鲁教版六年级数学下册 幂的乘方与积的乘方教案

合集下载

幂的乘方与积的乘方教案:深入掌握指数和幂的运算规律

幂的乘方与积的乘方教案:深入掌握指数和幂的运算规律

幂的乘方与积的乘方教案:深入掌握指数和幂的运算规律一、教学目标学习指数和幂的乘方、积的乘方规律,掌握指数与幂之间的互相转化方法,培养学生对指数和幂的敏感度,从而提高学生的数学思维能力和应用能力。

二、教学内容1.指数和幂的乘方、积的乘方规律2.指数与幂之间的互相转化方法3.练习与解题三、教学重难点1.指数和幂的乘方、积的乘方规律的应用2.指数与幂之间的互相转化方法的理解和运用四、教学方法1.讲述与演示相结合2.多元素启发式教学方法3.练习与解题五、教学准备1.白板、黑板、笔2.教科书、讲义、试卷3.练习和解题材料4.示范题六、教学过程1.引入从同学们最熟悉的数学公式-乘方式入手,大概介绍指数和幂之间的关系,并且让同学们自己研究一下同底数的幂的乘方有怎样的规律,再加以证明。

2.讲授指数和幂的乘方、积的乘方规律与运用。

2.1.幂的乘方同底数幂的乘方规律:$(a^{m})^{n}$ $=$ $a^{mn}$,即同一底数幂的乘方等于底数不变,指数相乘。

示范题:$(2^{3})^{2}$ $=$ $2^{6}$ $=$ $64$。

2.2.积的乘方如何化简幂的积:$a^{m}$ $\times$ $a^{n}$ $=$ $a^{m+n}$,即相同指数幂的积等于底数不变,指数相加。

示范题:$2^{4}$ $\times$ $2^{3}$ $=$ $2^{7}$。

2.3.指数与幂之间的互相转化方法(1)同底数幂之间的乘和除,可用指数相加、相减:$a^{m} \times a^{n}$ $=$ $a^{m+n}$;$\frac{a^{m}}{a^{n}}$ $=$ $a^{m-n}$。

(2)不同底数幂之间可先化为同底数再变幂:$2^{m}$ $\times$ $3^{m}$ $=$ $(2 \times 3)^{m}$;$\frac{2^{m}}{3^{n}}$ $=$ $\frac{{2^{\left(m-n\right)}}}{3^{n}}$。

六年级数学下册 6.2.1《幂的乘方》学案 鲁教版五四制教学设计

六年级数学下册 6.2.1《幂的乘方》学案 鲁教版五四制教学设计

6.2.1 《幂的乘方》【学习目标】 1、了解幂的乘方的运算性质,会进行幂的乘方运算;2、能利用幂的乘方的性质解决一些实际问题.【学习重点】 理解幂的乘方的运算性质,会进行幂的乘方运算.【学习难点】 幂的乘方与同底数幂的乘法运算性质之间的联系和区别.【学习过程】一、学习准备1、 知识回顾幂的乘法法则:同底数幂相乘,底数不变,指数相加.即n m a a ⋅= 。

(m 、n 是 数)2、计算:=⋅m m aa ; =⋅⋅333a a a . 二、解读教材1、探索幂的乘方的运算法则做一做:根据乘方的意义及同底数幂的乘法填空,并观察有什么规律?(1)62333332322222)2(===⋅=⨯+; (2)63222222232555555)5(===⋅⋅=⨯++; (3)12433333333343)(a a aa a a a a ===⋅⋅⋅=⨯+++ (4)根据以上规律,猜想: n m a )(= 个n m m m a a a ⋅⋅⋅⋅⋅⋅⋅=a个+++n m ...m m =)(a .幂的乘方法则:幂的乘方,底数不变,指数相乘。

即: mn n m aa =)( (m 、n 为正整数) 常见错误:853)(a a =, 1553a a a =⋅错误原因:把幂的乘法和乘方混淆。

对比:853a a a =⋅(乘法),1553)(a a =(乘方)。

说明:幂的乘方中,底数、指数可以是数,也可以是字母,也可以是单项式和多项式。

2、幂的乘方的计算类型1——指数是数,底数是数或单项式例1 ,计算:(1)53)10(; (2)43)(b ;解 : (1)53)10(=15531010=⨯; (2)124343)(b b b ==⨯即时练习1:1、填空。

(1)=22)2( ; (2)=⋅2322 ; (3)=63)7( ;(4)(m 2)5= ; (5)=73)(m ; (6)=⋅24a a ; 2、判断下列计算是否正确,并简要说明理由。

