【教案】14.1.3积的乘方

合集下载

2024年人教版八年级数学上册教案及教学反思第14章14.1.3 积的乘方

2024年人教版八年级数学上册教案及教学反思第14章14.1.3 积的乘方

第十四章整式的乘法与因式分解14.1 整式的乘法14.1.3 积的乘方一、教学目标【知识与技能】探索积的乘方的运算性质,能用积的乘方的运算性质进行计算.【过程与方法】经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.【情感、态度与价值观】培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.二、课型新授课三、课时第1课时四、教学重难点【教学重点】积的乘方运算法则的理解及其应用.【教学难点】积的乘方推导过程的理解和灵活运用.五、课前准备教师:课件、直尺、计算器等。

学生:直尺、计算器。

六、教学过程(一)导入新课若已知一个正方体的棱长为2×103 cm,你能计算出它的体积是多少吗?学生思考后列式:V=(2×103)3(cm3)教师提出问题:底数是2和103的乘积,虽然103是幂,但总体来看,它是积的乘方。

积的乘方如何运算呢?能不能找到一个运算法则?(出示课件2)(二)探索新知1.创设情境,探究积的乘方的法则教师问1:请同学们完成下面的题目计算:(1)x2·x5;(2)y2n·y n+1;(3)(x4)3;(4)(a2)3·a5.学生回答:(1)x7;(2)y3n+1;(3)x12;(4)a11.教师问2:同底数幂的乘法法则,幂的乘方法则是什么?学生回答:同底数幂的乘法法则:底数不变,指数相加;a m·a n= a m+n( m,n都是正整数).幂的乘方法则:底数不变,指数相乘. (a m)n= a mn (m,n都是正整数).教师问3:地球半径约为6.4×103km,球的体积计算公式为:V=4πr3,你知道3地球的体积大约是多少吗?(出示课件4)学生独立思考问题3并口答:体积应是V=4π(6.4×103) 3 km3.3教师问4:结果是幂的乘方形式吗?学生讨论后回答:底数是6.4和103的乘积,虽然103是幂,但总体来看不是幂的乘方.教师讲解:如何运算呢?本节课我和同学们一起来探究积的乘方的运算.教师问4:计算:(3×4)2和32×42,看一下他们的结果,你发现了什么?学生计算后回答:它们的结果相等,即(3×4)2=32×42教师问5:下列两题有什么特点?(出示课件7)(1)(ab)2;(2)(ab)3学生回答:底数为两个因式相乘,积的形式.教师问6:你猜想一下它们的结果是多少呢?学生回答:(ab)2=a2b2,则(ab)3=a3b3,教师问7:你能证明上边的猜想吗?(出示课件8)学生讨论并回答:(ab)2=(ab)·(ab) (乘方的意义)=(aa) ·(bb) (乘法交换律、结合律)=a2b2 (同底数幂相乘的法则)同理:(ab)3=(ab)·(ab) ·(ab) (乘方的意义)=(aaa) ·(bbb) (乘法交换律、结合律)=a3b3(同底数幂相乘的法则)教师问8:同学们试着猜想一下:(ab)n =?(出示课件9)学生猜想:(ab)n =a n b n.教师问9:你能用你学过的知识验证你的猜想吗?从运算结果看能发现什么规律?师生共同讨论后解答如下:因此可得:(ab)n=a n b n(n为正整数).教师总结:得到结论:(出示课件10)积的乘方:(ab)n=a n·b n(n是正整数),即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.教师问10:前面提出问题中正方体的体积V=(2×103)3它不是最简形式,根据发现的规律如何计算呢?学生解答:可作如下运算:V=(2×103)3=23×(103)3=23×103×3=8×109cm3.教师问11:三个或三个以上的积的乘方等于什么?学生讨论后回答:三个或三个以上的因式的积的乘方也具有这一性质.如(abc)n=a n·b n·c n(n为正整数);教师讲解:积的乘方等于积中“每一个”因式乘方的积,防止有的因式漏掉乘方出现错误;教师问12:积的乘方的法则:(ab)n=a n·b n(n是正整数),把等式的左右两边一换可以得到:a n·b n=(ab)n(n为正整数).这样成立吗?师生共同讨论后解答如下:积的乘方法则可以进行逆运算.即:a n·b n=(ab)n(n为正整数).