福建省三明市中考试题含解析

合集下载

初中毕业升学考试(福建三明卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(福建三明卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(福建三明卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】的倒数是()A. B. C. D.2【答案】B.【解析】试题分析:乘积是1的两个数互为倒数,由此可得-2的倒数是,故选B.考点:倒数.【题文】如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是( )【答案】A.【解析】试题分析:主视图是从正面看到的图形,只有选项A符合要求,故选A.考点:简单几何体的三视图.【题文】下列计算正确的是()A. B. C. D.【答案】C【解析】试题分析:选项A,不是同类项,不能够合并,选项A错误;选项B,根据同底数幂的乘法法则可得,选项B错误;选项C,根据同底数幂的除法法则可得,选项C正确;选项D,根据幂的乘方运算法则可得,选项D错误;故选C.考点:整式的运算.【题文】已知一个正多边形的一个外角为,则这个正多边形的边数是()A. 8B. 9C. 10D. 11评卷人得分【答案】C【解析】试题分析:已知一个正多边形的一个外角为,则这个正多边形的边数是360÷36=10,故选C. 考点:多边形的内角和外角.【题文】对“某市明天下雨的概率是75%”这句话,理解正确的是()A. 某市明天将有75%的时间下雨B. 某市明天将有75%的地区下雨C. 某市明天一定下雨D. 某市明天下雨的可能性较大【答案】D【解析】试题分析:“某市明天下雨的概率是75%”是随机事件,说明某市明天下雨的可能性较大,故选D.考点:随机事件.【题文】如图,已知∠AOB=,OC平分∠AOB,DC∥OB,则∠C为()A. B. C. D.【答案】B.【解析】试题分析:已知∠AOB=,OC平分∠AOB,可得∠BOC=35°,又因DC∥OB,根据平行线的性质可得∠C=∠BOC=35°,故选B.考点:平行线的性质.【题文】在一次数学测试中,某学习小组6名同学的成绩(单位:分)分别为65,82,86,82,76,95.关于这组数据,下列说法错误的是( )A.众数是82 B.中位数是82C.极差是30D.平均数是82【答案】D.【解析】试题分析:选项A,82出现的次数最多,所以众数是82,A正确;选项B,把数据按大小排列为:65,76,82,82,86,95,中间两个数为82,82,所以中位数是82,B正确;选项C,极差是95-65=30,C正确。

【高频真题解析】2022年福建省三明市中考数学历年真题汇总 卷(Ⅲ)(含答案详解)

【高频真题解析】2022年福建省三明市中考数学历年真题汇总 卷(Ⅲ)(含答案详解)