六年级数学下册 6.2 幂的乘方与积的乘方教案3 鲁教版五四制

六年级数学下册 6.2 幂的乘方与积的乘方教案3 鲁教版五四制

六年级数学下册 6.2 幂的乘方与积的乘方教案
3 鲁教版五四制
点难点教学重点:幂的乘方与积的乘方的运算性质的理解与掌握。

教学难点:同底数幂的乘法和幂的乘方的综合应用。

教学资源伴你学导学案 ppt教法与学法简述以合作教学为主展开教学,学生探索发现法,归纳总结。

通案内容设计个案内容设计教学内容目标定向:经历探索幂的乘方与积的乘方的运算性质的过程,进一步体会幂的意义发展推理能力和有条理的表达能力了解幂的乘方与积的乘方的运算性质,并能解决一些实际问题。

二、自学尝试针对上述学习目标,自主完成习题教师巡视并给予方法指导。

三、小组合作:以小组为单位,订正答案四、交流展示:请小组推荐代表发言。

其他小组评价并补充或提出不同意见。

每次小组发言人轮换,让更多同学有发言机会。

教师记录各小组课堂积分。

五、点拨引领:根据学生展示点评情况教师进行归纳提升,学生想不到的思路、方法,教师进行点拨引领。

复习:
1、同底数幂的乘法运算法则
2、幂的乘方运算法则
3、积的乘方运算法则,积的乘方运算的你运用
二、练习
1、计算:表示、
2、计算:(x)= 、
3、计算:(y)+(y)= 、
4、计算:、
5、、(在括号内填数)
6、计算:⑴;⑵ ⑶ ⑷计算:
(2)
8、、已知:,求的值、、若,,,比较a、b、c的大小、板书设计课外作业布置必做选作教后心得。

春鲁教版数学六下6.2《幂的乘方与积的乘方》word学案

春鲁教版数学六下6.2《幂的乘方与积的乘方》word学案

幂的乘方与积的乘方导学案学习目标:1、学习探索幂的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。

2、学习幂的乘方的运算性质,学会运用“幂的乘方”法则进行运算。

3、熟练掌握幂的乘方法则和同底数幂相乘的法则的区别及这两个法则的混合运用。

学习过程:一、 复习巩固、交流预习 (10分)1.同底数幂的乘法法则(表达式)(1)7233⨯ = (2)3=m a ,4=n a ,n m a +2 =2、幂32的三次方怎么表示?3、试一试(1) 42)6( (2) 32)(a (3) 2)(m a二、互助探究(10分)1、根据乘方的意义及同底数幂的乘法填空:(1) (23)2=23×23= ;(2) (32)3= × × = ;(3) (a 3)5= × × × = 。

观察结果中幂的指数与原式中幂的指数及乘方的指数,猜想它们之间有什么关系?结果中的底数与原式的底数之间有什么关系?3、猜想:n m a )(=幂的乘方的意义(表达式)语言描述:三、分层提高(15分)1.、判断下面计算是否正确?如果有错误请改正:(1) (x 3)3 = x 6 ; (2)a 6 · a4 = a 24. 2.计算:(1) (103)3 ; (2) -(a2)5 ;(3) (x3)4· x2 ; (4) [(-x)2 ]33.若2a=3, 2b=5, 2c=30,试用a,b表示出c.四、总结归纳(3分)1、幂的乘方性质用语言表达为______________________________.2、同底数幂相乘与幂的乘方的区别:前者是指数_______,后者是指数____.五、巩固反馈(7分)1、计算: (1) (-a)2 ·(a2)2;(2) x·x4–x2·x3 .(3) -p·(-p)4 ;(4) (x4)-(x3)8.= cm3;甲球的半径是乙2.、乙球的半径为 3 cm, 则乙球的体积V乙球的10倍,则甲球的体积V= cm3 . 甲球体积 =甲乙球体积3、若84=2x, 求x的值.。