总结点拨:分析这个等式:左边是幂的乘积,而且幂指数相同,右边是积的乘方,且指数与左边指数相等,那么可以总结为:同指数幂相乘,底数相乘,指数不变.例1:计算: (出示课件11)(1)(2a)3;(2)(–5b)3;(3)(xy2)2;(4)(–2x3)4.师生共同解答如下:解:(1)原式= 23a3= 8a3;(2)原式= (–5)3b3 = –125b3;(3)原式= x2(y2)2 =x2y4;(4)原式= (–2)4(x3)4 =16x12.总结点拨:运用积的乘方法则进行计算时,注意每个因式都要乘方,尤其是字母的系数不要漏乘方.例2 计算: (出示课件14)(1) –4xy2·(xy2)2·(–2x2)3;(2) (–a3b6)2+(–a2b4)3.师生共同解答如下:解:(1)原式= –4xy2·x2y4·(–8x6)=[–4×(–8)]x1+2+6y2+4=32x9y6;(2)原式=a6b12+(–a6b12) =[1+(–1)]a6b12=0总结点拨:涉及积的乘方的混合运算,一般先算积的乘方,再算乘法,最后算加减,然后合并同类项.例3:如何简便计算(0.04)2022×[(–5)2022]2?(出示课件15)师生共同解答如下:解法一:(0.04)2022×[(–5)2022]2=(0.22)2022 × 54044=(0.2)4044× 54044=(0.2 ×5)4044=14044=1解法二:(0.04)2022×[(–5)2022]2=(0.04)2022 × (25)2022=(0.04× 25)2022=12022=1总结点拨:(出示课件16)①逆用积的乘方公式a n·b n=(ab)n,要灵活运用,对于不符合公式的形式,要通过恒等变形,转化为公式的形式.②一般转化为底数乘积是一个正整数,再进行幂的计算较简便.(三)课堂练习(出示课件20-24)1.计算(–x2y)2的结果是( )A.x4y2B.–x4y2C.x2y2D.–x2y22.下列运算正确的是( )A. x•x2=x2B. (xy)2=xy2C. (x2)3=x6D. x2+x2=x43. 计算:(1) 82024×0.1252023= ________;(2) (-3)2023×(-1)2022 ________;3(3) (0.04)2023×[(–5)2023]2=________.4. 判断:(1)(ab2)3=ab6 ( ) (2) (3xy)3=9x3y3( ) (3) (–2a2)2=–4a4( ) (4) –(–ab2)2=a2b4( ) 5.计算:(1) (ab)8 ; (2) (2m)3; (3) (–xy)5;(4) (5ab2)3; (5) (2×102)2; (6) (–3×103)3.6. 计算:(1) 2(x3)2·x3–(3x3)3+(5x)2·x7;(2)(3xy2)2+(–4xy3) · (–xy) ;(3)(–2x3)3·(x2)2.7. 如果(a n•b m•b)3=a9b15,求m, n的值.参考答案:1.A2.C3.(1)8;(2)-3;(3)14.(1)×(2)×(3)×(4)×5. 解:(1)原式=a8b8;(2)原式= 23·m3=8m3;(3)原式=(–x)5·y5= –x5y5;(4)原式=53·a3·(b2)3=125a3b6;(5)原式=22×(102)2=4 ×104;(6)原式=(–3)3×(103)3= –27 ×109= –2.7 ×1010.6.(1)解:原式=2x6·x3–27x9+25x2·x7= 2x9–27x9+25x9 = 0;(2)解:原式=9x2y4 +4x2y4=13x2y4;(3)解:原式= –8x9·x4 =–8x13.7. 解:∵(a n•b m•b)3=a9b15,∴(a n)3•(b m)3•b3=a9b15,∴a 3n•b 3m•b3=a9b15 ,∴a 3n•b 3m+3=a9b15,∴3n=9 ,3m+3=15.∴n=3,m=4.(四)课堂小结今天我们学了哪些内容:积的乘方法则:(ab)n=a n·b n(n是正整数).使用范围:底数是积的乘方.方法:把积的每一个因式分别乘方,再把所得的幂相乘. 注意点:(1)注意防止符号上的错误;(2)三个或三个以上的因式的积的乘方也具有这一性质;(3)积的乘方法则也可以逆用.(五)课前预习预习下节课(14.1.4)98页到99页的相关内容。

