14.1.3积的乘方教案集体备课

合集下载

14.1.3积的乘方-人教版八年级数学上册教案

14.1.3积的乘方-人教版八年级数学上册教案

14.1.3积的乘方-人教版八年级数学上册教案
一、教学目标
1.理解积的乘方的概念;
2.掌握积的乘方的计算方法;
3.能够运用积的乘方解决实际问题。

二、教学重难点
1.确定积的乘方的概念;
2.确定积的乘方的运算规则;
3.熟练掌握积的乘方的运算方法。

三、课前准备
1.教材《人教版八年级数学上册》;
2.教辅材料;
3.常规文具。

(黑板、粉笔等)
四、教学过程
(一)导入
1.引入积的概念,复习乘法运算;
2.向学生提问:1) 3×3×3×3的意义是什么? 2) 5×5×5×5×5的意义是什么?(二)讲授
1.讲解积的乘方的概念及其运算方法;
2.分析并解释积的乘方运算法则;
3.通过例题指导学生掌握积的乘方的运算方法。

(三)练习
1.完成课本上的练习题;
2.选做教辅材料上的练习题;
3.在教师的指导下,应用积的乘方解决实际问题。

(四)巩固
通过课堂练习、作业检查来巩固积的乘方的概念及其运算方法,并对学生的问题进行澄清和解答。

五、教学反思
本节课通过讲解积的乘方的概念及其运算方法,使学生掌握了积的乘方的基本概念和运算方法,能够应用积的乘方解决实际问题。

教学过程中重点讲解了积的乘方的运算规则,并且通过例题指导学生运用积的乘方解决问题,使学生能够在实际运用中理解积的乘方的概念。

在教学中,教师运用多种教学方式,例如导入、讲授、练习、巩固等环节,使学生在学习的过程中感受到积极向上的气氛,并且通过互动讨论等形式调动学生的思考能力,提高学生的学习效果。

人教版数学八年级上册14.1.3积的乘方..教学设计

人教版数学八年级上册14.1.3积的乘方..教学设计
三、教学重难点和教学设想
(一)教学重难点
1.重点:积的乘方的概念及其性质的掌握,以及在实际问题中的应用。
2.难点:理解积的乘方的性质,并能将其灵活运用于简化计算过程和解决实际问题。
(二)教学设想
1.教学方法:
-采用情境教学法,通过实际问题引入积的乘方概念,让学生感受数学与生活的紧密联系。
-运用启发式教学法,引导学生主动探究积的乘方的性质,培养他们的观察、分析和归纳能力。
1.培养学生对数学学科的兴趣和热情,激发他们主动探究数学问题的积极性。
2.培养学生严谨、细致的学习态度,让他们认识到数学在日常生活和科学研究中的重要性。
3.通过积的乘方知识的学习,引导学生认识到事物之间的联系和规律,培养他们的创新意识和团队合作精神。
在教学过程中,教师应注重启发式教学,引导学生主动参与课堂,关注学生的个体差异,因材施教,使学生在掌握知识的同时,提高自己的综合素质。以下是具体的教学设计:
-学生活动:组织学生进行小组讨论,互相交流积的乘方的性质和应用,培养学生的合作意识和团队精神。
-课堂小结:对本节课的重点知识进行总结,强化学生对积的乘方的认识。
3.课后作业:
-设计分层次的课后作业,满足不同层次学生的学习需求,巩固所学知识。
-鼓励学生利用积的乘方知识解决生活中的实际问题,提高他们的数学应用能力。
4.教学评价:
-采用多元化评价方式,如课堂提问、课后作业、小组讨论等,全面了解学生的学习情况。
-关注学生的个体差异,对学生在学习过程中遇到的问题及时给予指导和帮助,提高他们的自信心。
5.教学拓展:
-结合数学史,介绍积的乘方在数学发展史上的地位,激发学生的学习兴趣。
-开展数学实践活动,如制作积的乘方知识卡片、编写积的乘方小故事等,培养学生的创新意识和动手能力。