2022年福建省三明市中考数学历年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、等腰三角形的一个内角是100︒,则它的一个底角的度数是( ) A .40︒B .80︒C .40︒或80︒D .40︒或100︒ 2、如图,已知△ABC 与△DEF 位似,位似中心为点O ,OA :OD =1:3,且△ABC 的周长为2,则△DEF 的周长为( )A .4B .6C .8D .18 3、为庆祝建党百年,六年级一班举行手工制作比赛,下图小明制作的一个小正方体盒子展开图,把展开图叠成小正方体后,有“爱”字一面的相对面的字是( ) ·线○封○密○外A .的B .祖C .国D .我4、小明同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是( ).A .该组数据的众数是28分B .该组数据的平均数是28分C .该组数据的中位数是28分D .超过一半的同学体育测试成绩在平均水平以上5、如图,ABC 与DEF 位似,点O 是位似中心,若3OD OA =,4ABCS =,则DEF S =△( )A .9B .12C .16D .366、下列图形中,既是轴对称图形又是中心对称图形是( )A .B .C .D .7、下列命题,是真命题的是( )A .两条直线被第三条直线所截,内错角相等B .邻补角的角平分线互相垂直C .相等的角是对顶角D .若a b ⊥,b c ⊥,则a c ⊥ 8、下列几何体中,俯视图为三角形的是( )A .B .C .D .9、若关于x 的方程()251x m +=-有两个实数根,则m 的取值范围是( ) A .0m > B .m 1≥ C .1m D .1m ≠10、如图是一个正方体的展开图,把它折叠成正方体后,有“学”字一面的相对面上的字是( )A .雷B .锋C .精D .神第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)·线○封○密·○外1、如图,已知AD 为△AAA 的高,AA =AA ,以AB 为底边作等腰AA △AAA ,AA ∥AA ,交AC 于F ,连ED ,EC ,有以下结论:①△AAA ≌△AAA ;②AA ⊥AA ;③AA =2AA ;④A △AAA =A △AAA ;其中正确的是___.2、如图,大、小两个正方形的中心均与平面直角坐标系的原点O 重合,边分别与坐标轴平行.反比例函数y =A A (k ≠0)的图象,与大正方形的一边交于点A (32,4),且经过小正方形的顶点B .求图中阴影部分的面积为 _____.3、如图,A (6,0),A (−2,0),以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为______.4、如图,A 是直线AA 上的一点,∠AAA 和∠AAA 互余,AA 平分∠AAA ,若∠AAA =A ,则∠AAA 的度数为__________.(用含A 的代数式表示)5、某国产品牌的新能源汽车因物美价廉而深受大众喜爱,在某地区的销售量从1月份的10万辆增长到3月份的12.1万辆,则从1月份到3月份的月平均增长率为______. 三、解答题(5小题,每小题10分,共计50分) 1、已知二次函数23y ax bx =+-的图象经过()()1,4,1,0A B --两点. (1)求a 和b 的值;(2)在坐标系xOy 中画出该二次函数的图象. 2、如图,在Rt △ABC 与Rt △ABD 中,∠ACB =∠DAB =90°,AB 2=BC ·BD ,AB =3,过点A 作AE ⊥BD ,垂足为点E ,延长AE 、CB 交于点F ,连接DF ·线○封○密○外(1)求证:AE =AC ;(2)设BC x =,AE y EF=,求y 关于x 的函数关系式及其定义域; (3)当△ABC 与△DEF 相似时,求边BC 的长.3、已知如图,等腰△ABC 中,AB=AC ,∠BAC=α(α>90︒),F 为BC 中点,D 为BC 延长线上一点,以点A 为中心,将线段AD 逆时针旋转α得到线段AE ,连接CE ,DE .(1)补全图形并比较∠BAD 和∠CAE 的大小;(2)用等式表示CE ,CD ,BF 之间的关系,并证明;(3)过F 作AC 的垂线,并延长交DE 于点H ,求EH 和DH 之间的数量关系,并证明.4、如图,点M ,N 是线段AB 上的点,点E 为线段AN 的中点.C 在线段AB 的延长线上,且3BC MN =.(1)求作点C (要求:尺规作图,不写作法,保留作图痕迹);(2)若13AB =,3NB =,32EM MN =,求线段AC 的长度; (3)若2AC EB MN =+,请说明:点B 是线段MC 的中点.5、已知a +b =5,ab =﹣2.求下列代数式的值:(1)a 2+b 2;(2)2a 2﹣3ab +2b 2.-参考答案-一、单选题1、A【分析】由题意知, 100°的内角为等腰三角形的顶角,进而可求底角.【详解】解:∵在一个内角是 100°的等腰三角形中,该内角必为顶角 ∴底角的度数为180100402︒-︒=︒ 故选A . 【点睛】 本题考查了等腰三角形的性质,三角形的内角和定理.解题的关键在于明确该三角形为钝角等腰三角形. 2、B【分析】由ABC 与DEF 是位似图形,且:1:3OA OD =知ABC 与DEF 的位似比是1:3,从而得出ABC 周长:DEF 周长1:3=,由此即可解答. 【详解】 解:∵ABC 与DEF 是位似图形,且:1:3OA OD =, ABC ∴与DEF 的位似比是1:3. 则ABC 周长:DEF 周长1:3=, ∵△ABC 的周长为2, ∴DEF 周长236=⨯= 故选:B .·线○封○密·○外【点睛】本题考查了位似变换:位似图形的任意一对对应点与位似中心在同一直线上,它们到位似中心的距离之比等于相似比,位似是相似的特殊形式,位似比等于相似比,其对应的周长比等于相似比.3、B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,第一列的“我”与“的”是相对面,第二列的“我”与“国”是相对面,“爱”与“祖”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4、B【分析】由众数的含义可判断A,由平均数的含义可判断B,D,由中位数的含义可判断C,从而可得答案.【详解】解:由28分出现14次,出现的次数最多,所以该组数据的众数是28分,故A不符合题意;该组数据的平均数是1253+265+2710+2814+2912+306 50175+130+270+392+348+180=27.9 50故B 符合题意;50个数据,按照从小到大的顺序排列,第25个,26个数据为28分,28分, 所以中位数为:28+28=282(分),故C 不符合题意; 因为超过平均数的同学有:14+12+6=32, 所以超过一半的同学体育测试成绩在平均水平以上,故D 不符合题意; 故选B 【点睛】 本题考查的是平均数,众数,中位数的含义,掌握“根据平均数,众数,中位数的含义求解一组数据的平均数,众数,中位数”是解本题的关键. 5、D 【分析】 根据位似变换的性质得到//AC DF ,得到OAC ODF ∆∆∽,求出AC DF ,根据相似三角形的面积比等于相似比的平方计算即可.【详解】解:ABC ∆与DEF ∆位似,//AC DF ∴,OAC ODF ∴∆∆∽, ∴13AC OA DF OD ==, ∴21()9ABC DEF S AC S DF ∆∆==, 4ABC S ∆=, 36DEF S ∆∴=, ·线○封○密○外故选:D.【点睛】本题考查的是位似变换的概念和性质、相似三角形的性质,解题的关键是掌握相似三角形的面积比等于相似比的平方.6、B【分析】根据轴对称图形和中心对称图形的定义求解即可.