14.1.3积的乘方-人教版八年级数学上册教案

14.1.3积的乘方-人教版八年级数学上册教案

14.1.3积的乘方-人教版八年级数学上册教案
一、教学目标
1.理解积的乘方的概念;
2.掌握积的乘方的计算方法;
3.能够运用积的乘方解决实际问题。

二、教学重难点
1.确定积的乘方的概念;
2.确定积的乘方的运算规则;
3.熟练掌握积的乘方的运算方法。

三、课前准备
1.教材《人教版八年级数学上册》;
2.教辅材料;
3.常规文具。

(黑板、粉笔等)
四、教学过程
(一)导入
1.引入积的概念,复习乘法运算;
2.向学生提问:1) 3×3×3×3的意义是什么? 2) 5×5×5×5×5的意义是什么?(二)讲授
1.讲解积的乘方的概念及其运算方法;
2.分析并解释积的乘方运算法则;
3.通过例题指导学生掌握积的乘方的运算方法。

(三)练习
1.完成课本上的练习题;
2.选做教辅材料上的练习题;
3.在教师的指导下,应用积的乘方解决实际问题。

(四)巩固
通过课堂练习、作业检查来巩固积的乘方的概念及其运算方法,并对学生的问题进行澄清和解答。

五、教学反思
本节课通过讲解积的乘方的概念及其运算方法,使学生掌握了积的乘方的基本概念和运算方法,能够应用积的乘方解决实际问题。

教学过程中重点讲解了积的乘方的运算规则,并且通过例题指导学生运用积的乘方解决问题,使学生能够在实际运用中理解积的乘方的概念。

在教学中,教师运用多种教学方式,例如导入、讲授、练习、巩固等环节,使学生在学习的过程中感受到积极向上的气氛,并且通过互动讨论等形式调动学生的思考能力,提高学生的学习效果。

人教版数学八年级上册14.1.3积的乘方..教学设计

人教版数学八年级上册14.1.3积的乘方..教学设计
三、教学重难点和教学设想
(一)教学重难点
1.重点:积的乘方的概念及其性质的掌握,以及在实际问题中的应用。
2.难点:理解积的乘方的性质,并能将其灵活运用于简化计算过程和解决实际问题。
(二)教学设想
1.教学方法:
-采用情境教学法,通过实际问题引入积的乘方概念,让学生感受数学与生活的紧密联系。
-运用启发式教学法,引导学生主动探究积的乘方的性质,培养他们的观察、分析和归纳能力。
1.培养学生对数学学科的兴趣和热情,激发他们主动探究数学问题的积极性。
2.培养学生严谨、细致的学习态度,让他们认识到数学在日常生活和科学研究中的重要性。
3.通过积的乘方知识的学习,引导学生认识到事物之间的联系和规律,培养他们的创新意识和团队合作精神。
在教学过程中,教师应注重启发式教学,引导学生主动参与课堂,关注学生的个体差异,因材施教,使学生在掌握知识的同时,提高自己的综合素质。以下是具体的教学设计:
-学生活动:组织学生进行小组讨论,互相交流积的乘方的性质和应用,培养学生的合作意识和团队精神。
-课堂小结:对本节课的重点知识进行总结,强化学生对积的乘方的认识。
3.课后作业:
-设计分层次的课后作业,满足不同层次学生的学习需求,巩固所学知识。
-鼓励学生利用积的乘方知识解决生活中的实际问题,提高他们的数学应用能力。
4.教学评价:
-采用多元化评价方式,如课堂提问、课后作业、小组讨论等,全面了解学生的学习情况。
-关注学生的个体差异,对学生在学习过程中遇到的问题及时给予指导和帮助,提高他们的自信心。
5.教学拓展:
-结合数学史,介绍积的乘方在数学发展史上的地位,激发学生的学习兴趣。
-开展数学实践活动,如制作积的乘方知识卡片、编写积的乘方小故事等,培养学生的创新意识和动手能力。