初中数学鲁教版六年级下册《62幂的乘方与积的乘方》教学设计

初中数学鲁教版六年级下册《62幂的乘方与积的乘方》教学设计
3、还有疑问吗?
学生自我评价
找到自己的优势和劣势
教学后记
填空:(见课件)
思考题(7分钟)
1.计算:
(1)(xn)n+1(2)〔(x+y)3〕4
2.填空:
(1)8 = 2x,则x =;
(2)84= 2x,则x =;
(3)273= 3x,则x =
1、学生先抢答,说出结论,并说明理由
2、同桌之间合作,完成练习
3幸运52李咏砸蛋环节,答对者得红分1分
4、学生合作、交流,生生互动
培养学生对新知识的灵活运用能力。
同桌之间合作,完成练习。
提高学生积极性及胆量,培养学生课堂成就感
兵教兵,培养学生的分析能力
四、小结(1分钟)
教师点拨
梳理知识点及数学方法。
五、拓展延伸:(7分钟)
课堂小主人人上台展示
培养学生的表达能力和分析能力,生生互动
六:自我评价:
1、本节课学到了什么?
2、对你本节课的表现打多少分?
(am)n=?例题引领:
演板 演板 演板 演板
教学设计
师生互动
设计意图














一、回顾思考(3分钟)
1、an表示的意义是什么?其中a、n、an分别叫做什么?
2、同底数幂的乘法法则?
老师提问,学生独自回答。
为学习本节内容作理论基础与准备
二、互动探究:(5分钟)
1、探究:(23)2==2()
教学重点
正确理解幂的乘方法则
教学难点
正确理解幂的乘方法则
课型
课题探究课

鲁教版(五四制)》六年级下册第六章整式的乘除幂的乘方与积的乘方(第一课时)学案

鲁教版(五四制)》六年级下册第六章整式的乘除幂的乘方与积的乘方(第一课时)学案

鲁教版(五四制)》六年级下册第六章整式的乘除幂的乘方与积的乘方(第一课时)学案学习目标:1、 探索学习幂的乘方运算的性质,正确用标记和文字表述。

2、 熟练举行幂的乘方运算。

学习重点:幂的乘方的运算的理解和应用运算。

学习难点:幂的乘方的运算的理解。

知识温习:1、 同底数幂的乘法, (1)准则(2)说出下列运算终于(1)=⋅64a a (2)=⋅5b b (3)=⋅⋅32m m m (4)=⋅⋅⋅953cc cc (5)=⋅⋅pnmaa a (6)=-⋅12m tt2、乘方的意义:a n 表示的意义是 , 35表示的意义是 )53(-3表示的意义是 ,(-2)4表示的意义是 你能说出 表示的意义吗?你能谋略出终于吗?(同砚们讨论一下)新课学习:(一) 先看讲义25页,标题。

并谋略说出终于。

查看“底数和指数”的干系,你能总结你的发觉吗? (二) 谋略:(a m )n 你会吗?由此你能得到什么结论? 看推导历程:(三) 幂的乘方的准则:(学生记准则,并举例提问) (m 、n 是正整数) 幂的乘方,底数不变,指数相加 口答下列各式的终于: (四) 例题学习例1, 谋略:(学生先思考,自己做,同桌交流,发起疑问。

西席讲解)你知道怎样处理,4题、5题、6题的标记吗?说说你的想法。

例2,谋略 先查看,以上两个题与火线题的不同,再试着写出历程。

提问:有理数的运算顺序,你还记得吗?(学生板演历程,并校正) 对应练习:集结练习:1、(讲义26页,“习题6.2” 1题、2题)2、完成下列各题 填空题: 1.,__________])2[(32=- 2.___________)2(32=-;3.____________)()(323=-⋅-a a ; 4.___________)()(4554=-+-x x ,5.若3=n x , 则=nx 3________.选择题1、122)(--n x 即是( ) A 、14-n x B 、14--n x C 、24-n x D 、24--n x2、21)(--n a 即是( ) A 、22-n aB 、22--n aC 、12-n aD 、22--n a3、13+n y可写成( )A 、13)(+n yB 、13)(+n y C 、ny y 3⋅ D 、1)(+n n y 解答题1.谋略:⑴nm aa ⋅3)(; (2)324)(a a •;()mnm m m a n m m m n m a a a a a a mn m==•••=+++ 个个m n n m aa =)(436232)()(2)2()()1(a a y y -•2.谋略:3、335210243254)()()()()(a a a a a a a -•-•--+•---. 拓展练习:1.在下列各式的括号中填入适当的代数式,使等式成立: ⑴a 6=( )2;⑵2342225)()((_____))(a a a ⋅=⋅. 2.若510=x,310=y,求 :yx 3210+ 的值.3.若162,273==y x,求:y x +的值。

