知识的高考试题研析例2 (2012高考福建卷·理7)设函数d(x)=1,x为有理数0,x为无理数,则下列结论错误的是()a.d(x)的值域为{0,1}b.d(x)是偶函数c.d(x)不是周期函数d.d(x)不是单调函数评析本题以分析学知识——狄利克雷函数为背景来命制.试题以“新函数”为媒介,以函数相关知识为依托,在考查知识的同时侧重考查能力.它要求学生对函数单调性和周期性等基本性质有较深刻的认识,在理解的基础上分析“陌生”函数并解决问题.本题侧重考查对知识的理解、应用以及分析解决问题的能力,从而检测学生个体思维的广度和深度以及进一步学习的潜能.例3 (2012高考福建卷·理10)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有f(x1+x22)≤12[f(x1)+f(x2)],则称f(x)在[a,b]上具有性质p.设f(x)在[1,3]上具有性质p.现给出如下命题:①f(x)在[1,3]上的图像是连续不断的;②f(x2)在[1,3]上具有性质p;③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];④对任对意x1,x2,x3,x4∈[1,3],有f(x1+x2+x3+x44)≤14[f(x1)+f(x2)+f(x3)+f(x4)].其中真命题的序号是a.①②b.①③c.②④d.③④评析试题背景源于分析学知识中凸函数的定义.设f为定义在区间i的函数,若对i上的任意两点x1,x2和任意实数λ∈(0,1)总有f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2),则称f 为i上的凸函数.题中性质p就是当λ=12时的凸函数性质.本题主要以函数相关知识为载体来考查学生的各种数学能力,充分体现了高考命题“以能力立意”的指导思想.它通过较长的题干考查阅读理解能力,凭借“新性质p”创设新颖情境考查知识迁移及应用能力,借助函数知识以及“新性质p”考查学生的分析和推理能力.例4 (2012高考湖北卷·理22)(1)已知函数f(x)=rx-xr+(1+r)(x>0),其中r为有理数,且00(i=1,2,…,n),∑ni=1λi=1,有f(∑ni=1λixi)≤∑ni=1λif(xi)(f(∑ni=1λixi)≥∑ni=1λif(xi)).本题主要考查多项式函数的求导,应用导数求函数的最值,证明不等式等知识.它从学科整体意义和思想价值立意,侧重考查对知识的理解和综合灵活应用,在知识理解应用过程中考查学生运算求解能力、推理论证能力以及分类讨论的思想方法.对数学能力和思想方法的考查必须以数学知识为载体.因此,试题隐藏在考查知识的表象下,其实是着重考查蕴涵在数学知识应用过程中的思维能力和思想方法.3 基于数论知识的高考试题研析例5 (2012 高考湖北·文17)传说古希腊毕达哥拉斯学派的数学家常在沙滩上画点或用小石子表示数.他们研究过如下图所示的三角形数:将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn}.可以推测:(ⅰ)b2012是数列{an}中的第______项;(ⅱ)b2k-1=______.(用k表示)评析试题设计背景源于著名的三角形数.本题主要考查数列知识,要求学生能在具体的问题情境中识别数列的递推关系并能用相关知识解决相应问题.此题非常符合“立意鲜明,背景新颖,设问灵活,层次清晰”的特色.它将知识置于新情境中,侧重考查抽象概括能力、归纳推理能力以及特殊与一般的思想方法.这样将知识、能力以及思想方法融入一题进行考查便于有效地检测学生的数学素养.例6 (2012 高考湖北卷·理13 )回文数是指从左到右读和从右到左读都一样的正整数,如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则(ⅰ)4位回文数有____个;(ⅱ)2n+1(n∈n+)位回文数有_______个.评析试题以有趣的回文数为背景来进行命制.本题通过直接给出回文数概念来考查排列组合知识以及数学学习和理解能力,侧重考查学生利用排列组合知识分析解决问题的能力.它通过创设新颖有趣的背景,进而在新的知识背景中考查排列组合知识的掌握以及应用,使得对相关知识的考查变得更加深入.4 基于新定义知识的高考试题研析例7 (2012高考福建卷·理15)对于实数a和b,定义运算“*”:a*b=a2-ab, a≤bb2-ab, a>b,设f(x)=(2x-1)*(x-1),且关于x的方程为f(x)=m (m∈r),恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是_______.评析试题背景源于抽象的代数运算.本题主要考查函数综合知识及应用,以知识为载体考查思维能力以及蕴含于其中的思想方法.它通过定义新运算“*”,考查数学符号的理解运用能力和知识迁移能力;通过在分析解决问题中考查运算求解能力以及分类讨论、数形结合、函数与方程、化归与转化的思想方法,从而检测学生对数学知识中所蕴涵的思想方法的掌握程度.例8 (2012 高考江西卷·理21)若函数h(x)满足:(1)h(0)=1,h(1)=0;(2)对任意a∈[0,1],有h(h(a))=a;(3)在(0,1)上单调递减.则称h(x)为补函数.已知函数h(x)=(1-xp1+λxp)1p(λ>-1,p>0).(1)判断h(x)是否为补函数,并证明你的结论;(2)若存在m∈[0,1],使得h(m)=m,若m是函数h(x)的中介元,记p=1n(n∈n+)时h(x)的中介元为xn,且sn=∑ni=1xi,若对任意的n∈n+,都有sn<12,求λ的取值范围;(3)当λ=0,x∈(0,1)时,函数y=h(x)的图像总在直线y=1-x的上方,求p的取值范围.评析试题通过直接给出补函数的概念,赋予背景新颖性.本题主要考查利用函数、导数、不等式等相关知识解决问题的能力以及函数与方程、分类与讨论和等价与转化的思想方法.它注重数学学科的内在联系和知识综合性,在函数与不等式交汇处设计试题,使对数学知识的考查达到必要的深度.纵观2012年高考数学试题,可谓精彩纷呈.以新知识为背景的高考试题为高考增添了新的血液,使高考试题更加丰富多样,更具创新性.新颖独特的试题不仅是甄别学生数学能力和数学素养的有效工具,同时也是考查学生应用意识和创新意识的有力手段.因此,命制与研析以新知识为背景命制的试题具有一定的意义与价值.作者简介余莉(1989—),女,江西抚州人,福建师范大学数学与计算机科学学院,硕士,主要研究课程与教学论(数学).杜蕊(1987—),女,北京人,福建师范大学数学与计算机科学学院,硕士,主要研究课程与教学论(数学).李祎(1971—),男,山西临汾人,福建师范大学数学与计算机科学学院教授,博士,硕士生导师,主要研究课程与教学论(数学).。