【详解】解:A、是轴对称图形,但不是中心对称图形,故选项错误,不符合题意;B、既是轴对称图形又是中心对称图形,故选项正确,符合题意;C、不是轴对称图形,是中心对称图形,故选项错误,不符合题意;D、是轴对称图形,但不是中心对称图形,故选项错误,不符合题意.故选:B.【点睛】此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.7、B【分析】利用平行线的性质、邻补角的定义及性质、对顶角的定义等知识分别判断后即可确定正确的选项.【详解】解:A 、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意; B 、邻补角的角平分线互相垂直,正确,是真命题,符合题意; C 、相等的角不一定是对顶角,故错误,是假命题,不符合题意; D 、平面内,若a b ⊥,b c ⊥,则//a c ,故原命题错误,是假命题,不符合题意, 故选:B . 【点睛】 考查了命题与定理的知识,解题的关键是了解平行线的性质、邻补角的定义及性质、对顶角的定义等知识,难度不大. 8、C 【分析】 依题意,对各个图形的三视图进行分析,即可; 【详解】 由题知,对于A 选项:主视图:三角形;侧视图为:三角形;俯视图为:有圆心的圆; 对于B 选项:主视图:三角形;侧视图为:三角形;俯视图为:四边形; 对于C 选项:主视图:长方形形;侧视图为:两个长方形形;俯视图为:三角形; 对于D 选项:主视图:正方形;侧视图:正方形;俯视图:正方形; 故选:C 【点睛】 ·线○封○密·○外本题考查几何图形的三视图,难点在于空间想象能力及画图的能力;9、B【分析】令该一元二次方程的判根公式240b ac =-≥,计算求解不等式即可.【详解】解:∵()251x m +=-∴2102510x x m ++-+=∴()2241042510b ac m =-=-⨯-+≥ 解得1m ≥故选B .【点睛】本题考查了一元二次方程的根与解一元一次不等式.解题的关键在于灵活运用判根公式.10、D【分析】根据正方体的表面展开图的特征,判断相对的面即可.【详解】解:由正方体的表面展开图的特征可知:“学”的对面是“神”,故选:D .【点睛】本题考查了正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的关键.二、填空题1、①③【分析】只要证明ADE BCE ∆≅∆,KAE DBE ∆≅∆,AA 是ACK ∆的中位线即可一一判断;【详解】 解:如图延长AA 交AA 于A ,交AA 于H .设AA 交BE 于A .ODB OEA ∠=∠,∠AAA =∠AAA ,∴∠AAA =∠AAA ,∵AA =AA ,AA =AA ,ADE BCE ∴∆≅∆,故①正确,AED BEC ∴∠=∠,AA =AA ,90AEB DEC ∴∠=∠=︒,45ECD ABE ∴∠=∠=︒,9090AHC ABC HCB EBC ∠=∠+∠=︒+∠>︒,∴AA 不垂直AA ,故②错误,AEB HED ∠=∠,AEK BED ∴∠=∠,∵AA =AA ,KAE EBD ∠=∠,·线○封○密○外KAE DBE ∴∆≅∆,BD AK ∴=,DCK ∆是等腰直角三角形,AA 平分∠AAA ,EC EK ∴=,//EF AK ,∴AA =AA ,2AK EF ∴=,2BD EF ∴=,故③正确,EK EC =,AKE AEC S S ∆∆∴=,KAE DBE ∆≅∆,KAE BDE S S ∆∆∴=,BDE AEC S S ∆∆∴=,故④正确.故答案是:①③.【点睛】本题考查等腰直角三角形的性质和判定、全等三角形的判定和性质、三角形中位线定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.2、40【分析】根据待定系数法求出A 即可得到反比例函数的解析式;利用反比例函数系数A 的几何意义求出小正方形的面积,再求出大正方形在第一象限的顶点坐标,得到大正方形的面积,根据图中阴影部分的面积=大正方形的面积−小正方形的面积即可求出结果.【详解】解:∵反比例函数A =A A 的图象经过点A (32,4),∴A =32×4=6, ∴反比例函数的解析式为A =6A ; ∵小正方形的中心与平面直角坐标系的原点A 重合,边分别与坐标轴平行, ∴设A 点的坐标为(A ,A ),∵反比例函数A =6A 的图象经过A 点, ∴A =6A , ∴A 2=6, ∴小正方形的面积为4A 2=24, ∵大正方形的中心与平面直角坐标系的原点A 重合,边分别与坐标轴平行,且A (32,4), ∴大正方形在第一象限的顶点坐标为(4,4),∴大正方形的面积为4×42=64,∴图中阴影部分的面积=大正方形的面积−小正方形的面积=64−24=40. 【点睛】 本题主要考查了待定系数法求反比例函数的解析式,反比例函数系数A 的几何意义,正方形的性质,熟练掌握反比例函数系数A 的几何意义是解决问题的关键. 3、(0,2√7) 【分析】 先根据题意得出OA =6,OC =2,再根据勾股定理计算即可. 【详解】 ·线○封·○密○外解:由题意可知:AC=AB,∵A(6,0),C(-2,0)∴OA=6,OC=2,∴AC=AB=8,在Rt△OAB中,AA=√AA2−AA2=√82−62=2√7,∴B(0,2√7).故答案为:(0,2√7).【点睛】本题考查勾股定理、坐标与图形、熟练掌握勾股定理是解题的关键.4、2m【分析】根据互余定义求得∠DOC=90°,由此得到∠COE=90°-m,根据角平分线的定义求得∠BOC的度数,利用互补求出答案.【详解】解:∵∠AAA和∠AAA互余,∴∠AAA +∠AAA=90°,∴∠DOC=90°,∵∠AAA=A,∴∠COE=90°-m,∵AA平分∠AAA,∴∠BOC=2∠COE=180°-2m,∴∠AAA=180°-∠BOC=2m,故答案为:2m.【点睛】此题考查了角平分线的定义,余角的定义,补角的定义,正确理解图形中各角度的关系并进行推理论证是解题的关键.5、10%【分析】可先表示出2月份的销量,那么2月份的销量×(1+增长率)=12.1,把相应数值代入即可求解.【详解】解:2月份的销量为10×(1+x),3月份的销量在2月份销量的基础上增加x,为10×(1+x)×(1+x),根据题意得,10(1+x)2=121.解得,1 2.1x=-(舍去),A2=0.1=10%∴从1月份到3月份的月平均增长率为10%故答案为:10%【点睛】考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.三、解答题1、(1)12 ab=⎧⎨=-⎩·线○封○密○外(2)见解析【分析】(1)利用待定系数法将()()1,4,1,0A B --两点代入抛物线求解即可得;(2)根据(1)中结论确定函数解析式,求出与x ,y 轴的交点坐标及对称轴,然后用光滑的曲线连接即可得函数图象.(1)解:∵二次函数23y ax bx =+-的图象经过()()1,4,1,0A B --两点,∴3430a b a b +-=-⎧⎨--=⎩, 解得:12a b =⎧⎨=-⎩ . (2)解:由(1)可得:函数解析式为:223y x x =--,当0y =时,2230x x --=,解得:11x =-,23x =,∴抛物线与x 轴的交点坐标为:()1,0-,()3,0,抛物线与y 轴的交点坐标为:()0,3-, 对称轴为:21221b x a -=-=-=⨯, 根据这些点及对称轴在直角坐标系中作图如下.【点睛】题目主要考查待定系数法确定函数解析式及作函数图象,熟练掌握待定系数法确定函数解析式是解题关键. 