人教版八年级上册14.1.3积的乘方教学设计

人教版八年级上册14.1.3积的乘方教学设计
(4)巩固练习:设计不同难度的练习题,让学生巩固积的乘方知识。
(5)拓展应用:结合生活实例,让学生运用积的乘方知识解决问题。
(6)总结反思:对本节课的学习内容进行总结,强调积的乘方在实际生活中的应用。
3.教学策略:
(1)关注学生个体差异,实施分层教学,提高教学效果。
(2)注重启发引导,激发学生主动学习的兴趣,培养学生的自主学习能力。
(3)实施小组合作学习,让学生在交流与讨论中,共同解决难点问题,提高合作能力。
(4)设计生活情境,让学生在实际问题中运用积的乘方知识,提高数学应用能力。
2.教学步骤:
(1)导入新课:通过复习乘方的定义和性质,为新课的学习做好铺垫。
(2)新课探究:以长方体体积计算为例,引导学生发现积的乘方运算法则。
(3)讲解与示范:详细讲解积的乘方运算法则,并进行典型例题的演示。
(二)过程与方法
1.通过实例引导学生发现积的乘方运算法则,培养学生的观察、概括能力。
2.以小组合作形式,让学生互相讨论、交流,提高学生的合作意识和解决问题的能力。
3.通过典型例题的讲解和练习,让学生掌握积的乘方运算法则,培养学生的逻辑思维能力。
4.利用实际生活问题,引导学生运用积的乘方知识解决问题,提高学生的数学应用能力。
1.设计练习题:设计不同难度的练习题,让学生独立完成。题目包括基本题、提高题和应用题,以检验学生对积的乘方知识的掌握情况。
2.学生练习:学生在课堂上独立完成练习题,教师巡回指导,解答学生的疑问。
3.作业批改:教师批改学生的练习,了解学生的学习效果,为下一步教学提供依据。
(五)总结归纳
1.知识梳理:对本节课的学习内容进行梳理,强调积的乘方的运算法则及其在实际生活中的应用。

人教版数学八年级上册14.1.3积的乘方优秀教学案例

人教版数学八年级上册14.1.3积的乘方优秀教学案例
(二)讲授新知
1.结合生活实例,引导学生理解积的乘方的定义。如:两个相同的正方形相乘,可以理解为正方形的边长乘以边长,即2×2×2=8,这就是积的乘方。
2.讲解积的乘方的运算法则,通过举例、讲解、演示等方法,使学生理解和掌握运算法则。
3.运用平方差公式和完全平方公式,引导学生发现积的乘方与平方差、完全平方之间的关系,为解决实际问题打下基础。
二、教学目标
(一)知识与技能
1.理解积的乘方的概念,掌握积的乘方的运算法则。
2.能够运用积的乘方解决实际问题,提高运用数学知识解决实际问题的能力。
3.熟练运用平方差公式和完全平方公式,为学习更高阶的数学知识打下基础。
(二)过程与方法
1.通过小组合作、讨论交流的方式,培养学生自主探究、发现规律的能力。
三、教学策略
(一)情景创设
1.利用多媒体展示正方形的巧克力图片,引导学生关注实际问题,激发学生学习兴趣。
2.创设问题情境:小明的妈妈买了一块正方形的巧克力,每块巧克力的边长是4厘米,小明想知道这块巧克力一共有多少立方厘米。让学生感受到数学与生活的紧密联系,引发学生的思考。
3.设计富有挑战性的数学题目,让学生在解决问题的过程中自然引出积的乘方的概念。
3.教师对学生的学习情况进行评价,关注学生的成长和进步,及时调整教学策略。
(五)作业小结
1.布置具有层次性的作业,让学生在课后巩固所学知识。
2.要求学生在作业中运用积的乘方解决实际问题,提高学生的数学应用能力。
3.鼓励学生自主探索,尝试解决更复杂的数学问题,培养学生的创新能力。
作为一名特级教师,我将以以上教学内容与过程为指导,关注学生的个体差异,充分调动学生的学习积极性,使他们在本节课中获得全面的发展。同时,我也将注重教学评价,及时了解学生掌握情况,为下一节课的教学提供有力保障。通过本节课的教学,使学生在知识、能力和情感态度与价值观等方面都得到提升,为他们的全面发展奠定基础。