2012年高考数学试题分类考点5 函数的单调性与最值、函数的奇偶性与周期性

2012年高考数学试题分类考点5  函数的单调性与最值、函数的奇偶性与周期性

考点5 函数的单调性与最值、函数的奇偶性与周期性一、选择题1. (2012·广东高考文科·T4)下列函数为偶函数的是( )(A)sin y x = (B)3y x = (C)x y e = (D)y =【解题指南】本题考查函数的奇偶性,要逐一进行判断.先看函数的定义域是否关于原点对称,再看f(-x)=f(x)是否成立. 【解析】选D.2.(2012·福建高考理科·T7)设函数1,()0,⎧=⎨⎩x D x x 为数为无数有理,理,则下列结论错误的是( )(A)()D x 的值域为{0,1} (B)()D x 是偶函数 (C)()D x 不是周期函数 (D)()D x 不是单调函数【解题指南】本题考查函数的基本性质,要求学生能利用定义法求解问题. 【解析】选C.()f x[,]a b12,[,]x x a b∈,有12121()[()()]22x xf f x f x+≤+,则称()f x在[,]a b上具有性质P.设()f x 在[1,3]上具有性质P,现给出如下命题:①()f x在[1,3]上的图象是连续不断的;②2()f x在[1,上具有性质P;③若()f x在2x=处取得最大值1,则()1f x=,[1,3]x∈;④对任意1234,,,[1,3]x x x x∈,有123412341()[()()()()]44x x x xf f x f x f x f x+++≤+++其中真命题的序号是()(A)①②(B)①③(C)②④(D)③④【解析】选D.4. (2012·陕西高考文科·T2)与(2012·陕西高考理科·T2) 下列函数中,既是奇函数又是增函数的为( ) (A)1y x =+ (B)3y x =- (C)1y x =(D)||y x x =【解题指南】根据奇函数和增函数的定义进行判断;或直接根据已知函数的性质和图象判断.【解析】选D.选项A 为一次函数,不是奇函数,是增函数;选项B 是奇函数,不是增函数;选项C 是反比例函数,为奇函数,不是增函数;选项D,去绝对值号,变为分段函数,符合题意.5.(2012·山东高考理科·T8)定义在R 上的函数()f x 满足(6)()f x f x +=.当31x -≤<-时,2()(2)f x x =-+;当13x -≤<时,()f x x =.则f (1)+ f (2)+f (3)+…+f (2 012)=( )(A )335 (B )338 (C )1 678 (D )2 012【解题指南】本题考查函数的周期性,可利用周期为6来计算连续6项的和,在通过计算2 012是6的多少倍及余数即可求得. 【解析】选B.定义在R 上的函数()f x 满足(6)()f x f x +=,当31x -≤<-时,2()(2)f x x =-+,当13x -≤<时,()f x x =.f (1)+ f (2)+f (3)+…+f (2 012)=()()33821335=++f f .6.(2012·辽宁高考理科·T11)设函数f(x)()x R ∈满足f(x -)=f(x),f(x)=f(2-x),且当[0,1]x ∈时, f(x)=x 3.又函数g(x)=|xcos ()x π|,则函数h(x)=g(x)-f(x)在13[,]22-上的零点个数为( )(A)5 (B)6 (C)7 (D)8【解题指南】利用条件,可以判断函数f(x)()x R ∈是偶函数,且是周期函数,据此作出f(x)在13[,]22-上的图象,据特殊值等作函数g(x)=|xcos ()x π|的示意图.找二者的交点个数.【解析】选B.