《幂的乘方》教案

合集下载

幂的乘方教案

幂的乘方教案

幂的乘方教案Investment and study are the most important things in life, and there is no better idea.课题:幂的乘方教学目标:知识与技能目标:1、了解幂的乘方的运算性质,会进行幂的乘方运算;2、能利用幂的乘方的性质解决一些实际问题.过程与分析目标:经历探索幂的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.教学重点:了解幂的乘方的运算性质,会进行幂的乘方、积的乘方运算教学难点:幂的乘方与同底数幂的乘法运算性质区别,发展推理能力和有条理的表达能力.关键是利用教材内容安排的特点,把幂的乘方的学习与同底数幂的乘法紧密结合起来.教学过程:一、回顾1、什么叫做乘方什么叫幂2、口述幂的乘法法则二、计算观察,探索规律做一做:根据乘方的意义及同底数幂的乘法填空:1232=23×23=2;2323=32×32×32=3;3a34=a3 a3 a3 a3=a;提出问题:1同学们通过上述这几道题的计算 观察一下,这几道题目有什么共同特点2请同学们看一看自己的计算结果,想一想,这些结果有什么规律教师活动:组织学生进行思考与交流,让学生通过讨论、争议、探求出规律.学生活动:书合作学习.教学方法:合作探究点评:学生通过“做一做”以及探索规律,充分应用乘方的意义和同底数幂的乘法法则导出规律:()62323222==⨯,()==⨯32323362,()124343a a a ==⨯.提出问题:根据上述的探索所得的规律,完成下面的填空:()n m a =()a概括a mn =个)(n m m m a a a ⋅⋅⋅⋅⋅⋅⋅=a个+++n m ...m m =a mn有()mn n m a a =m 、n 为正整数教师活动:提出问题,引导、启发.学生活动:自主探索、讨论、回答.教学方法:合作交流.点评:通过问题的提出,再依据“做一做”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动构建,获得新的知识:幂的乘方,底数不变,指数相篛.三、举例应用:例2 计算:110352b 34 解11035=103×5=10152b 34=b 3×4=b 12思路点拨:要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.四、随堂练习,巩固新知1、P74练习1、2题.2、补充练习:()103222x x x x +••-思路点拨:准确应用幂的运算法则中的幂的乘法与幂的乘方,并注意这两者之间的区别.五、作业布置:P75 习题 第2、3题.六、小结1、 幂的乘方()mn n ma a =m 、n 为正整数使用范围是:幂的乘方.方法:底数不变,指数相乘.2、 知识拓展:这里的底数、指数可以是数,也可以是字母,也可以是单项式和多项式.3、 幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,一个是“指数相加”.。