2、 (1)证明见解析 (2)2912y x =-,03x << (332 【分析】 (1)由题意可证得ABD EBA ,ABD EBA ,即∠EAB =∠CAB ,则可得AEB ACB ≅,故AE =AC . (2)可证得FEB FCA ,故有FE AC FC BE ⋅=,在Rt AFC 中由勾股定理有222AF FC AC =+,联立后化简可得出2912y x =-,BC 的定义域为03x <<. (3)由(1)(2)问可设BC BE x ==,29x DE x -=,AEFE =ABC 与△DEF 相似时,则有ACB DEF 和ACB FED 两种情况,再由对应边成比例列式代入化简即可求得x 的值. (1) ·线○封○密○外∵AB2=BC·BD∴AB BD BC AB=又∵∠ACB=∠DAB=90°∴ABC DBA∴∠ADB=∠CAB在Rt△EBA与Rt△ABD中∠AEB=∠DAB=90°,∠ABD=∠ABD ∴ABD EBA∴∠ADB=∠EAB∴∠EAB=∠CAB在Rt△EBA与Rt△CAB中∠EAB=∠CABAB=AB∠ACB=∠AEB=90°∴AEB ACB≅∴AE=AC(2)∵∠ACB=∠FEB=90°,∠F=∠F ∴FEB FCA∴BE AC FE FC=∴FE AC FCBE⋅=在Rt AFC 中由勾股定理有222AF FC AC =+即222()FE AE FC AC +=+ 代入化简得2222222FE AC FE AE FE AE AC BE ⋅++⋅⋅=+ 由(1)问知AC =AE ,BE =BC =x 则2222222FE AE FE AE FE AE AE x ⋅++⋅⋅=+ 式子左右两边减去2AE 得22222FE AE FE FE AE x ⋅+⋅⋅= 式子左右两边同时除以2FE 得2212AE AE FE x +⋅= ∵AE y EF= ∴2212AE y x+= 在Rt ABE △中由勾股定理有AE =即AE ∴22912x y x -+= 移项、合并同类项得2912y x=-, 由图象可知BC 的取值范围为03x <<.(3)由(1)、(2)问可得BC BE x ==,29x DE x -=,AEFE =当ACB DEF 时·线○封○密·○外由(1)问知AEB DEF 即AE DE BE FE =29x -=229x x -=约分得229212x x -= 移向,合并同类项得294x = 则32x =或32x =-(舍) 当ACB FED 时由(1)问知AEB FED 即AE FE BE DE=2929x x x-=-29x x =- 约分得22212929x x x x x =⋅-- 移项得224(92)(9)2x x x --=去括号得22448191822x x x x --+=移向、合并同类项得23x =则x =x =综上所述当△ABC 与△DEF 相似时, BC32. 【点睛】 本题考查了相似三角形的判定及证明,全等三角形的判定及证明,勾股定理,需熟练掌握相似三角形和全等三角形的判定及性质,本题解题过程中计算过程较复杂繁琐,耐心细致的计算是解题的关键. 3、 (1)补全图形见解析,BAD CAE ∠=∠; (2)2CE CD BF -=; (3)EH DH =,理由见解析. 【分析】 (1)根据题意补全图形即可,再根据旋转的性质可知BAC DAE ∠=∠,即BAC CAD DAE CAD ∠+∠=∠+∠,即得出BAD CAE ∠=∠; (2)由旋转可知AD AE =,即可利用“SAS ”证明BAD CAE ≅△△,得出BD CE =.再由点F 为BC 中点,即可得出2CE CD BF -=. (3)连接AF ,作AN DE ⊥,由等腰三角形“三线合一”可知90AFD ∠=︒,12FAB FAC α∠=∠=.即得出180AFD AND ∠+∠=︒,说明A 、F 、D 、N 四点共圆.再根据圆周角定理可知AFN ADN ∠=∠.再次利用等腰三角形“三线合一”的性质可知EN DN =,1902AFN ADN α∠=∠=︒-.即得出90AFN FAC ∠+∠=︒.再由90AFH FAC ∠+∠=︒,即可说明 点H 与点N 重合,即得出结论EH DH =. (1) 如图,即为补全的图形, ·线○封○密○外根据题意可知BAC DAE α∠=∠=,∴BAC CAD DAE CAD ∠+∠=∠+∠,即BAD CAE ∠=∠.(2)由旋转可知AD AE =,∴在BAD 和CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴()BAD CAE SAS ≅,∴BD CE =.∵BD BC CD =+,∴CE BC CD =+.∵点F 为BC 中点,∴2BC BF =,∴2CE BF CD =+,即2CE CD BF -=.(3)如图,连接AF ,作AN DE ⊥,∵AB=AC ,F 为BC 中点,∴90AFD ∠=︒,12FAB FAC α∠=∠=.根据作图可知90AND ∠=︒,∴180AFD AND ∠+∠=︒,∴A 、F 、D 、N 四点共圆,∴AFN ADN ∠=∠.∵AD AE =,AN DE ⊥,∴EN DN =,11(180)9022AFN ADN DAE α∠=∠=︒-∠=︒-. ∴11909022AFN FAC αα∠+∠=︒-+=︒. ∵90AFH FAC ∠+∠=︒,且点H 在线段DE 上, ∴点H 与点N 重合, ∴EH DH =.【点睛】 本题考查旋转的性质,全等三角形的判定和性质,等腰三角形的性质,四点共圆,圆周角定理等知识,较难.利用数形结合的思想是解答本题的关键. 4、(1)图见解析(2)19AC =(3)说明过程见解析 ·线○封○密○外【分析】(1)先以点B 为圆心、MN 长为半径画弧,交AB 延长线于点P ,再以点P 为圆心、MN 长为半径画弧,交BP 延长线于点Q ,然后以点Q 为圆心、MN 长为半径画弧,交PQ 延长线于点C 即可得;(2)先根据线段的和差可得10AN =,再根据线段中点的定义可得152EN AN ==,然后根据32EM MN =可得2MN =,从而可得6BC =,最后根据线段的和差即可得; (3)先根据2AC EB MN =+,3BC MN =可得236BC AB AE =-,再根据线段中点的定义可得11()22AE AN AB BM MN ==-+,从而可得363AB AE BM BC -=-,据此可得BC BM =. (1)解:如图,点C 即为所作.(2)解:13,3B AB N ==,10AN AB NB ∴=-=,点E 为线段AN 的中点,152EN AN ∴==, 32EM MN =, 225MN EN ∴==, 3BC MN =,326BC ∴=⨯=,13619AC AB BC ∴=+=+=;(3)解:2AC EB MN =+,3BC MN =,12()3AB BC AB AE BC ∴+=-+,即236BC AB AE =-, 点E 为线段AN 的中点, 111()()222AE AN AB NB AB BM MN ∴==-=-+, 13636()2AB AE AB AB BM MN ∴-=-⨯-+ 3333AB AB BM MN =-+- 3BM BC =-,23BC BM BC ∴=-,即BC BM =,故点B 是线段MC 的中点.【点睛】本题考查了作线段、与线段中点有关的计算,熟练掌握线段的和差运算是解题关键. 5、(1)29;(2)64 【分析】 (1)利用已知得出(a +b )2=25,进而化简求出即可; (2)利用(1)中所求,进而求出即可. (1) 解:(1)∵a +b =5,ab =﹣2,∴(a +b )2=25,则a 2+b 2+2×(﹣2)=25,故a 2+b 2=29;·线○封○·密○外(2)(2)2a2﹣3ab+2b2=2(a2+b2)﹣3ab=2×29﹣3×(﹣2)=64.【点睛】本题考查了完全平方公式的应用,解题的关键是正确利用完全平方公式求出.。