由 f(x -)=f(x)知,f(x)()x R ∈是偶函数;由f(x)=f(2-x),则(2)(2(2))()()f x f x f x f x +=-+=-=,故f(x)()x R ∈是周期函数,T=2是其周期;由f(x)=f(2-x),还可知,其图象关于直线x=1对称.据[0,1]x ∈时, f(x)=x 3. 作其草图.据特殊值等作函数g(x)=|xcos ()x π|的示意图,可以发现有6个交点.7.(2012·湖南高考文科·T9)设定义在R 上的函数f(x)是最小正周期为 2π的偶函数,f '(x)是f(x)的导函数,当x ∈[0,π] 时, 0<f(x)<1; 当x ∈(0,π) 且x ≠2π时 ,()()02x f x π'-> ,则函数y=f(x)-sinx 在[-2π,2π] 上的零点个数为( )(A)2 (B)4 (C)5 (D)8【解题指南】有偶函数得出值域,由导数得出单调区间及相应的单调性,根据曲线的交点个数判断零点的个数.【解析】选B. x ∈(0,π) 且x ≠2π时 ,()()02x f x π'->,知0,()0,()2x f x f x π⎡⎫'∈<⎪⎢⎣⎭时,为减函数;()0,()2x f x f x ππ⎛⎤'∈> ⎥⎝⎦,时,为增函数又[]0,x π∈时,0<f(x)<1,函数f(x)是定义在R 上的最小正周期为2π的偶函数,则在同一坐标系中作出sin y x =和()y f x =大致图象如下,由图知函数y=f(x)-sinx 在[-2π,2π] 上的零点个数为4.故选B. 二、填空题8.(2012·江苏高考·T10)设()f x 是定义在R 上且周期为2的函数,在区间[]1,1-上,1,10()2,011+-≤<⎧⎪=+⎨≤≤⎪+⎩ax x f x bx x x ,,其中,a b R ∈,若13()()22f f =,则3a b +的值为 .【解题指南】从函数的周期性上分析出(1)(1)-=f f ,再利用13()()22f f =求解.【解析】由题意131()()()222==-f f f ,所以213211.3222+=-+∴+=-b a a b ,① 又(1)(1)2-=∴=-f f b a ,②,解①②得2,4310.==-∴+=-a b a b , 【答案】10-9.(2012·新课标全国高考文科·T16)设函数()()221+sin 1x xf x x +=+的最大值为M ,最小值为m ,则M+m= .【解题指南】将函数()f x 分离常数,把去掉常数后剩余部分看作一个新函数,研究新函数的性质,推知M+m 的值.【解析】()()2221+sin 2sin 111x x x xf x x x ++==+++,设()22sin ,1x xg x x +=+则()()g x g x -=-,又∵g (x )定义域为R ,∴()g x 是奇函数,由奇函数图象的对称性知()()max min 0g x g x +=,M m ∴+()()()()max min max min 1122g x g x g x g x =+++=++=⎡⎤⎡⎤⎣⎦⎣⎦. 【答案】210. (2012·安徽高考文科·T13)若函数()|2|f x x a =+的单调递增区间是),3[+∞,则a =________ .【解题指南】作出函数()|2|f x x a =+的图象,大致如图,根据图象可得函数的单调递增区间为[,)2a-+∞.【解析】作出函数()|2|f x x a =+的图象,根据图象可得函数的单调递增区间为[,)2a -+∞,即3,62a a -==-.【答案】6-11.(2012·浙江高考文科·T16)设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则3f 2()=____________.【解题指南】利用函数的性质化到已知的区间上面. 【解析】311()=()()222f f f -=3=2. 【答案】32。