《幂的乘方》教案

《幂的乘方》教案

《幂的乘方》教案教学目标:1.知识与技能理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质.2.过程与方法经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力.3.情感、态度与价值观培养学生合作交流意义和探索精神,让学生体会数学的应用价值.教学重、难点与关键:1.重点:幂的乘方法则.2.难点:幂的乘方法则的推导过程及灵活应用.3.关键:要突破这个难点,在引导这个推导过程时,步步深入,层层引导,要求对性质深入地理解.教学方法:采用“探讨、交流、合作”的教学方法,让学生在互动交流中,认识幂的乘方法则.教学过程:一、创设情境,导入新知【情境导入】大家知道太阳,木星和月亮的体积的大致比例吗?我可以告诉你,木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么,请同学们计算一下太阳和木星的体积是多少?(球的体积公式为V=r3)【学生活动】进行计算,并在黑板上演算.解:设地球的半径为1,则木星的半径就是102,因此,木星的体积为V木星=·(102)3=?(引入课题).【教师引导】(102)3=?利用幂的意义来推导.【学生活动】有些同学这时无从下手.【教师启发】请同学们思考一下a3代表什么?(102)3呢?【学生回答】a3=a×a×a,指3个a相乘.(102)3=102×102×102,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,102×1 02×102=102+2+2=106,•因此(102)3=106.【教师活动】下面有问题:利用刚才的推导方法推导下面几个题目:(1)(a2)3;(2)(24)3;(3)(b n)3;(4)-(x2)2.【学生活动】推导上面的问题,个别同学上讲台演示.【教师推进】请同学们根据所推导的几个题目,推导一下(a)的结果是多少?【学生活动】归纳总结并进行小组讨论,最后得出结论:(a m)n== a mn.评析:通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:幂的乘方,底数不变,指数相乘.二、范例学习,应用所学【例】计算:(1)(103)5;(2)(b3)4;(3)(x n)3;(4)-(x7)7.【思路点拨】要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.【教师活动】启发学生共同完成例题.【学生活动】在教师启发下,完成例题的问题:并进一步理解幂的乘方法则:解:(1)(103)5=103×5=1015;(3)(x n)3=x n×3=x3n;(2)(b3)4=b3×4=b12;(4)-(x7)7=-x7×7=-x49.三、随堂练习,巩固练习课本P143练习.【探研时空】计算:-x2·x2·(x2)3+x10.【教师活动】巡视、关注中等、中下的学生,媒体显示练习题.【学生活动】书面练习、板演.四、课堂总结,发展潜能1.幂的乘方(a m)n=a mn(m,n都是正整数)使用范围:幂的乘方.方法:底数不变,指数相乘.2.知识拓展:这里的底数、指数可以是数,可以是字母,也可以是单项式或多项式.3.幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,一个是“指数相加”.五、布置作业,专题突破课本P148习题15.1第1、2题。

幂的运算—幂的乘方教案设计

幂的运算—幂的乘方教案设计

幂的运算—幂的乘方教案设计幂的运算—幂的乘方教案设计「篇一」幂的运算的小结与思考教案课题:幂的运算的小结与思考教学目标:1、能说出幂的运算的性质;2、会运用幂的运算性质进行计算,并能说出每一步的依据;3、能说出零指数幂、负整数指数幂的意义,能用熟悉的事物描述一些较小的正数,并能用科学记数法表示绝对值小于1的数;4、通过具体例子体会本章学习中体现的从具体到抽象、特殊到一般的思考问题的方法,渗透转化、归纳等思想方法,发展合情推理能力和演绎推理能力。

教学重点:运用幂的运算性质进行计算教学难点:运用幂的运算性质进行证明规律教学方法:引导发现,合作交流,充分体现学生的主体地位一、系统梳理知识:幂的运算:1、同底数幂的乘法2、幂的乘方3、积的乘方4、同底数幂的除法:(1)零指数幂(2)负整数指数幂请你用字母表示以上运算法则。

你认为本章的学习中应该注意哪些问题?二、例题精讲:例1 判断下列等式是否成立:①(-x)2=-x2。

②(-x3)=-(-x)3。

③(x-y)2=(y-x)2。

④(x-y)3=(y-x)3。

⑤x-a-b=x-(a+b)。

⑥x+a-b=x-(b-a).解:③⑤⑥成立.例2 已知10m=4,10n=5,求103m+2n的值.解:因为103m=(10m)3=43 =64,102n=(10n)2=52=25。

所以103m+2n=103m102n=6425=1680例3 若x=2m+1,y=3+4m,则用x的代数式表示y为______.解:∵2m=x-1。

y=3+4m=3+22m.=3+(2m)2=3+(x-1)2=x2-2x+4.例4设<n>表示正整数n的个位数,例如<3>=3,<21>=1,<1324>=2,则<210>=______.解 210=(24)222=1624。

<210>=<64>=4例5 1993+9319的个位数字是A.2 B.4 C.6 D.8解1993+9319的个位数字等于993+319的`个位数字.∵ 993=(92)469=81469.319=(34)433=81427.993+319的个位数字等于9+7的个位数字.则 1993+9319的个位数字是6.三、随堂练习:1、已知a=355,b=444,c=533,则有()A.a<b<c B.c<b<aC.c<a<b D.a<c<b2、已知3x=a,3y =b,则32x-y等于3、试比较355,444,533的大小.4、已知a=-0.32,b=-3-2,c=(-1/3)-2d=(-1/3)0,比较a、b、c、d的大小并用“,〈”号连接起来。