2024年福建三明市市级名校中考试题猜想语文试卷含解析

2024年福建三明市市级名校中考试题猜想语文试卷含解析

2024年福建三明市市级名校中考试题猜想语文试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、积累与运用1.下列词语中,没有错别字的一项是()A.分歧大相胫庭娇媚力不瑕供B.告罄因地制宜喧嚷鸠占鹊巢C.腼怀惮精竭虑濡养草长莺飞D.欺侮心旷神怡糟榻雕粱画栋2.下面表述不正确的一项是()A.古代刻在器物上用来警戒自己或者称述功德的文字,叫“铭”,后来就成为一种文体。

B.《资治通鉴》是司马光主持编撰的一部纪传体通史。

它记载了从战国到五代共1362年间的史事。

C.“在先进人物事迹报告会上,几个单位先进人物的事迹报告虽然没有什么豪言壮语,却让与会人员为之动容。

”这个句子有歧义。

D.古人把山的南面、水的北面称为“阳”,山的北面、水的南面称为“阴”。

如“河阳”指的就是黄河的北岸,“汉阴”指的就是汉水的南岸。

3.下列对名著的表述错误的一项是()A.《格列佛游记》中讲述利里浦特与邻国兵戎相见,是影射当时英法两国之间的连年征战。

B.《简爱》的主人公简爱是孤女,后到桑菲尔德贵族庄园当家庭教师。

C.《水浒》的结构很有特点,作者采取了先合后分的链式结构。

D.老舍通过祥子这个人物的变化,无情地批评了这个社会——它不让好人有出路。

4.下列句子没有语病的一项是()A.在提高课堂效率的问题上,新华中学的老师听取了广泛同学们的意见。

B.开发商张经理说,如果要是有人来买这栋房子,他将把价格下调10%。

C.为了防止麻疹疫情不再大规模扩散,美国各级政府都及时采取了措施。

D.盐城新区的建设,对进一步提升盐城对外开放新形象具有重要的意义。

5.下列句子中加点的成语使用不恰当的一项是( )A.美国总统特朗普上台才几个月,各种颠覆性政策次第出炉,“三板斧”让世人眼花缭乱....,推倒重来式决策让世界错愕不已。