高考数学真题专题(理数)回归分析与独立性检验

高考数学真题专题(理数)回归分析与独立性检验

专题十一 概率与统计第三十三讲 回归分析与独立性检验一、选择题1.(2017山东)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆy bx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为A .160B .163C .166D .1702.(2015福建)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归本线方程ˆˆˆybx a =+ ,其中ˆˆˆ0.76,b a y bx ==- ,据此估计,该社区一户收入为15万元家庭年支出为A .11.4万元B .11.8万元C .12.0万元D .12.2万元 3.(2014重庆)已知变量x 与y 正相关,且由观测数据算得样本的平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能为A .0.4 2.3y x =+B .2 2.4y x =-C .29.5y x =-+D .0.3 4.4y x =-+ 4.(2014湖北)根据如下样本数据得到的回归方程为ˆybx a =+,则 A .0a >,0b < B .0a >,0b > C .0a <,0b < D .0a <,0b > 5.(2012新课标)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为A .−1B .0C .12D .16.(2014江西)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是7.(2012湖南)设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x -85.71,则下列结论中不正确...的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170cm ,则可断定其体重必为58.79kg 8.(2011山东)某产品的广告费用x 与销售额y 的统计数据如下表根据上表可得回归方程ˆˆˆy bx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元二、解答题9.(2018全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1217,,…,)建立模型①:ˆ30.413.5=-+yt ;根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立模型②:ˆ9917.5=+yt . (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.10.(2016年全国III)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:719.32ii y==∑,7140.17i i i t y ==∑0.55=≈2.646.参考公式:相关系数()()ni it t y y r --=∑ 回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为:121()()()nii i nii tt y y b tt ==--=-∑∑,=.a y bt -11.(2015新课标1)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中i w =w =1881i i w =∑.(Ⅰ)根据散点图判断,y a bx =+与y c =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由) (Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为0.2z y x =-.根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,⋅⋅⋅,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为121()()ˆ()niii nii u u v v u u β==--=-∑∑,ˆˆv u αβ=-. 12.(2014新课标2)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()121nii i ni i tty y b t t ∧==--=-∑∑,ˆˆay bt =- 13.(2012辽宁)电视传媒公司为了解某地区电视观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(I )根据已知条件完成下面22⨯列联表,并据此资料你是否认为“体育迷”与性别有关?(II )将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性.若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.21212211222112)(++++-=n n n n n n n n n χ, 附:。