幂的乘方与积的乘方教案

幂的乘方与积的乘方教案

幂的乘方与积的乘方教案教学目标:1.理解幂的乘方。

2.能够计算幂的乘方。

3.理解积的乘方。

4.能够计算积的乘方。

教学重点:1.幂的乘方的概念与计算。

2.积的乘方的概念与计算。

教学准备:1.黑板、粉笔和擦子。

2.计算器。

教学过程:一、导入(5分钟)1.教师通过一个简单的问题导入新知识:“假如我现在有3个苹果,每个苹果有4个橘子,你能说出总共有多少个橘子吗?”2.学生回答后,教师引导学生思考如何计算橘子的总数。

二、幂的乘方(20分钟)1.教师写出问题:“如果有3个苹果,每个苹果有4个橘子,你能用幂的乘方表示这个问题吗?”2.学生思考后,教师解释幂的乘方的概念:幂的乘方是指将一个幂作为乘数,连续相乘的操作。

在这个问题中,3个苹果可以表示为3^1,每个苹果有4个橘子可以表示为4^3,所以总共的橘子数可以表示为3^1×4^33.教师用黑板上的例子,如2^3,解释幂的乘方的计算方法:将底数2连乘3次,即2×2×2=8,所以2^3=8、教师帮助学生理解幂的乘方的计算方法。

4.学生进行练习,计算以下幂的乘方:(a)5^2;(b)10^3;(c)3^4三、积的乘方(20分钟)1.教师写出问题:“如果有2组橘子,每组橘子有3个苹果,你能用积的乘方表示这个问题吗?”2.学生思考后,教师解释积的乘方的概念:积的乘方是指将一个积作为乘数,连续相乘的操作。

在这个问题中,2组橘子可以表示为(2×3)^1,每组橘子有3个苹果可以表示为3^2,所以总共的橘子数可以表示为(2×3)^1×3^23.教师用黑板上的例子,如(3×4)^2,解释积的乘方的计算方法:先将两个因数(3×4)相乘,得到12,然后再将12连乘2次,即12×12=144,所以(3×4)^2=144、教师帮助学生理解积的乘方的计算方法。

4.学生进行练习,计算以下积的乘方:(a)(2×5)^2;(b)(4×6)^3;(c)(2×3×4)^2四、扩展应用(25分钟)1.教师给学生提供更复杂的问题,让学生运用幂的乘方和积的乘方来解决。

第2讲:幂的乘方与积的乘方-教案

第2讲:幂的乘方与积的乘方-教案
学生学习本节时可能会在以下三个方面感到困难:
1.幂的乘方、积的乘方运算法则的灵活运用。
2.幂的乘方、积的乘方运算法则的逆应用。
3.同底数幂乘法、幂的乘方与积的乘方三种运算的混合问题。
【知识导图】
【教学建议】
有关幂的乘方与积的乘方的题目,通常着重计算能力的考查,要求学生对幂的运算方法非常熟悉,可以灵活、正确运用运算法则进行计算。在教学过程中要注意区分幂的乘方、积的乘方和同底数幂乘法的异同,更要对混合运算重点讲解。
1.幂的乘方运算法则: (其中 均为正整数)
幂的乘方,底数不变,指数相乘。
2.幂的乘方的逆运算
1.积的乘方运算法则: (n是正整数)
积的乘方等于积的每个因式分别乘方,再把所得的幂相乘。
2.积的乘方的逆运算ห้องสมุดไป่ตู้ (n是正整数)
【题干】计算 的结果是()
A.a5B.a6C.a8D.3 a2
【答案】B
【解析】运用运算法则:幂的乘方,底数不变,指数相乘得:
故选B。
【题干】若 ,则m=_______。
【答案】2
【解析】考查幂的乘方和同底数幂乘法的综合计算,先计算幂的乘方再进行同底数幂的运算。
∴5+3m=11
解得m=2
【题干】若 ,则 的值为()
A.6 B.8 C.9 D.12
【答案】B
【解析】考查幂的乘方的逆运算。
=8
【题干】计算(2x3y)2的结果是()
符号表示: ,(其中 均为正整数)
2.积的乘方法则:积的乘方等于乘方的积.
符号表示: ,(其中 均为正整数)
1. 的结果是()
A. B. C. D.
【答案】C
【解析】根据运算法则计算。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《幂的乘方与积的乘方》教案
第1课时
教学目标
1.经历探索幂的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.
2.了解幂的乘方的运算性质,并能解决一些实际问题.
过程与方法
在探索幂的乘方运算性质的过程中,培养和发展学生学习数学的主动性,提高数学表达能力.
情感、态度与价值观
通过积极参与数学学习活动,培养学生积极探索、勇于创新的精神和团结合作的学习习惯.
重点难点
重点
理解并正确运用幂的乘方的运算性质.
难点
幂的乘方的运算性质的探究过程及应用.
教学设计
本节课设计了七个教学环节:复习回顾、情境引入、探究新知、落实基础、练习提高、课堂小结、布置作业.
第一环节:复习回顾
活动内容:复习已学过的幂的意义及幂运算的运算法则:
1.幂的意义:
n
a
n
a
a
a
a=