幂的乘方的教案

幂的乘方的教案

幂的乘方的教案教学目标:1. 理解幂的乘方的定义和概念。

2. 掌握幂的乘方的计算方法。

3. 能够应用幂的乘方解决实际问题。

教学重点:1. 幂的乘方的定义和概念。

2. 幂的乘方的计算方法。

教学难点:幂的乘方的计算方法。

教学准备:黑板、粉笔、教科书、习题册。

教学过程:一、导入(5分钟)通过一个问题引入今天的学习内容:“如果我有3个苹果,我再买2个苹果,那么一共有几个苹果?”请同学们回答。

二、新知讲解(15分钟)1. 引入概念:幂的乘方是指将相同的底数连乘若干次的运算,如 a^n = a × a × ... × a (n个a相乘)。

2. 介绍特殊的幂:a^0 = 1 (其中a ≠ 0)a^1 = aa^n × a^m = a^(n+m)(a^n)^m = a^(n × m)(a × b)^n = a^n × b^n3. 解释幂的乘法规则及其用途。

(例如,计算面积和体积时会用到幂的乘法规则)三、示例演练(15分钟)老师通过几个例子演示如何计算幂的乘方,通过黑板上的计算过程进行讲解并请同学们参与计算。

示例1:计算 2^3 × 2^4解:根据幂的乘法规则,将指数相加得 2^(3+4) = 2^7示例2:计算 (3^2)^3解:根据幂的乘法规则,将指数相乘得 3^(2×3) = 3^6示例3:计算 (4 × 5)^2解:根据幂的乘法规则,先计算括号内的值得 (4 × 5)^2 = (20)^2 = 20 × 20 = 400四、练习巩固(20分钟)老师布置练习题,同学们个别完成后,将答案写在黑板上。

练习1:计算 2^4 × 2^3 × 2^2练习2:计算 (5^2)^3 × (5^3)^2练习3:计算 (2^2)^3 × (3^2)^2练习4:计算 (6 × 8)^2五、作业布置(5分钟)布置课后作业:习题册P.10 第3、5、7、9题。