2012年-2014高考数学真题分类汇编 集合

2012年-2014高考数学真题分类汇编 集合

集合与常用逻辑用语2012年1.(2012湖南卷文)设集合M={-1,0,1},N={x |x 2=x },则M∩N=( ) A.{-1,0,1} B.{0,1} C.{1} D.{0}2.(2012湖南卷理)命题“若α=4π,则tan α=1”的逆否命题是( ) A.若α≠4π,则tan α≠1 B. 若α=4π,则tan α≠1C. 若tan α≠1,则α≠4πD. 若tan α≠1,则α=4π3.(2012年天津卷文)设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件4.(2012年北京卷理)已知集合A={x ∈R|3x +2>0} B={x ∈R|(x +1)(x -3)>0} 则A∩B=( ) A .(-∞,-1) B.(-1,-23) C .(-23,3) D . (3,+∞) 5.(2012年福建卷理)下列命题中,真命题是( )A .0,00≤∈∃x eR x B .22,x R x x >∈∀ C .0=+b a 的充要条件是1-=baD .1,1>>b a 是1>ab 的充分条件6.(2012年广东卷理)设集合U {1,23,4,5,6}=,,M {1,2,4}=则M C U = ( ) A .U B .{1,3,5} C .{3,5,6} D .{2,4,6}(2012年上海卷文)2、若集合{}210A x x =->,{}1B x x =<,则A B ⋂=7.(2012年安徽文)(2)设集合A={3123|≤-≤-x x },集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=( ) A.(1,2) B. [1,2] C. [ 1,2) D.(1,2 ] 8. (2012年安徽文)命题“存在实数x ,使x > 1”的否定是( )(A ) 对任意实数x , 都有x > 1 (B )不存在实数x ,使x ≤ 1 (C ) 对任意实数x , 都有x ≤ 1 (D )存在实数x ,使x ≤ 19.(2012年山东卷理)2 已知全集={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA )B 为( ) A {1,2,4} B {2,3,4} C {0,2,4} D {0,2,3,4} 10.(2012年山东卷文)(5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是( )(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真11.(2012年浙江卷理)1.设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},则A ∩(C R B )=( )A .(1,4)B .(3,4)C .(1,3)D .(1,2) 12.(2012年天津卷文)集合{}|25A x R x =∈-≤中最小整数位 .13.(2012年天津卷理)(11)已知集合={||+2|<3}A x R x ∈,集合={|()(2)<0}B x R x m x ∈--,且=(1,)A B n -,则=m ,=n .14.(2012年湖北卷理)2 命题“∃x 0∈C R Q , 30x ∈Q ”的否定是( )A .∃x 0∉C R Q ,0x ∈Q B. ∃x 0∈C R Q ,0x ∉Q C. ∀x 0∉C R Q , 0x ∈Q D.∀x 0∈C R Q ,0x ∉Q15.(2012年湖北文)已知集合A{x| 2x -3x +2=0,x ∈R } , B={x|0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A 1B 2C 3D 416.(2012年湖北文)4.命题“存在一个无理数,它的平方是有理数”的否定是( ) A.任意一个有理数,它的平方是有理数 B.任意一个无理数,它的平方不是有理数 C.存在一个有理数,它的平方是有理数 D.存在一个无理数,它的平方不是有理数17.(2012年江苏卷)已知集合{124}A =,,,{246}B =,,,则A B = . 18.(2012江西卷文)若全集U={x ∈R|x 2≤4} A={x ∈R||x+1|≤1}的补集CuA 为( ) A |x ∈R |0<x <2| B |x ∈R |0≤x <2| C |x ∈R |0<x≤2| D |x ∈R |0≤x≤2| 19.(2012年四川卷文)1、设集合{,}A a b =,{,,}B b c d =,则A B =( )A 、{}bB 、{,,}b c dC 、{,,}a c dD 、{,,,}a b c d 20.(2012年重庆卷文)1.命题“若p 则q ”的逆命题是( ) A. 若q 则p B. 若﹃p 则﹃q C. 若﹃q 则﹃p D. 若p 则﹃q 21.(2012年陕西卷理)1. 集合{|lg 0}M x x =>,2{|4}N x x =≤,则M N =( ) (A ) (1,2) (B ) [1,2) (C ) (1,2] (D ) [1,2]22.(2012年全国新课标文)1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅23.(2012年上海卷理)2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A 。