三明市初中毕业暨高级中等学校招生统一考试语文考试题及答案.doc

 三明市初中毕业暨高级中等学校招生统一考试语文考试题及答案.doc

三明市初中毕业暨高级中等学校招生统一考试语文考试题及答案姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、名句默写(共1题)评卷人得分1.古诗文积累(12分)1.国破山河在,____________(2)纯cuì____________(4)吮吸(A.shǔnB.yǔn)7.结合语境,给下面句子加上恰当的标点。

(3分)我化作一滴水,晶莹中折射七彩的幻想偎依在荷叶上,滚动若为蜻蜓吮吸点点匍匐在道路间,袒露着享受日光的沐浴静立在红花中,融化着感受阵阵花香。

8.联系上下文,选出填人下面横线处最恰当一项()(3分)用自己的身躯,铭记所有的美好。

__________________。

A.蒸汽,小溪,清露,长河,似乎我的世界还缺一抹色彩。

B.清露,蒸汽,长河,小溪,似乎我的世界还缺一抹色彩。

C.清露,蒸汽,小溪,长河.似乎我的世界还缺一抹色彩。

D.蒸汽,清露,小溪,长河,似乎我的世界还缺一抹色彩。

【答案】6.(4分)(1)蜒(2))粹(3)A (4)A(每小题1分)7.(3分):;;(每处1分)8.(3分)D难度:中等知识点:字形2.“万卷经书曾读过,平生机巧心灵。

六韬三略究来精。

胸中藏战将,腹内隐雄兵。

谋略敢欺诸葛亮,陈平岂敌才能。

略施小计鬼神惊。

……”这首词赞颂的是《水浒》中的__________________由他成功策划的重大事件有__________________、__________________等。

(3分)【答案】(3分)吴用;(1分)例如:智取生辰纲、智取大名府、用计劫法场、三打祝家庄、破连环马、借用宿太尉“金铃吊挂”、救史进与鲁智深等。

(2分,每处1分)难度:中等知识点:国内文学作品三、语言表达(共2题)1.9. 2012年11月,“世界客属第25届恳亲大会”将在客家祖域——福建三明举办。

福建省三明市中考语文试题(附答案)

福建省三明市中考语文试题(附答案)

福建省三明市中考语文试题(附答案)一、语基(20分)(一)古诗文积累(10分)1.上下句默写。

(2分)(1)学而不思则罔,。

(《论语》)(2),奉命于危难之间。

(诸葛亮《出师表》)2.将晏殊《浣溪沙》一词默写完整。

(4分)浣溪沙晏殊,。

夕阳西下几时回?,。

小园香径独徘徊。

3.根据提示,默写诗句。

(4分)(1)初中毕业前夕,同学们互相激励,用李白《行路难》中的“,”来表达坚定的信念和对未来的憧憬。

(2)诗人心中激荡着保家卫国、建功立业的强烈愿望:辛弃疾表示“,赢得生前身后名”,李贺坦言“报君黄金台上意,”。

(二)阅读下面语段,完成4~6题。

(10分)在改革开放和现代化建设实践中,一批推动三明经济发展、代表三明地方形象的“名片”yùn育而生,它们是三明的文化符号和金字招牌。

这次脱颖而出的“三明十大名片”,极具代表性。

文明城这张名片是三明市20多年来精神文明创建活动成果的结晶;毛泽东词《如梦令·元旦》这张名片见证了三明革命老区人民为中国革命作出的巨大贡献;三钢这张名片凝.聚着几代炼钢人的心血、汗水、智慧与骄傲;绿色三明这张名片抒写了生态家园美景,(1)了林业改革的辉煌成就;泰宁世界地质公园这张名片(2)了山区人敢于走向世界的胆识与气魄;沙县小吃这张名片(3)着当代农民工的创业梦想与光荣;海峡两岸林博会这张名片使三明在海西建设中的地位和作用更加(4);还有石壁客家祖地、闽学大师(杨时·罗从彦·朱熹)等名片,反映了三明这个地方的历史底yùn和文化积淀.。