人教版八年级上册14.1.3积的乘方教学设计

人教版八年级上册14.1.3积的乘方教学设计
(4)巩固练习:设计不同难度的练习题,让学生巩固积的乘方知识。
(5)拓展应用:结合生活实例,让学生运用积的乘方知识解决问题。
(6)总结反思:对本节课的学习内容进行总结,强调积的乘方在实际生活中的应用。
3.教学策略:
(1)关注学生个体差异,实施分层教学,提高教学效果。
(2)注重启发引导,激发学生主动学习的兴趣,培养学生的自主学习能力。
(3)实施小组合作学习,让学生在交流与讨论中,共同解决难点问题,提高合作能力。
(4)设计生活情境,让学生在实际问题中运用积的乘方知识,提高数学应用能力。
2.教学步骤:
(1)导入新课:通过复习乘方的定义和性质,为新课的学习做好铺垫。
(2)新课探究:以长方体体积计算为例,引导学生发现积的乘方运算法则。
(3)讲解与示范:详细讲解积的乘方运算法则,并进行典型例题的演示。
(二)过程与方法
1.通过实例引导学生发现积的乘方运算法则,培养学生的观察、概括能力。
2.以小组合作形式,让学生互相讨论、交流,提高学生的合作意识和解决问题的能力。
3.通过典型例题的讲解和练习,让学生掌握积的乘方运算法则,培养学生的逻辑思维能力。
4.利用实际生活问题,引导学生运用积的乘方知识解决问题,提高学生的数学应用能力。
1.设计练习题:设计不同难度的练习题,让学生独立完成。题目包括基本题、提高题和应用题,以检验学生对积的乘方知识的掌握情况。
2.学生练习:学生在课堂上独立完成练习题,教师巡回指导,解答学生的疑问。
3.作业批改:教师批改学生的练习,了解学生的学习效果,为下一步教学提供依据。
(五)总结归纳
1.知识梳理:对本节课的学习内容进行梳理,强调积的乘方的运算法则及其在实际生活中的应用。

人教版数学八年级上册14.1.3积的乘方优秀教学案例

人教版数学八年级上册14.1.3积的乘方优秀教学案例
(二)讲授新知
1.结合生活实例,引导学生理解积的乘方的定义。如:两个相同的正方形相乘,可以理解为正方形的边长乘以边长,即2×2×2=8,这就是积的乘方。
2.讲解积的乘方的运算法则,通过举例、讲解、演示等方法,使学生理解和掌握运算法则。
3.运用平方差公式和完全平方公式,引导学生发现积的乘方与平方差、完全平方之间的关系,为解决实际问题打下基础。
二、教学目标
(一)知识与技能
1.理解积的乘方的概念,掌握积的乘方的运算法则。
2.能够运用积的乘方解决实际问题,提高运用数学知识解决实际问题的能力。
3.熟练运用平方差公式和完全平方公式,为学习更高阶的数学知识打下基础。
(二)过程与方法
1.通过小组合作、讨论交流的方式,培养学生自主探究、发现规律的能力。
三、教学策略
(一)情景创设
1.利用多媒体展示正方形的巧克力图片,引导学生关注实际问题,激发学生学习兴趣。
2.创设问题情境:小明的妈妈买了一块正方形的巧克力,每块巧克力的边长是4厘米,小明想知道这块巧克力一共有多少立方厘米。让学生感受到数学与生活的紧密联系,引发学生的思考。
3.设计富有挑战性的数学题目,让学生在解决问题的过程中自然引出积的乘方的概念。
3.教师对学生的学习情况进行评价,关注学生的成长和进步,及时调整教学策略。
(五)作业小结
1.布置具有层次性的作业,让学生在课后巩固所学知识。
2.要求学生在作业中运用积的乘方解决实际问题,提高学生的数学应用能力。
3.鼓励学生自主探索,尝试解决更复杂的数学问题,培养学生的创新能力。
作为一名特级教师,我将以以上教学内容与过程为指导,关注学生的个体差异,充分调动学生的学习积极性,使他们在本节课中获得全面的发展。同时,我也将注重教学评价,及时了解学生掌握情况,为下一节课的教学提供有力保障。通过本节课的教学,使学生在知识、能力和情感态度与价值观等方面都得到提升,为他们的全面发展奠定基础。