2012年福建高考试题(理数,word解析版)

2012年福建高考试题(理数,word解析版)

2012年普通高等学校招生全国统一考试(福建卷)数学(理科)第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 若复数z 满足i zi -=1,则z 等于( )A .i --1B .i -1C .i +-1D .i +1 考点:复数的运算。

难度:易。

分析:本题考查的知识点为复数的计算,直接套用复数运算公式即可。

解答:ii z -=1111)())(1(--=--=---=i i i i i i 。

2. 等差数列}{n a 中,7,10451==+a a a ,则数列}{n a 的公差为( )A .1B .2C .3D .4 考点:等差数列的定义。

难度:易。

分析:本题考查的知识点为复等差数列的通项公式d n a a n )1(1-+=。

解答:273104211=⇒⎩⎨⎧=+=+d d a d a 。

3. 下列命题中,真命题是( )A .0,00≤∈∃x eR x B .22,x R x x >∈∀C .0=+b a 的充要条件是1-=ba D .1,1>>b a 是1>ab 的充分条件考点:逻辑。

难度:易。

分析:本题考查的知识点为复逻辑中的充要条件的判定。

解答:A 中,,R x ∈∀0>xe。

B 中,22,4,2x x x x===∃,22,x x x<∃。

C 中,⎩⎨⎧≠=+00b b a 的充要条件是1-=ba 。

D 中,1,1>>b a 可以得到1>ab ,当1>ab 时,不一定可以得到1,1>>b a 。

4. 一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱考点:空间几何体的三视图。

难度:易。

分析:本题考查的知识点为空间几何体的三视图,直接画出即可。

解答:圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆;三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形;正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形;圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012 年普通高等学校招生全国统一考试(福建卷)
数学(理科)
第 I 卷(选择题 共 50 分)
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分。在每小题给出的四个选项中,只有一项是符合题目要 求的。 1. 若复数 z 满足 zi = 1 − i ,则 z 等于( ) A. − 1 − i B. 1 − i C. − 1 + i D. 1 + i 考点:复数的运算。 难度:易。 分析:本题考查的知识点为复数的计算,直接套用复数运算公式即可。 解答: z =
第 5页
12. 阅读右图所示的程序框图,运行相应地程序,输出的 s 值等于_____________________。 【 − 3】
考点:算法初步。 难度:易。 分析:本题考查的知识点为算法中流程图的读法,直接根据箭头的指向运算即可。 解答: k = 1, s = 1 ; s = 2 × 1 − 1 = 1, k = 2 ; s = 2 × 1 − 2 = 0, k = 3 ; s = 2 × 0 − 3 = −3, k = 4 ; 结束。 13. 已知 ∆ABC 的三边长成公比为 2 的等比数列,则其最大角的余弦值为_________。 【− 考点:等比数列和余弦定理。 难度:易。 分析:本题考查的知识点为等比数列的定义和余弦定理的应用。 解答:设 ∆ABC 三边为 a = m, b = 则可得 ∠C 所对的边最大, 且 cos C =