初中数学《幂的乘方》教案3

初中数学《幂的乘方》教案3

《幂的乘方》教案3★新课标要求(一)知识与技能1.了解幂的乘方的运算性质,会进行幂的乘方运算;2.能利用幂的乘方的性质解决一些实际问题.(二)过程与方法1.学生通过阅读教材理解并掌握概念和法则,提高自主学习能力.2.通过学生思考、练习、讨论等过程,提高学生分析问题,解决问题及综合运用知识能力.(三)情感、态度与价值观1.学生在阅读概念及探究和运用法则过程中,培养勇于探索的精神,树立积极思考,克服困难的信心.2.加强学生团队及合作精神.★学情介绍1.学生已经学习了同底数幂的乘法,而且能够做出和课本上难度类似的题目,所以本节课的内容完全可以通过上一节的内容和有理数乘方的意义得到;2.作为现在的学生依靠计算机的比较多,导致计算能力较为薄弱,但本节课的内容简单的计算学生能够通过课堂练习和课后的复习掌握,因此要求学生对于幂的乘方的运算性质语言描述和字母表示能熟练说出,并会应用幂的乘方的运算性质解决简单的问题★教学重点了解幂的乘方的运算性质,会进行幂的乘方.★教学难点幂的乘方与同底数幂的乘法运算性质区别,发展推理能力和有条理的表达能力.★教学方法教师适当引导;学生自主学习,通过阅读教材、与同学讨论、交流获取知识.★教学过程(一)回忆时光问题1 a2表示什么?a表示什么?2表示什么?a n表示什么意义?问题2 大家能叙述同底数幂乘法运算性质问题1并用字母表示吗?问题3 我们能用同底数幂乘法的运算性质解决这个a2·a5·a n题目吗?问题4 若已知正方体的棱长为a,那么正方体的体积如何求?若正方体的棱长为102,你能计算它的体积吗?【设计意图】以上几个问题中幂的意义在本节中仍旧是法则推导的主要依据,其地位不可小觑,而同底数幂的乘法的推导过程,其中包含的算理知识在本节中仍是精神主旨,因而复习要细致.同时问题4是为了引入本节课.(二)新课导航1.(62)4=__·__·__·__ =6—+—+—+—=6—×—=6—我们大家能仿照上面的题目完成下面的计算吗?来试一下吧①a2)3②(a m)2 ③(a m)n问题5 我们能说出幂的乘方的运算性质吗?【设计意图】本环节的引入是从问题情境开始的,能够引起学生兴趣、好奇心、激发求知欲.在探索的过程中学生将逐步地体会幂的乘方运算的必要性,了解数学与现实世界的联系,鼓励学生根据米的意义,独立来完成这几个问题,应用前几个问题的目的,是夯实用幂的意义来处理这类问题的方法,让每个学生都能体会这种计算方法的实质.而计算(4)题时,先让学生进行猜想,然后再来验证这样的一个字母表达的过程.探索的方式从特殊到一般,符合学生的认知规律,进而总结出幂的乘方法则,这是本节课的重点.(三)知识亮点幂的乘方的运算性质,即(a m)n=a mn(m、n都是正整数)辨析法则判断下面计算是否正确?若有误请改正(1)(x3)3=x6(2)a6·a4=a24注意1.公式中的底数a可以是具体的数,也可以是代数式.例如[(y-x)2]n2.幂的乘方中指数相乘,而同底幂的乘法中是指数相加【设计意图】让学生把幂的乘方和同底幂的乘法一块区别记忆,从而加深对幂的乘方的认识.学习记忆的方法有几种,单纯的记忆学生遗忘的可能性比较大,但通过学生自己探索的过程和对比同底幂的乘法过程,相信学生能够在自己的脑海中留下深刻的印象.(四)你争我抢例1计算(1)(102)3(2)(b5)5(3)(a n)3(4)-(x2)m(5)(y2)3·y(6)2(a2)6-(a3)4【设计意图】学生刚刚接触到新的运算法则时,往往会感到十分的生疏,或者说对它的感觉仍停留在“雾里看花”状态,怎样拔开迷雾见真相?这就需要一个过程,也就是对新知识从熟悉到熟练的过程,要达到这个目的一定要精选基本习题,所以在处理例题与随堂练习时,一定要“精心”,无论是基本习题,还是变化的习题,都要以透彻本节课的学习目标是否达成为最终目标.(五)应用提高例2 若甲球的半径是乙球的n倍,那么甲球的体积是乙球的多少倍?(六)联系拓广(1)a12=(a3)()=(a2)()=a3·a()=()3=()4(2)a2m=(a2)()=(a m)()=a2·a()【设计意图】学生在学习幂的乘方之后,应对同底数幂相乘和幂的乘方之间的关系进一步掌握.对个别学生可能有难度,但本题也是为了学生了解幂的乘方的逆向运算,培养学生的逆向思维能力而专门设计的.在解决以后的问题中,逆用幂的乘方和同底数幂的乘法的运算性质也很常见.(七)课堂小结谈一下你的收获,总结自己在课上出错的原因(八)样题检测计算(1)-[(x2)]3(2)(a)2·(a2)2 (3)x·x4-x2·x3(九)课后反思本节课的设计意图是让学生以“观察―归纳―概括”为主要线索,在自主探索与合作交流中获得知识,使不同层次的学生都能有所收获与发展.从本节课的教学反馈来看,创设的问题情境激发了学生浓厚的学习兴趣,在老师的引导下,学生时而轻松愉快,时而在观察、计算、思考、交流、总结,思维能力和有条理的语言表达能力得到培养.在亲身体验和探索中认识数学、解决问题,在小结中找出两者的区别,从本质上理解幂的乘方,合作精神得以培养,较好地完成了本节课的学习目标.让学生探究幂的乘方的性质时,发现有少部分学生不能进行必要的推理,而是直接使用教材的结论[幂的乘方,底数不变,指数相乘;用字母表示:(a m)n=a mn]来解决本节课的内容练习.直接借用结论来使用的学习怕有这样几种情形:(1)学生懒得动脑,做一个实足的“拿来主义”更为合算,这种情况日久会养成一个不愿动脑的习惯,习以为常,学生的推理能力会得到“退化”.(2)学生的数学基础比较差,不知从何入手,也不知如何进行推理——说理为什么?.这种情况的学生应得到数学基础较好的学生或老师必要的帮助或指导.我在指导学生学习幂的乘方时,对学生易混淆的式子或错误从各种性质的本质入手进行必要的区别,从而明确错误的原因何在.学生练习时,并没有鼓励学生直接套用公式(法则)进行解题,而是让他们说明每一步的理由.这样做的目的是让学生进一步体会乘方的意义和幂的意义.。