2.a m·a n=a n
m+(m、n为正整数)
同底数幂相乘,底数不变,指数相加.
活动目的:本堂课的学习方法仍是引导鼓励学生通过已学习的知识经过个人思考、小组合作等方式推导出本课新知,增进学生符号感.而这个过程离不开旧知识的铺垫,幂的意义知识在本节课中仍旧是法则推导的主要依据,其地位不可小觑,而同底数幂的乘法的推导过程,其中包含的算理知识在本堂课中仍是精神主旨,因而复习要细致.
第二环节:情境引入
活动内容:根据已经学习过的知识,带领学生回忆并探讨以下实际问题:
1.乙正方体的棱长是2cm ,则乙正方体的体积V 乙=cm 3.
甲正方体的棱长是乙正方体的5倍,则甲正方体的体积V 甲=cm 3

2.乙球的半径为3cm ,则乙球的体积V 乙=cm 3
甲球的半径是乙球的10倍,则甲球的体积V 甲=cm 3. 如果甲球的半径是乙球的n 倍,那么甲球体积是乙球体积的倍.
地球、木星、太阳可以近似地看作球体.木星、太阳的半径分别约是地球的10倍和10
2倍,它们的体积分别约是地球的倍和倍.
活动目的:正方体是学生非常熟悉的几何体,它的体积计算公式学生琅琅上口,但是当其棱长扩大一定的倍数后,新的正方体体积与原来正方体体积之间有怎样的数量关系呢?这是学生以前很少考虑过的.
课本上的问题情境从木星、太阳和地球的体积大小入手,直观的表现体积倍数之间的关系,非常吸引人.学生在探索这个问题的过程中,将自然地体会幂的乘方运算的必要性,了解数学与现实世界的联系,问题提出以后,教师可以鼓励学生根据幂的意义,独立得出木星、太阳的体积分别约是地球体积103和106倍.
第三环节:探究新知
活动内容:
1.通过问题情境继续研究:为什么()6321010=?让学生清楚运算之间的关系,题目所描述的是10的2次幂的三次方,其底数是幂的形式,然后根据幂的意义展开运算,去探究运算的过程.
2.计算下列各式,并说明理由.
(1)(62)4;(2)(a 2)3;(3)(a m )2;(4)(a m )n .
仿照前面,来研究以上四个题目的运算情况,实际上做到(3)题时可以猜想(4)题的结果,也为后面幂的乘方的法则推导带来指导性.完成本节课的主要教学任务.
活动目的:学习的过程中,时刻不能忘记学生是主体,一切教学活动都应当从学生已有的认知角度出发,问题环节设计跨越性不能太大,要让学生在不断的探索过程中得到不同程度的感悟,自己能够主动地去探究问题的实质,有成功的体验.
第四环节:落实基础
活动内容:
【例】计算:
(1)(102)3;(2)(b 5)5;(3)(a n )3;
(4)-(x 2)m ;(5)(y 2)3·y ;(6)2(a 2)6-(a 3)4.
随堂练习
1.计算:
(1)(103)3;(2)-(a2)5;(3)(x3)4·x2;
(4)[(-x)2]3;(5)(-a)2(a2)2;(6)x·x4–x2·x3.
2.判断下面计算是否正确?如果有错误请改正:
(1)(x3)3=x6;(2)a6a4=a24.
活动目的:学生刚刚接触到新的运算法则时,往往会感到十分的生疏,或者说对它的感觉仍旧停留在“雾里看花”状态,怎样拨开迷雾见真相?这需要一个过程,也就是对新知识从熟悉到熟练的过程,要达到这个目的一定要精选基本习题,所以在处理例题与随堂练习时,一定要“精心”,无论是基本的习题,还是变化的习题,都要以透彻为最终目标.第五环节:联系拓广
活动内容:把所学知识面拓广,幂的运算都在指数上做文章,这节课的拓广题,也是以指数变化为主.
(1)a12=(a3)()=(a2)()=a3a()=()3=()4
(2)32﹒9m=3()
(3)y n3=3,y n9=.
(4)(a2)1 m=.
(5)[(a-b)3]2=(b-a)()
(6)若4﹒8m﹒16m=29,则m=.
(7)如果2a=3,2b=6,2c=12,那么a、b、c的关系是.