1− i i
(1 − i )( −i ) i ( −i ) − i −1 。 = 1 = −i − 1 =
2. 等差数列 {an } 中, a1 + a5 = 10, a 4 = 7 ,则数列 {an } 的公差为( A.1 B.2 考点:等差数列的定义。 难度:易。 C.3 D.4 )
分析:本题考查的知识点为复等差数列的通项公式 a n = a1 + ( n − 1) d 。 解答: ⎨ 3.
⎧1, x为有理数 ⎩0, x为无理数
= D ( x ) ,所以 D( x ) 为偶函数。
C 中, D ( x + 1) = ⎨
⎧1, x为有理数 ⎩0, x为无理数
= D ( x ) ,所以可以找到 1 为 D ( x ) 的一个周期。
D 中, D(1) = 1, D ( 2 ) = 0, D( 2) = 1...... ,所以不是单调函数。
x)Biblioteka A.1 2B.1
C.
3 2
D.2
考点:线性规划。 难度:中。 分析:本题考查的知识点为含参的线性规划,需要画出可行域的图形,含参的直线要能画出大致图像。 解答:可行域如下:
(0,3)
y = 2x (m,3 − m )
(3,0)
3 (0, - ) 2
⎧x + y − 3 ≤ 0 ⎪ 所以,若直线 y = 2 x 上存在点 ( x, y ) 满足约束条件 ⎨ x − 2 y − 3 ≤ 0 , ⎪x ≥ m ⎩
1 1 ≥ x (当x = 0时,x 2 + = x ) 。 4 4 1 1 B 中, sin x + ≥ 2(sin x ∈ (0,1]) ; sin x + ≤ −2(sin x ∈ [ −1,0)) 。 sin x sin x
C 中, x 2 − 2 | x | +1 = (| x | −1) 2 ≥ 0( x ∈ R ) 。
⎧2a1 + 4d = 10 ⇒ d = 2。 ⎩a1 + 3d = 7
) B. ∀x ∈ R ,2 x > x 2
下列命题中,真命题是( A. ∃x0 ∈ R, e x0 ≤ 0
C. a + b = 0 的充要条件是
a = −1 b
D. a > 1, b > 1 是 ab > 1 的充分条件
考点:逻辑。 难度:易。 分析:本题考查的知识点为复逻辑中的充要条件的判定。 解答:A 中, ∀x ∈ R , e
2 】 4
2m, c = 2m ,
a 2 + b2 − c2 = 2。 2ab nπ 【3018】 + 1 ,前 n 项和为 S n ,则 S 2012 = ___________。 2
14. 数列 {an } 的通项公式 a n = n cos
考点:数列和三角函数的周期性。 难度:中。 分析:本题考查的知识点为三角函数的周期性和数列求和,所以先要找出周期,然后分组计算和。 解答: a 4 n +1 = ( 4n + 1) × cos
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分。把答案填在答题卡的相应位置。 11. ( a + x ) 4 的展开式中 x 3 的系数等于 8,则实数 a = _________。 【2】 考点:二项式定理。 难度:易。 分析:本题考查的知识点为二项式定理的展开式,直接应用即可。
r 4 −r r 3 4 −3 解答: ( a + x ) 4 中含 x 3 的一项为 Tr +1 = C 4 a x ,令 r = 3 ,则 C 4 a = 8 ,即 a = 2 。
6.
1 ∈ (0,1]( x ∈ R ) 。 x +1 如图所示,在边长为 1 的正方形 OABC 中任取一点 P ,则点 P 恰好取自阴影部分的概率为( ) 1 1 1 1 A. B. C. D. 4 5 6 7
D 中,
2
考点:积分的计算和几何概型。 难度:中。 分析:本题考查的知识点为公式法计算积分和面型的几何概型。 解答: S ( Ω ) = 1 × 1 = 1 ,