《幂的乘方》教学设计

《幂的乘方》教学设计

《幂的乘方》教学设计教学目标1知识与技能目标:知道幂的乘方的运算性质并能用其解决一些实际问题。

2过程与方法目标:在经历探索幂的乘方运算性质的过程中,发展归纳,推理能力和数学表达能力。

3情感态度与价值观:经历体验认识的过程,积累认识数学的方法,在发展归纳,推理能力和数学表达能力的同时,建立学习数学的信心,体会学习数学的兴趣,感受数学的魅力和内在的美。

教学重点:探索幂的乘方运算性质的过程。

教学难点:幂的乘方运算性质的应用。

教学过程一、复习引入1、边长为3的正方形面积?2、边长为32的正方形面积?13、棱长为32的正方体体积?(从实际问题入手。

第3题引入课题。

对于第3题应让学生讨论。

)二、探索新知1.x3表示什么意义?2.如果把x换成a4,那么(a4)3表示什么意义?3根据乘方的意义及同底数幂的乘法填空,看看计算的结果有什么规律:(1) (32)3=32×32×32=3( );(2) (a2)3=(a2 )×(a2 )×(a2 )=a( );(3) (am)5=am×( )×( )×( )×( )=a()。

4.猜想:(am)n=(现察结果中幂的指数与原式中幂的指数及乘方的指数,想一想它们之间有什么关系?结果中的底数与原式的底数之间有什么关系?) 即(am)n=am·n(m、n是正整数)。

三、归纳结论幂的乘方法则。

你能用语言叙述这个法则吗?2幂的乘方,底数不变,指数相乘。

下列各式的计算是否正确?如果不正确,应怎样改正?(1) a·an = amn(2) (am)n= am+n四、区别旧知五、应用新知1.:(1) (2) (3) (4) :(此题是法则的直接应用,教师应示范解题步骤。

) 2.例2计算:3(1) (2) 3、试一试:多重乘方也具有这一性质=4、幂的乘方法则的逆用练习见ppt试一试:(1)·= ===;(2)= =m为正整数).5、练一练例3:计算:4(1)、若= 2, 则=_____.(2) 、若= 2, = 3 , 则=__, =______.(3) 、若=25,求(4) 、在. 这四个幂中,数值最大的一个是?说明理由.(此题要求学生会逆用幂的乘方和同底数幂的乘法公式,灵活、简捷地解题。

14.1.2幂的乘方(教案)