14.1.3积的乘方

14.1.3积的乘方
教师小结:积的乘方法则
五、当堂训练
运用本节知识做作业时注意:
1、千万不要漏项;2、符号的变化;
必做题:堂堂清
教后反思
延安培植中学八年级数学课时教案
授课时间
2016年10月27日第9周星期四总第36课时
课题
14.1.3积的乘方
学习目标
知识与技能:通过探索积的乘方的运算性质,进一步体会和巩固幂的意义,在推理得出积的乘方的运算性质的过程中,领会这个性质。
过程与方法:经历探索积的乘方的过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生的应用能力。
情感态度价值观:通过小组合作与交流,培养学生的合作交流意识和探索精神,让学生体会数学的应用价值。
学习重点
积的乘方法则。
学习难点
积的乘方法则的推导过程及灵活应用。
学习过程
集体教案
二次备课
一、出示课题,揭示目标
同学们,今天我们学习14.1.3积的乘方(板书课题),本节课的学习目标是(教师口述知识与技能目标)。
6分钟后,比谁能熟记法则并运用积的乘方法则做对检测题。
三、先学
(一)学生自学,教师巡视,督促每位同学认真、紧张自学。
(二)学生练习,教师巡视,收集错误。
(1)检测题:课本98页:练习
(请2名学生板演,其他同学在座位上做)
要求:1、6分钟独立完成;2、仿照例题,比谁做的又对又快(先做完的举手示意)3、教师巡视,收集错误,进行第二次备课。
四、后教ห้องสมุดไป่ตู้
1、互换同桌互换练字本
2、更正
请同学们认真看堂上板演的内容,如果有错误或不同解法的请上来更正或补充。
3、讨论,归纳(先让尖子生讲,若尖子生不会或讲的不全的则教师点拨)

人教版八年级数学上册14.1.3积的乘方教学设计

人教版八年级数学上册14.1.3积的乘方教学设计
3.提出问题:展示一个具体的数学问题,如计算一个长方体的体积,引导学生思考如何运用已有知识解决该问题,为新课的学习做好铺垫。
(二)讲授新知,500字
1.概念讲解:介绍积的乘方的定义,通过具体实例让学生理解积的乘方的意义。
2.运算法则:详细讲解积的乘方的运算法则,并通过典型例题演示运算步骤,强调注意事项。
8.教学评价
采用多元化的评价方式,关注学生在知识掌握、能力提升、情感态度等方面的全面发展。
四、教学内容与过程
(一)导入新课,500字
1.回顾旧知:请学生回顾有理数的乘方、幂的乘方等概念及运算法则,为新课的学习做好知识准备。
2.创设情境:通过生活中的实例,如面积的估算、体积的计算等,让学生感受积的乘方在实际问题中的应用,激发学生学习的兴趣。
例题:已知a^2+b^2=8,求(a+b)^4的值。
4.思考总结题:要求学生结合本节课的学习,总结积的乘方的运算规律及在实际问题中的应用,用自己的语言进行表述。
5.家长评价:请家长对孩子的作业完成情况进行评价,并在作业本上留言,以促进家校共育,共同关注学生的学习成长。
作业布置要求:
1.作业量适中,难度分层,使不同层次的学生都能得到锻炼和提高。
3.通过积的乘方学习,引导学生体会数学在现实生活中的广泛应用,增强学生的应用意识。
1.导入新课
通过回顾有理数乘方、幂的乘方等知识,为新课学习做好铺垫。
2.自主探究
学生自主探究积的乘方法则,教师进行指导。
3.合作交流
学生分组讨论,分享自己的发现,共同总结积的乘方规律。
4.例题讲解
教师选取典型例题,讲解积的乘方运算步骤,强调注意事项。
2.实践应用题:设计2-3道与生活实际相结合的题目,让学生运用积的乘方解决实际问题,提高学生学以致用的能力。