这一张张名片沉甸甸、金闪闪,都是值得代代相传的宝贵财富。

(摘自《让“三明十大名片”闪金光》,有改动)4.根据拼音写汉字或给加点字注音。

(4分)(1)yùn育(2)底yùn(3)凝.聚(4)积淀.5.根据语境选词填空(只填字母)。

(4分)A.彰显B.凸显C.记录D.承载(1)(2)(3)(4)6.结合语境,写出画波浪线处“三明十大名片”中“名片”一词的意思。

2024届福建三明市中考联考数学试卷含解析

2024届福建三明市中考联考数学试卷含解析

2024学年福建三明市中考联考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(共10小题,每小题3分,共30分)1.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是()A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2+52.满足不等式组21010xx-≤⎧⎨+>⎩的整数解是()A.﹣2 B.﹣1 C.0 D.13.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数6yx=的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()A.25-B.121-C.15-D.124-4.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A.2 B.3 C.5 D.75.下列说法正确的是()A.一个游戏的中奖概率是则做10次这样的游戏一定会中奖B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是8D.若甲组数据的方差S=" 0.01" ,乙组数据的方差s=0 .1 ,则乙组数据比甲组数据稳定6.若式子21x -在实数范围内有意义,则 x 的取值范围是( ) A .x >1 B .x >﹣1 C .x≥1 D .x≥﹣17.计算(x -l)(x -2)的结果为( )A .x 2+2B .x 2-3x +2C .x 2-3x -3D .x 2-2x +28.下列命题正确的是( )A .对角线相等的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线互相垂直的平行四边形是菱形D .对角线互相垂直且相等的四边形是正方形9.如图,在⊙O 中,弦BC =1,点A 是圆上一点,且∠BAC =30°,则BC 的长是( )A .πB .13π C .12π D .16π 10.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=60°,则∠2的度数是( )A .60°B .50°C .40°D .30°二、填空题(本大题共6个小题,每小题3分,共18分)11.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).12.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_____.13.已知m、n是一元二次方程x2+4x﹣1=0的两实数根,则11m n+=_____.14.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为.15.如果抛物线y=ax2+5的顶点是它的最低点,那么a的取值范围是_____.16.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.三、解答题(共8题,共72分)17.(8分)当x取哪些整数值时,不等式21222xx-≤-+与4﹣7x<﹣3都成立?18.(8分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图1,四边形ABCD 中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;如图2,点P 是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA 的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)19.(8分)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?20.(8分)已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.①∠AEM=∠FEM;②点F是AB的中点;(2)如图2,若点E是OD上一点,点F是AB上一点,且使,请判断△EFC的形状,并说明理由;(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当时,请猜想的值(请直接写出结论).21.(8分)为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.若用户的月用水量不超过15吨,每吨收水费4元;用户的月用水量超过15吨,超过15吨的部分,按每吨6元收费.(I)根据题意,填写下表:月用水量(吨/户) 4 10 16 ……应收水费(元/户)40 ……(II)设一户居民的月用水量为x吨,应收水费y元,写出y关于x的函数关系式;(III)已知用户甲上个月比用户乙多用水6吨,两户共收水费126元,求他们上个月分别用水多少吨?22.(10分)计算:sin30°4+(π﹣4)0+|﹣12 |.23.(12分)如图,已知AB为⊙O的直径,AC是⊙O的弦,D是弧BC的中点,过点D作⊙O的切线,分别交AC、AB的延长线于点E和点F,连接CD、BD.(1)求证:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的长.24.如图,已知△ABC是等边三角形,点D在AC边上一点,连接BD,以BD为边在AB的左侧作等边△DEB,连接AE,求证:AB平分∠EAC.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】结合向左平移的法则,即可得到答案.【题目详解】解:将抛物线y=x2+3向左平移2个单位可得y=(x+2)2+3,故选A.【题目点拨】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答.2、C【解题分析】先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.【题目详解】210 10x x -≤⎧⎨+⎩①>②∵解不等式①得:x≤0.5,解不等式②得:x >-1,∴不等式组的解集为-1<x≤0.5,∴不等式组的整数解为0,故选C .【题目点拨】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键. 3、B【解题分析】根据矩形的性质得到,CB ∥x 轴,AB ∥y 轴,于是得到D 、E 坐标,根据勾股定理得到ED ,连接BB′,交ED 于F ,过B′作B′G ⊥BC 于G ,根据轴对称的性质得到BF=B′F ,BB′⊥ED 求得BB′,设EG=x ,根据勾股定理即可得到结论.【题目详解】解:∵矩形OABC ,∴CB ∥x 轴,AB ∥y 轴.∵点B 坐标为(6,1),∴D 的横坐标为6,E 的纵坐标为1.∵D ,E 在反比例函数6y x =的图象上, ∴D (6,1),E (32,1), ∴BE =6﹣32=92,BD =1﹣1=3,∴ED .连接BB ′,交ED 于F ,过B ′作B ′G ⊥BC 于G . ∵B ,B ′关于ED 对称,∴BF =B ′F ,BB ′⊥ED ,∴BF •ED =BE •BD BF =3×92, ∴BF, ∴BB设EG =x ,则BG =92﹣x . ∵BB ′2﹣BG 2=B ′G 2=EB ′2﹣GE 2, ∴222299()()22x x --=-, ∴x =4526, ∴EG =4526, ∴CG =4213, ∴B ′G =5413, ∴B ′(4213,﹣213), ∴k =121-. 故选B .【题目点拨】本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.4、C【解题分析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.5、C【解题分析】众数,中位数,方差等概念分析即可.【题目详解】A、中奖是偶然现象,买再多也不一定中奖,故是错误的;B、全国中学生人口多,只需抽样调查就行了,故是错误的;C、这组数据的众数和中位数都是8,故是正确的;D、方差越小越稳定,甲组数据更稳定,故是错误.故选C.【题目点拨】考核知识点:众数,中位数,方差.6、A【解题分析】直接利用二次根式有意义的条件分析得出答案.【题目详解】在实数范围内有意义,∴x﹣1>0,解得:x>1.故选:A.【题目点拨】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.7、B【解题分析】根据多项式的乘法法则计算即可.【题目详解】(x-l)(x-2)= x2-2x-x+2= x2-3x+2.故选B.【题目点拨】本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.8、C【解题分析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.详解:对角线互相平分的四边形是平行四边形,A错误;对角线相等的平行四边形是矩形,B错误;对角线互相垂直的平行四边形是菱形,C正确;对角线互相垂直且相等的平行四边形是正方形;故选:C.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9、B【解题分析】连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.【题目详解】解:连接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=1,∴BC的长=6011803ππ⋅⋅=,故选B.【题目点拨】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.10、D【解题分析】由EF⊥BD,∠1=60°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.【题目详解】解:在△DEF 中,∠1=60°,∠DEF=90°,∴∠D=180°-∠DEF-∠1=30°.∵AB ∥CD ,∴∠2=∠D=30°.故选D .【题目点拨】本题考查平行线的性质以及三角形内角和为180°,解题关键是根据平行线的性质,找出相等、互余或互补的角.二、填空题(本大题共6个小题,每小题3分,共18分)11、①②④【解题分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【题目详解】解:∵对称轴是x=-2b a =1, ∴ab <0,①正确;∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【题目点拨】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.12、25【解题分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小. 【题目详解】解:∵在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球, ∴从中任意摸出一个球,则摸出白球的概率是25. 故答案为:25. 【题目点拨】本题考查概率的求法与运用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.m n13、1 【解题分析】先由根与系数的关系求出m •n 及m +n 的值,再把11m n+化为m+n mn 的形式代入进行计算即可.【题目详解】∵m 、n 是一元二次方程x 2+1x ﹣1=0的两实数根, ∴m +n =﹣1,m •n =﹣1, ∴11m n+=m+n mn =-4-1 =1.故答案为1. 【题目点拨】本题考查的是根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系为:x 1+x 2=﹣b a,x 1•x 2=ca .14、16【解题分析】试题分析:首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可. 解:列表得:(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36种等可能的结果,两个骰子的点数相同的有6种情况,∴两个骰子的点数相同的概率为:=.故答案为.考点:列表法与树状图法.15、a>1【解题分析】根据二次函数的图像,由抛物线y=ax2+5的顶点是它的最低点,知a>1,故答案为a>1.16、1【解题分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.【题目详解】解:设利润为w元,则w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,∵10≤x≤20,∴当x=1时,二次函数有最大值25,故答案是:1.【题目点拨】本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.三、解答题(共8题,共72分)17、2,1【解题分析】根据题意得出不等式组,解不等式组求得其解集即可.【题目详解】根据题意得21222473xxx-⎧≤-+⎪⎨⎪-<-⎩①②,解不等式①,得:x≤1,解不等式②,得:x>1,则不等式组的解集为1<x≤1,∴x可取的整数值是2,1.【题目点拨】本题考查了解不等式组的能力,根据题意得出不等式组是解题的关键.18、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.【解题分析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【题目详解】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=12 BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=12 BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵点E,F,G分别为边AB,BC,CD的中点,∴EF=12AC,FG=12BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.考点:平行四边形的判定与性质;中点四边形.19、(1)34;(2)淇淇与嘉嘉抽到勾股数的可能性不一样.【解题分析】试题分析:(1)根据等可能事件的概率的定义,分别确定总的可能性和是勾股数的情况的个数;(2)用列表法列举出所有的情况和两张卡片上的数都是勾股数的情况即可.试题解析:(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=34;(2)列表法:A B C DA (A,B)(A,C)(A,D)B (B,A)(B,C)(B,D)C (C,A)(C,B)(C,D)D (D,A)(D,B)(D,C)由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,∴P2=61 122,∵P1=34,P2=12,P1≠P2∴淇淇与嘉嘉抽到勾股数的可能性不一样.20、(1)①证明见解析;②证明见解析;(2)△EFC是等腰直角三角形.理由见解析;(3).【解题分析】试题分析:(1)①过点E作EG⊥BC,垂足为G,根据ASA证明△CEG≌△FEM得CE=FE,再根据SAS证明△ABE≌△CBE 得AE=CE,在△AEF中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x,则AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,从而AF=AB,得到点F是AB的中点.;(2)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AME≌△FME(SAS),从而可得△EFC是等腰直角三角形.(3)方法同第(2)小题.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AEM≌△FEM (ASA),得AM=FM,设AM=x,则AF=2x,DN =x,DE=x,BD=x,AB=x,=2x:x=.试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②设AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四边形AMND为矩形知,DN=AM=x,在Rt△DEN 中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴点F是AB的中点.(2)△EFC是等腰直角三角形.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG,设AM=x,则DN=AM=x,DE =x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG.∵EF⊥CE,∴∠FEC =90°,∴∠CEG+∠FEG=90°.又∠MEG =90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG =∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM (ASA),∴AM=FM.设AM=x,则AF=2x,DN =x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.考点:四边形综合题.21、(Ⅰ)16;66;(Ⅱ)当x≤15时,y=4x;当x>15时,y=6x﹣30;(Ⅲ)居民甲上月用水量为18吨,居民乙用水12吨【解题分析】(Ⅰ)根据题意计算即可;(Ⅱ)根据分段函数解答即可;(Ⅲ)根据题意,可以分段利用方程或方程组解决用水量问题.【题目详解】解:(Ⅰ)当月用水量为4吨时,应收水费=4×4=16元;当月用水量为16吨时,应收水费=15×4+1×6=66元;故答案为16;66;(Ⅱ)当x≤15时,y=4x;当x>15时,y=15×4+(x﹣15)×6=6x﹣30;(Ⅲ)设居民甲上月用水量为X吨,居民乙用水(X﹣6)吨.由题意:X﹣6<15且X>15时,4(X﹣6)+15×4+(X﹣15)×6=126X=18,∴居民甲上月用水量为18吨,居民乙用水12吨.【题目点拨】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意在实际问题中,利用方程或方程组是解决问题的常用方法.22、1.【解题分析】分析:原式利用特殊角角的三角函数值,平方根定义,零指数幂法则,以及绝对值的代数意义化简,计算即可求出值.详解:原式=12﹣2+1+12=1.点睛:本题考查了实数的运算,熟练掌握运算法则是解答本题的关键.23、(1)见解析;(2)1【解题分析】(1)连接AD,如图,利用圆周角定理得∠ADB=90°,利用切线的性质得OD⊥DF,则根据等角的余角相等得到∠BDF=∠ODA,所以∠OAD=∠BDF,然后证明∠COD=∠OAD得到∠CAB=2∠BDF;(2)连接BC交OD于H,如图,利用垂径定理得到OD⊥BC,则CH=BH,于是可判断OH为△ABC的中位线,所以OH=1.5,则HD=1,然后证明四边形DHCE为矩形得到CE=DH=1.【题目详解】(1)证明:连接AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∵EF为切线,∴OD⊥DF,∵∠BDF+∠ODB=90°,∠ODA+∠ODB=90°,∴∠BDF=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠BDF,∵D是弧BC的中点,∴∠COD=∠OAD,∴∠CAB=2∠BDF;(2)解:连接BC交OD于H,如图,∵D是弧BC的中点,∴OD⊥BC,∴CH=BH,∴OH为△ABC的中位线,∴113 1.522OH AC==⨯=,∴HD=2.5-1.5=1,∵AB为⊙O的直径,∴∠ACB=90°,∴四边形DHCE为矩形,∴CE=DH=1.【题目点拨】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理.24、详见解析【解题分析】由等边三角形的性质得出AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,证出∠ABE=∠CBD,证明△ABE≌△CBD(SAS),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC,即可得出结论.【题目详解】证明:∵△ABC,△DEB都是等边三角形,∴AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,即∠ABE=∠CBD,在△ABE和△CBD中,∵AB=CB,∠ABE=∠CBD,BE=BD,,∴△ABE≌△CBD(SAS),∴∠BAE=∠BCD=60°,∴∠BAE=∠BAC,∴AB平分∠EAC.【题目点拨】本题考查了全等三角形的判定与性质,等边三角形的性质等知识,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.。