14.1.3积的乘方(教案)2023-2024学年人教版数学八年级上学期

14.1.3积的乘方(教案)2023-2024学年人教版数学八年级上学期
3.重点难点解析:在讲授过程中,我会特别强调积的乘方的定义和性质这两个重点。对于难点部分,如将整式乘法转化为积的乘方,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与积的乘方相关的实际问题,如计算一个长方体的体积并将其表示为积的乘方。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解积的乘方的基本概念。积的乘方是指将几个相同因数的乘积进行乘方。它在整式的乘法与因式分解中具有重要地位,可以帮助我们简化计算过程。
2.案例分析:接下来,我们来看一个具体的案例。通过计算(x^2y)^3,我们将其转化为x^6y^3,展示了积的乘方在实际计算中的应用。
(3)将整式乘法转化为积的乘方:学生可能不知道何时以及如何将整式乘法转化为积的乘方。
举例:将(x+1)(x+1)(x+1)转化为(x+1)^3。
突破方法:通过讲解和练习,指导学生识别可转化为积的乘方的整式乘法形式。
(4)解决实际问题中的积的乘方:学生在将实际问题抽象为积的乘方模型时可能遇到困难。
突破方法:结合实际情境,引导学生如何将问题中的数据进行整理,并运用积的乘方进行建模。
最后,我意识到在教学过程中,及时反馈和个别指导是非常重要的。在课后,我会关注那些课堂上表现出困惑的学生,确保他们能够跟上课程的进度。同时,我也会反思自己的教学方法,看看是否有更生动、更直观的方式来讲解积的乘方,让每一个学生都能够真正理解并掌握这一数学工具。
2.教学难点
(1)理解积的乘方的概念:学生可能难以理解将几个相同因数的乘积进行乘方的意义。
突破方法:通过直观的图形或实际例子,帮助学生形象地理解积的乘方。
(2)运用积的乘方性质进行计算:学生在运用性质进行计算时,可能会出现混淆或错误。

14_1_3《积的乘方》教案

14_1_3《积的乘方》教案
2.叙述幂的乘方法则,并用字母表示.
字母表示:am·an=am+n(m,n都是正整数).
字母表示:(am)n=amn(m,n都是正整数)
学生思考并回答
复习知识
积的乘方
1、计算()n;
2、从上述计算你发现了什么规律?
3、积的乘方等于把每一个因式分别乘方的积.
即:(ab)n=an·bn
积极探究
发现法则
应用法则
1、例题:计算
(1)(2a)3;(2)(-5b)3;
(3)(-2xy2)2;(4)(-2x3)4.
2:练习:P98页:练习(1)--(4)
学生
板演
巩固法则
灵活应用
1、逆用公式: 即
2、① ;
② ;③ .
3、已知2m=3,2n=5,求23m+2n的值.
4、猜想是否能够把(ab)n=anbn推广?即(abc)n=anbncn吗?大家能够亲自推理一下.
探究合作交流
逆用法则
综合应用
计算(1)a3·a4·a+(a2)4+(-2a4)2;
(2) 2(x3)2·x3-(3x3)3+(5x)2·x7
讨论交流
提高深化
课堂小结
1、积的乘方等于把每一个因式分别乘方的积.
即:(ab)n=an·bn
2、逆用公式:
作业布置
1、P104页:习题14.1:第1:(5)、(6),2题
2、课课练
情感价值观
在发展推理水平和有条理的表达水平的同时,进一步培养学习数学的兴趣,培养学习数学的信心,感受数学的内在美.
教学重点
积的乘方的运算性质及其应用.
教学难点
积的运算性质的灵活使用.
教学方法