活动目的:课本上的知识都是独立的,互相关联的内容和习题较少,而学习的目的不应是单独的模仿,根据多个知识交叉和综合点所涉及的问题处理也是早学习过程中应该逐渐摸索掌握的,经历这个过程实际上对所学的单独的知识又是一个更高的要求,应该让学生掌握,个别有困难的同学不做要求.
第六环节:课堂小结
活动内容:师生互相交流本堂课上应该掌握的幂的乘方的特征,教师对课堂上发现的学生掌握不好的地方给以强调.特别要注意已经学习过的两种幂的运算——同底数幂的乘法与幂的乘方,它们之间的整合也是这堂课要掌握的.
活动目的:课堂小结并不只是课堂知识点的回顾,要尽量学生畅谈自己的切身感受,教师对于学生发言进行鼓励,对于两个知识点整合,更要有所思考,达到对所学知识巩固的目的.
第七环节:布置作业
1.学习了两种幂的运算后,你又有了什么样的感受和认识?请你记录在作业本上.2.完成课本习题
第2课时
教学目标
知识与技能
1.能说出积的乘方的运算性质并会用符号表示.
2.使学生能运用积的乘方的运算性质进行计算,并能说出每一步运算的依据. 过程与方法
经历推导积的乘方法则过程,培养学生逻辑思维和分析问题的能力.
情感、态度与价值观
经历探究积的乘方的运算性质的过程,进一步体会幂的意义,从中感受具体到抽象、特殊到一般的思考方法,发展数感和归纳能力.
重点难点
重点
理解并掌握积的乘方的运算性质.
难点
积的乘方运算性质的灵活运用.
教学设计
本节课设计了七个教学环节:复习回顾、探索交流、知识扩充、巩固新知、公式逆用、课堂小结、布置作业.
第一环节:复习回顾
活动内容:复习前几节课学习的有关幂的三个知识点.
1.幂的意义:n
a n a a a a
=⨯⨯⨯ 个 2.同底数幂的乘法运算法则n m n m a a a +=⋅(m 、n 为正整数)
3.幂的乘方运算法则(a m )n =a mn (m 、n 都是正整数)
第二环节:探索交流
活动内容:地球可以近似地看做是球体,如果用V ,r 分别代表球的体积和半径,那么33
4r V π=.地球的半径约为6×103km ,它的体积大约是多少立方千米? 本环节是这节课最为重要的环节之一,充分借助教材提供的求地球体积的情境,引导学生思考“(6×103)3等于多少”,同时分析这种运算的特征,展开对“积的乘方”运算的探
索,教师还可以在课上可以对直接学生进行升级式提问:
(1)根据幂的意义,(ab )3
表示什么?
(2)为了计算(化简)算式ab ·ab ·ab ,可以应用乘法的交换律和结合律.又可以把它写成什么形式?
(3)由(ab )3=a 3b 3出发,你能想到更为一般的公式吗?
活动目的:经历了前两节课的探究,在本课中可以启发学生自主从具体特殊的数字问题到抽象的字母,新的挑战更会激起学生学习的兴趣,达到更好的学习效果.
第三环节:知识扩充
活动内容:积的乘方的运算法则:(ab )n =a n b n
积的乘方,等于每一因数乘方的积.
公式拓展:三个或三个以上的积的乘方,是否也具有上面的性质?怎样用公式表示?
进一步探讨出答案(abc )n =a n ·b n ·c n
第四环节:巩固新知
活动内容:
1.计算:
(1)(3x )2;(2)(-2b )5;
(3)(-2xy )4;(4)(3a 2)n .
2.完成引例的求地球体积问题.
3.下面的计算是否正确?如有错误请改正.
(1)844)(ab ab =;(2)2226)3(q p pq -=-.
4.课本随堂练习
第五环节:公式逆用
活动内容:计算:
(1)23×53;(2)28×58;
(3)(-5)16×(-2)15;(4)24×44×(-0.125)4;
(5)0.25100×4100;(6)812×0.12513.
第六环节:课堂小结
活动内容:师生互相交流本堂课上应该掌握的积的乘方的特征,教师对课堂上发现的学生掌握不好的地方给以强调.
第七环节:布置作业
1.完成课本习题
2.拓展作业:你能用几何图形直观的解释(3b )2=9b 2吗?。

相关文档
最新文档