1 ) > lg x ( x > 0) 4
B. sin x + D.
1 ≥ 2( x ≠ kπ , k ∈ Z ) sin x
C. x 2 + 1 ≥ 2 | x | ( x ∈ R )
1 > 1( x ∈ R ) x +1
2
考点:不等式及基本不等式。 难度:中。 分析:本题考查的知识点为不等式的性质及基本不等式的性质。 解答:A 中, x 2 +
x1 + x2 + x3 + x 4 ( x + x2 ) + ( x 3 + x 4 ) )= f( 1 ) 2 2
1 x + x2 x + x4 [f( 1 )+ f( 3 )] 2 2 2 1 1 1 ≤ [ ( f ( x1 ) + f ( x 2 )) + ( f ( x1 ) + f ( x 2 ))] 。 2 2 2 1 ≤ [ f ( x1 ) + f ( x2 ) + f ( x3 ) + f ( x4 )] 4 ≤ 第Ⅱ卷(非选择题 共 100 分)
8.
双曲线
x2 y2 − 2 = 1 的右焦点与抛物线 y 2 = 12 x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( ) 4 b
B. 4 2 C.3 D.5
A. 5
考点:双曲线的定义。 难度:中。 分析:本题考查的知识点为双曲线的定义,焦点,渐近线,抛物线的定义。 解答:抛物线 y 2 = 12 x 的焦点为 (3,0) 。 双曲线中, b 2 = 9 − 4 = 5 。
① f ( x ) 在 [1,3] 上的图像时连续不断的; ② f ( x 2 ) 在 [1, 3 ] 上具有性质 P ; ③若 f ( x ) 在 x = 2 处取得最大值 1,则 f ( x ) = 1 , x ∈ [1,3] ; ④对任意 x1 , x2 , x3 , x 4 ∈ [1,3] ,有 f ( 其中真命题的序号是( A.①② B.①③ ) C.②④ D.③④
所以 a 4 n +1 + a 4 n +2 + a 4 n +3 + a 4 n + 4 = 6 。 即 S 2012 =
则 3 − m ≥ 2 m ,即 m ≤ 1 。 10. 函数 f ( x ) 在 [a , b] 上有定义,若对任意 x1 , x 2 ∈ [ a, b] ,有 f (
x1 + x 2 1 ) ≤ [ f ( x1 ) + f ( x 2 )] ,则称 f ( x ) 在 2 2
[a , b] 上具有性质 P 。设 f ( x ) 在[1,3]上具有性质 P ,现给出如下命题:
x1 + x2 + x3 + x4 1 ) ≤ [ f ( x1 ) + f ( x2 ) + f ( x3 ) + f ( x4 )] 。 2 4
第 4页
考点:演绎推理和函数。 难度:难。 分析:本题考查的知识点为函数定义的理解,说明一个结论错误只需举出反例即可,说明一个结论正确要证明 对所有的情况都成立。 解答:A 中,反例:如图所示的函数 f ( x ) 的是满足性质 P 的,但 f ( x ) 不是连续不断的。
2 1 1 。 S ( A) = ∫ ( x − x )dx = ( x 2 − x 2 ) |1 0= 0 3 2 6
1
3
所以 P ( A) =
S ( Ω) 1 = 。 S ( A) 6
第 2页
7.
设函数 D ( x ) = ⎨
⎧1, x为有理数 ⎩0, x为无理数
,则下列结论错误的是(

A. D ( x ) 的值域为 {0,1} C. D ( x ) 不是周期函数
⎧ f ( x ) + f (4 − x ) ≥ 2 ⎪ ⇒ f ( x) = 1 , ⎨ f ( x ) ≤ f ( x ) max = f ( 2) = 1 ⎪ f ( 4 − x ) ≤ f ( x ) = f ( 2) = 1 ⎩ max
所以,对于任意 x1 , x2 ∈ [1,3], f ( x ) = 1 。 D 中, f (
相关文档
最新文档