人教版八年级数学上册14.1.3积的乘方教学设计

人教版八年级数学上册14.1.3积的乘方教学设计
3.提出问题:展示一个具体的数学问题,如计算一个长方体的体积,引导学生思考如何运用已有知识解决该问题,为新课的学习做好铺垫。
(二)讲授新知,500字
1.概念讲解:介绍积的乘方的定义,通过具体实例让学生理解积的乘方的意义。
2.运算法则:详细讲解积的乘方的运算法则,并通过典型例题演示运算步骤,强调注意事项。
8.教学评价
采用多元化的评价方式,关注学生在知识掌握、能力提升、情感态度等方面的全面发展。
四、教学内容与过程
(一)导入新课,500字
1.回顾旧知:请学生回顾有理数的乘方、幂的乘方等概念及运算法则,为新课的学习做好知识准备。
2.创设情境:通过生活中的实例,如面积的估算、体积的计算等,让学生感受积的乘方在实际问题中的应用,激发学生学习的兴趣。
例题:已知a^2+b^2=8,求(a+b)^4的值。
4.思考总结题:要求学生结合本节课的学习,总结积的乘方的运算规律及在实际问题中的应用,用自己的语言进行表述。
5.家长评价:请家长对孩子的作业完成情况进行评价,并在作业本上留言,以促进家校共育,共同关注学生的学习成长。
作业布置要求:
1.作业量适中,难度分层,使不同层次的学生都能得到锻炼和提高。
3.通过积的乘方学习,引导学生体会数学在现实生活中的广泛应用,增强学生的应用意识。
1.导入新课
通过回顾有理数乘方、幂的乘方等知识,为新课学习做好铺垫。
2.自主探究
学生自主探究积的乘方法则,教师进行指导。
3.合作交流
学生分组讨论,分享自己的发现,共同总结积的乘方规律。
4.例题讲解
教师选取典型例题,讲解积的乘方运算步骤,强调注意事项。
2.实践应用题:设计2-3道与生活实际相结合的题目,让学生运用积的乘方解决实际问题,提高学生学以致用的能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.1.3 积的乘方
教学目标
(一)教学知识点
1.经历探索积的乘方的运算法则的过程,进一步体会幂的意义.
2.理解积的乘方运算法则,能解决一些实际问题.
(二)能力训练要求
1.在探究积的乘方的运算法则的过程中,发展推理能力和有条理的表达能力.
2.学习积的乘方的运算法则,提高解决问题的能力.
(三)情感与价值观要求
在发展推理能力和有条理的语言、符号表达能力的同时,进一步体会学习数学的兴趣,提高学习数学的信心,感受数学的简洁美.
教学重点
积的乘方运算法则及其应用.
教学难点
幂的运算法则的灵活运用.
教学方法
自学─引导相结合的方法.
同底数幂的乘法、幂的乘方、积的乘方成一个体系,研究方法类同,有前两节课做基础,本节课可放手让学生自学,教师引导学生总结,从而让学生真正理解幂的运算方法,能解决一些实际问题.
教具准备
投影片.
教学过程
Ⅰ.提出问题,创设情境
[师]还是就上节课开课提出的问题:若已知一个正方体的棱长为1.1×103cm,•你能计算出它的体积是多少吗?
[生]它的体积应是V=(1.1×103)3cm3.
[师]这个结果是幂的乘方形式吗?
[生]不是,底数是1.1和103的乘积,虽然103是幂,但总体来看,•我认为应是积的乘方才有道理.
[师]你分析得很有道理,积的乘方如何运算呢?能不能找到一个运算法则?•有前两节课的探究经验,老师想请同学们自己探索,发现其中的奥秒.
Ⅱ.导入新课
老师列出自学提纲,引导学生自主探究、讨论、尝试、归纳.