2021年中考数学试题及解析:福建三明-解析版

2021年中考数学试题及解析:福建三明-解析版

福建省三明市2021年中考数学试卷一、选择题(共10小题,每小题4分)1、(2021•福建)﹣6的相反数是()A、﹣6B、﹣C、D、62、(2021•福建)据《2021年三明市国民经济和社会发展统计公报》数据显示,截止2021年底,三明市民用汽车保有量约为98200辆,98200用科学记数法表示正确的是()A、9.82×103B、98.2×103C、9.82×104D、0.982×1043、(2021•福建)由5个大小相同的正方体组成的几何体如图所示,其主视图是()A、B、C、D、4、点P(﹣2,1)关于x轴对称的点的坐标是()A、(﹣2,﹣1)B、(2,﹣1)C、(2,1)D、(1,﹣2)5、(2021•福建)不等式组的解集在数轴上表示如图所示,则该不等式组可能是()A、B、C、D、6、(2021•福建)有5张形状、大小、质地均相同的卡片,背面完全相同,正面分别印有等边三角形、平行四边形、菱形、等腰梯形和圆五种不同的图案.将这5张卡片洗匀后正面朝下放在桌面上,从中随机抽出一张,抽出的卡片正面图案是中心对称图形的概率为()A、B、C、D、7、(2021•福建)如图,AB是⊙O的直径,C,D两点在⊙O上,若∠C=40°,则∠ABD的度数为()A、40°B、50°C、80°D、90°8、(2021•福建)下列4个点,不在反比例函数y=﹣图象上的是()A、(2,﹣3)B、(﹣3,2)C、(3,﹣2)D、(3,2)9、(2021•福建)用半径为12cm,圆心角为90°的扇形纸片,围成一个圆锥的侧面,这个圆锥的底面半径为()A、1.5cmB、3cmC、6cmD、12cm10、(2021•福建)如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有()A、1个B、2个C、3个D、4个二、填空题(共6小题,每小题4分)11、(2021•福建)计算:﹣20210=_________.12、(2004•济南)分解因式:a2﹣4a+4=_________.13、(2021•福建)甲、乙两个参加某市组织的省“农运会”铅球项目选拔赛,各投掷6次,记录成绩,计算平均数和方差的结果为:\overline{x}_甲=13.5m,\overline{x}_乙=13.5m,S2甲=0.55,S2乙=0.50,则成绩较稳定的是_________(填“甲”或“乙”).14、(2021•福建)如图,▱ABCD中,对角形AC,BD相交于点O,添加一个条件,能使▱ABCD成为菱形.你添加的条件是_________(不再添加辅助线和字母)15、(2021•福建)如图,小亮在太阳光线与地面成35°角时,测得树AB在地面上的影长BC=18m,则树高AB 约为_________m(结果精确到0.1m)16、(2021•福建)如图,直线l上有2个圆点A,B.我们进行如下操作:第1次操作,在A,B两圆点间插入一个圆点C,这时直线l上有(2+1)个圆点;第2次操作,在A,C和C,B间再分别插入一个圆点,这时直线l上有(3+2)个圆点;第3次操作,在每相邻的两圆点间再插入一个圆点,这时直线l上有(5+4)个圆点;…第n次操作后,这时直线l上有_________个圆点.三、解答题(共7小题,共86分)17、(2021•福建)(1)先化简,再求值:x(4﹣x)+(x+1)(x﹣1),其中x=.(2)解方程:=.18、(2021•福建)如图,AC=AD,∠BAC=∠BAD,点E在AB上.(1)你能找出_________对全等的三角形;(2)请写出一对全等三角形,并证明.19、(2021•福建)某校为庆祝中国共产党90周年,组织全校1800名学生进行党史知识竞赛.为了解本次知识竞赛成绩的分布情况,从中随机抽取了部分学生的成绩进行统计分析,得到如下统计表:分组频数频率59.5~69.5 3 0.0569.5~79.5 12 a79.5~89.5 b 0.4089.5~100.5 21 0.35合计 c 1根据统计表提供的信息,回答下列问题:(1)a=_________,b=_________,c=_________;(2)上述学生成绩的中位数落在_________组范围内;(3)如果用扇形统计图表示这次抽样成绩,那么成绩在89.5~100.5范围内的扇形的圆心角为_________度;(4)若竞赛成绩80分(含80分)以上的为优秀,请你估计该校本次竞赛成绩优秀的学生有_________人.20、(2021•福建)海崃两岸林业博览会连续六届在三明市成功举办,三明市的林产品在国内外的知名度得到了进一步提升.现有一位外商计划来我市购买一批某品牌的木地板,甲、乙两经销商都经营标价为每平方米220元的该品牌木地板.经过协商,甲经销商表示可按标价的9.5折优惠;乙经销商表示不超过500平方米的部分按标价购买,超过500平方米的部分按标价的9折优惠.(1)设购买木地板x平方米,选择甲经销商时,所需费用这y1元,选择乙经销商时,所需费用这y2元,请分别写出y1,y2与x之间的函数关系式;(2)请问该外商选择哪一经销商购买更合算?21、(2021•福建)如图,在梯形ABCD中,AD∥BC,AD=AB,过点A作AE∥DB交CB的延长线于点E.(1)求证:∠ABD=∠CBD;(2)若∠C=2∠E,求证:AB=DC;(3)在(2)的条件下,sinC=,AD=,求四边形AEBD的面积.22、(2021•福建)如图,抛物线y=ax2﹣4ax+c(a≠0)经过A(0,﹣1),B(5,0)两点,点P是抛物线上的一个动点,且位于直线AB的下方(不与A,B重合),过点P作直线PQ⊥x轴,交AB于点Q,设点P的横坐标为m.(1)求a,c的值;(2)设PQ的长为S,求S与m的函数关系式,写出m的取值范围;(3)以PQ为直径的圆与抛物线的对称轴l有哪些位置关系?并写出对应的m取值范围.(不必写过程)23、(2021•福建)在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:①tan∠PEF的值是否发生变化?请说明理由;②直接写出从开始到停止,线段EF的中点经过的路线长.答案与评分标准一、选择题(共10小题,每小题4分)1、(2021•山西)﹣6的相反数是()A、﹣6B、﹣C、D、6考点:相反数。

福建三明中考试卷和答案

福建三明中考试卷和答案

福建三明中考试卷和答案******一、语文试卷****(一)文言文阅读**阅读下面的文言文,完成1-3题。

《岳阳楼记》(节选)范仲淹庆历四年春,滕子京谪守巴陵郡。

越明年,政通人和,百废俱兴,乃重修岳阳楼,增其旧制,刻唐贤今人诗赋于其上;属予作文以记之。

予观夫巴陵胜状,在洞庭一湖。

衔远山,吞长江,浩浩汤汤,横无际涯,朝晖夕阴,气象万千,此则岳阳楼之大观也,前人之述备矣。

然则北通巫峡,南极潇湘,抚绥四方,观行天下之民,信可乐也。

1. 下列句子中加点词的解释不正确的一项是()A. 越明年,政通人和(第二年)B. 百废俱兴(兴盛)C. 属予作文以记之(嘱咐)D. 衔远山,吞长江(包含)2. 下列句子中加点词的意义和用法相同的一项是()A. 乃重修岳阳楼,增其旧制/ 乃不知有汉,无论魏晋B. 此则岳阳楼之大观也/ 非死则徙尔C. 朝晖夕阴,气象万千/ 朝服衣冠D. 观行天下之民,信可乐也/ 信义著于四海3. 翻译下列句子。

(1)政通人和,百废俱兴。

(2)此则岳阳楼之大观也,前人之述备矣。

**(二)现代文阅读**阅读下面的现代文,完成4-6题。

《背影》(节选)朱自清我与父亲不相见已二年余了,我最不能忘记的是他的背影。

那年冬天,祖母死了,父亲的差使也交卸了,正是祸不单行的日子,我从北京到徐州,打算跟着父亲奔丧回家。

到徐州见着父亲,看见满院狼藉的东西,又想起祖母,不禁簌簌地流下眼泪。

父亲说,“事已如此,不必难过,好在天无绝人之路!”回家变卖典质,父亲还了亏空;又借钱办了丧事。

这些日子,家中光景很是惨淡,一半为了丧事,一半为了父亲赋闲。

丧事完毕,父亲要到南京谋事,我也要回北京念书,我们便同行。

到南京时,有朋友约去游逛,勾留了一日;第二日上午便须渡江到浦口,下午上车北去。

父亲因为事忙,本已说定不送我,叫旅馆里一个熟识的茶房陪我同去。

他再三嘱咐茶房,甚是仔细。

但他终于不放心,怕茶房不妥帖;颇踌躇了一会。

其实我那年已二十岁,北京已来往过两三次,是没有甚么要紧的了,他只嘱咐我路上小心,夜里要警醒些,不要受凉。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档