《14.1.3积的乘方》教案

《14.1.3积的乘方》教案
2.提升学生数学运算素养,使学生掌握积的乘方的基本运算方法,提高解决实际问题的数学运算能力。
3.培养学生数学抽象素养,通过积的乘方法则的理解,让学生感悟数学抽象概念,形成对数学规律的深刻认识。
4.增强学生数学建模素养,学会将实际问题转化为数学模型,利用积的乘方法则进行简便运算,提高解决实际问题的效率。
3.重点难点解析:在讲授过程中,我会特别强调积的乘方法则以及如何应用于不同类型的数(正数、负数和零)。对于难点部分,如负数乘方的运算规则,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与积的乘方相关的实际问题,如计算具体物体的体积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示积的乘方在几何图形面积或体积计算中的应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“积的乘方在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2决问题。我会提出一些开放性的问题来启发他们的思考。
五、教学反思
今天我们在课堂上学习了《14.1.3积的乘方》,回顾整个教学过程,我觉得有几个地方值得思考和改进。
首先,关于教学内容的导入,我通过提问方式引导学生思考积的乘方在日常生活中的应用,希望能激发他们的兴趣。从学生的反应来看,这种方法还是有效的,他们能够积极参与进来。但在实际操作中,我发现有些学生对这个问题还是感到困惑,可能是我举例不够贴近他们的生活实际,以后在这方面需要多下功夫。
-对于零的乘方,如0^2,学生需要理解结果是0,但0^0是不确定的,不属于本节课的讨论范围。

人教版八年级数学上册《14.1.3积的乘方》教学设计

人教版八年级数学上册《14.1.3积的乘方》教学设计
3.理论讲解:结合教材内容,详细讲解积的乘方运算规则,强调乘方运算与乘法运算的结合,特别是多个乘积的乘方运算。(三)学 Nhomakorabea小组讨论
1.分组讨论:将学生分成小组,针对积的乘方运算规则进行讨论,鼓励学生提出疑问,共同解决问题。
2.交流分享:小组代表分享讨论成果,展示积的乘方运算的解题过程,提高学生的表达能力和逻辑思维能力。
2.引导学生运用已学的乘方知识,发现并总结积的乘方运算规律,提高学生的观察、归纳能力。
3.设计丰富的例题和练习,让学生在实际操作中掌握积的乘方运算方法,提高解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生的学习热情。
2.培养学生勇于尝试、善于思考的精神,增强学生的自信心。
②如果一个长方形的长是a厘米,宽是b厘米,求这个长方形的面积。
2.提高拓展题:设计一定数量的提高题,旨在培养学生的逻辑思维能力和数学应用能力。
-提高题:计算以下积的乘方,并解释计算过程。
① (2x - 3y)(3x + 2y)^2
② (a^2 + b^2)(a^2 - b^2)(a^2 + 2ab + b^2)
-拓展题:运用积的乘方运算,简化以下代数表达式。
① (x + y)(x^2 + xy + y^2)
② (2a - 3b)^3(2a + 3b)^3
3.课后反思:要求学生针对本节课的学习内容进行反思,总结自己在积的乘方运算中的优点和不足,并提出改进措施。
4.预习任务:布置下一节课的预习内容,让学生提前了解下节课的学习目标,培养学生的学习计划性和自主学习能力。
3.提出问题:引导学生思考,当两个数相乘后再进行乘方运算,应该如何计算?从而引出本节课的主题——积的乘方。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) (ab)3=(ab)· (ab)· (ab)=(a· a)· b· a· (b· b)=a3b3; (3) (ab)n= (ab) ab) ab) = (a a) ·b ) =anbn ( ( a ( b b