出示投影片
学生探究的经过:
1.(1)(ab )2 =(ab )·(ab )= (a·a)·(b·b)= a 2b 2,其中第①步是用乘方的
意义;第②步是用乘法的交换律和结合律;第③步是用同底数幂的乘法法则.•同样的方法可以算出(2)、(3)题.
(2)(ab )3=(ab )·(ab )·(ab )=(a·a·a)·(b·b·b)=a 3b 3;
(3)(ab )n =()()()ab ab ab n 个ab
=()a a a n 个a ·()b b b n 个b =a n b n 2.积的乘方的结果是把积的每一个因式分别乘方,再把所得的幂相乘,也就是说积的乘方等于幂的乘积.
用符号语言叙述便是:
(ab )n =a n ·b n (n 是正整数)
3.正方体的体积V=(1.1×103)3它不是最简形式,根据发现的规律可作如下运算:
V=(1.1×103)3=1.13×(103)3=1.13×103×3=1.13×109=1.331×109(cm 3)
通过上述探究,我们可以发现积的乘方的运算法则:
(ab )n =a n ·b n (n 为正整数)
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
4.积的乘方法则可以进行逆运算.即:
a n ·
b n =(ab )n (n 为正整数)
分析这个等式:左边是幂的乘积,而且幂指数相同,右边是积的乘方,且指数与左边指数相等,那么可以总结为:
同指数幂相乘,底数相乘,指数不变.
看来这也是降级运算了,即将幂的乘积转化为底数的乘法运算.
对于a n ·b n =(a·b)n (n 为正整数)的证明如下:
a n ·
b n =a ·a ·a ···b ·b ·b ···=(ab)(ab)(ab)····(ab)
=(a·b)n ──乘方的意义
5.[例3]计算
(1)(2a )3=23·a 3=8a 3.
(2)(-5b )3=(-5)3·b 3=-125b 3.
(3)(xy 2)2=x 2·(y 2)2=x 2·y 2×2=x 2·y 4=x 2y 4.
(4)(-2x 3)4=(-2)4·(x 3)4=16·x 3×4=16x 12.
(学生活动时,老师要深入到学生中,发现问题,及时启发引导,•使各个层面的学生都能学有所获)
[师]通过自己的努力,发现了积的乘方的运算法则,并能做简单的应用.•可以作如下归纳总结:
1.积的乘方法则:积的乘方等于每一个因式乘方的积.即(ab )n =a n ·b n (n 为正整数).
2.三个或三个以上的因式的积的乘方也具有这一性质.如(abc )n =a n ·b n ·c n (n
为正
整数).
3.积的乘方法则也可以逆用.即a n·b n=(ab)n,a n·b n·c n=(abc)n,(n为正整数).Ⅲ.随堂练习
1.课本练习
(由学生板演或口答)
Ⅳ.课时小结
[师]通过本节课的学习,你有什么新的体会和收获?
[生]通过自己的努力,探索总结出了积的乘方法则,还能理解它的真正含义.
[生]其实数学新知识的学习,好多都是由旧知识推理出来的.我现在逐渐体会到温故知新的深刻道理了.
[生]通过一些例子,我们更熟悉了积的乘方的运算性质,而且还能在不同情况下对幂的运算性质活用.
Ⅴ.课后作业
1.课本习题
2.总结我们学过的三个幂的运算法则,反思作业中的错误.
3.预习“整式的乘法”一节.
板书设计。

相关文档
最新文档