教学重点:积的乘方运算法则及其应用 教学难点:幂的运算法则的灵活运用 教学方法与手段:自学─引导相结合的方法 修订、增减 教学过程:
一.提出问题,创设情境 [师]还是就上节课开课提出的问题: 若已知一个正方体的棱长为 1.1×103cm, • 你能计算出它的体积是多少吗? [生]它的体积应是 V=(1.1×103)3cm3. [师]这个结果是幂的乘方形式吗? [生]不是,底数是 1.1 和 103 的乘积,虽然 103 是幂,但总体来看,•我认为应 是积的乘方才有道理. [师]你分析得很有道理,积的乘方如何运算呢?能不能找到一个运算法则?• 有前两节课的探究经验,老师想请同学们自己探索,发现其中的奥秒. 二.导入新课 老师列出自学提纲,引导学生自主探究、讨论、尝试、归纳. 出示投影片 1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律? (1) (ab)2=(ab)· (ab)=(a· (b· a)· b)=a( )b( ) (2) (ab)3=______=_______=a( )b( ) (3) (ab)n=______=______=a( )b( )(n 是正整数) 2.把你发现的规律用文字语言表述,再用符号语言表达. 3.解决前面提到的正方体体积计算问题. 4.积的乘方的运算法则能否进行逆运算呢?请验证你的想法. 学生探究的经过: 1. (ab)2 =(ab)· (1) (ab)= (a· (b· a)· b)= a2b2,其中第①步是用乘方的 意义;第②步是用乘法的交换律和结合律;第③步是用同底数幂的乘法法则.•同样 的方法可以算出(2)(3)题. 、
教学反思:
双井中学八年级(数学)备课组
集 体 备 课 教 案
主 备: 上课时间 上课教师 课题: 三维 目标
《14.1.3 积的乘方》
辅 备: 年 月 日 (星期 ) 本周第( 八年级( )课时 )班 总( )课时 班 级 知识与技能 过程与方法 情感态度与价值观
经历探索积的乘方的运算法则的过程,进一步体会幂的意义 学习积的乘方的运算法则,提高解决问题的能力 提高学习数学的信心,感受数学的简洁美
n个ab n个a n个b
2.积的乘方的结果是把积的每一个因式分别乘方,再把所得的幂相乘,也就是 说积的乘方等于幂的乘积. 用符号语言叙述便是: (ab)n=an·n(n 是正整数) b 通过上述探究,我们可以发现积的乘方的运算法则: (ab)n=an·n(n 为正整数) b 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 3.积的乘方法则可以进行逆运算.即: an·n=(ab)n(n 为正整数) b 分析这个等式:左边是幂的乘积,而且幂指数相同,右边是积的乘方,且指数 与左边指数相等,那么可以总结为: 同指数幂相乘,底数相乘,指数不变. 看来这也是降级运算了,即将幂的乘积转化为底数的乘法运算. 对于 an·n=(a· n(n 为正整数)的证明如下: b b) an·n= (a a) ·b ) ──幂的意义 b a ( b b

n个a n个b
= (a ) a ) a ) ──乘法交换律、结合律 b ( b ( b

n个(a b) n
=(a· b) ──乘方的意义 4.[例 3]计算 (1) (2a)3=23·3=8a3. a 3 (2) (-5b) =(-5)3·3=-125b3. b 2 2 2 2 (3) (xy ) =x · )2=x2·2×2=x2·4=x2y4. (y y y 3 4 4 3 4 (4) (-2x ) =(-2) · ) =16·3×4=16x12. (x x 三.随堂练习 课本 98 练习 教师小结: 1.积的乘方法则:积的乘方等于每一个因式乘方的积.即(ab)n=an·n(n b 为正整数) . 2.三个或三个以上的因式的积的乘方也具有这一性质.如(abc)n=an·n·n b c (n 为正整数) . 3.积的乘方法则也可以逆用.即 an·n=(ab)n,an·n·n=(abc)n, 为正整 b b c (n 数) . 板书设计: 14.1.3 积的乘方 积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘 例题讲解
相关文档
最新文档