14.1.2幂的乘方(教案)
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过计算器或手工计算,演示幂的乘方的计算过程。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“幂的乘方在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
14.1.2幂的乘章第一节第二部分“幂的乘方”。教学内容主要包括以下两个方面:
1.掌握幂的乘方法则:a的m次幂的n次幂等于a的m×n次幂,即(a^m)^n=a^(m×n)。
2.学会运用幂的乘方法则解决实际问题,例如:求解一个数的指数表达式,简化指数运算等。
二、核心素养目标
3.重点难点解析:在讲授过程中,我会特别强调幂的乘方法则和如何识别底数与指数这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解,比如讲解(a^m)^n与a^(m×n)之间的关系。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与幂的乘方相关的实际问题,如计算多层幂的结果。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解幂的乘方的基本概念。幂的乘方是指一个数的幂再次作为底数进行幂运算。它是指数运算中的重要组成部分,对于简化复杂的指数表达式具有重要价值。
2.案例分析:接下来,我们来看一个具体的案例。比如,2的3次幂的4次幂,即(2^3)^4。这个案例展示了幂的乘方在实际中的应用,以及它如何帮助我们简化计算。
另外,我也在思考如何更有效地利用课堂时间。可能需要调整教学流程,确保有足够的时间来解决学生的疑问,特别是在讲解复杂概念时。同时,我也意识到,对于这类抽象的数学概念,仅仅通过讲解是不够的,还需要结合更多的实际例子和练习,让学生在实践中学习和掌握。

幂的乘方教案

幂的乘方教案

12.1 幂的运算第二课时 幂的乘方教学目标:1.经历探索幂的乘方的运算性质的过程,进一步体会幂的意义,提高学生推理能力和有条理的表达能力。

2、让学生在已有的知识基础上,自主探索,获得幂的运算的各种感性的认识,进而在理性上获得运算法则,培养学生主动建构、辨析是非的能力,同时也培养一定的思维批 教学重点、难点、关键:重点:了解幂的乘方的运算性质,会进行幂的乘方,积的乘方运算 难点:幂的乘方与同底数幂的乘法运算性质区别,提高推理能力和有条理的表达能力,关键是利用教材内容安排的特点,把幂的乘方的学习与同底数幂的乘法紧密结合起来。

教学过程:一、创设情景,导入新课做一做:课本第19页试一试概括:二.新课 ()mn n m m m n m m m n m a aa a a a ==⋅=+++ 个个(m 、n 为正整数)幂的乘方法则:(1)字母表示:()mn nm a a =(m 、n 为正整数) (2)文字叙述:幂的乘方,底数不变,指数相乘。

注意:a 可以是单独的字母,具体的数或者多项式。

三、举例应用例1.计算(1)(y 3)2+(-y 2)3-2y(-y 5);(2)(a 2n-2)2·(a m+1)3。

例2.已知x 2m =5,求x 6m =-5的值,逆用幂的乘方法则x 6m =x 2m ×3=(x 2m )3。

答案:x 6m -5=×125-5=20。

随堂练习1.108=( )2=( )4;2.p 2n+2=( )2;3.(-x 3)5=_______;4.x 2·x 4+[(-x)2]3=_______;5.已知x m ·x 2m =3,则x 9m =_______。

例3、计算下列各题(1)88165513⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛ (2)()20082007212⎪⎭⎫ ⎝⎛-⨯- (3)()()2008200722-+-(4)若12+=m x ,m y 43+=,用x 的代数式表示y 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.1.2 幂的乘方
教学目标
1.知识与技能
理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质.
2.过程与方法
经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力.
3.情感、态度与价值观
培养学生合作交流意义和探索精神,让学生体会数学的应用价值.
重、难点与关键
1.重点:幂的乘方法则.
2.难点:幂的乘方法则的推导过程及灵活应用.
3.关键:要突破这个难点,在引导这个推导过程时,步步深入,层层引导,•要求对性质深入地理解.
教学方法
采用“探讨、交流、合作”的教学方法,让学生在互动交流中,认识幂的乘方法则.教学过程
一、创设情境,导入新知
【情境导入】
大家知道太阳,木星和月亮的体积的大致比例吗?我可以告诉你,•木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么,•请同学
们计算一下太阳和木星的体积是多少?(球的体积公式为V=4
3
πr3)
【学生活动】进行计算,并在黑板上演算.
解:设地球的半径为1,则木星的半径就是102,因此,木星的体积为
V木星=4
3
π·(102)3=?(引入课题).
教师引导】(102)3=?利用幂的意义来推导.
【学生活动】有些同学这时无从下手.
【教师启发】请同学们思考一下a3代表什么?(102)3呢?
【学生回答】a3=a×a×a,指3个a相乘.(102)3=102×102×102,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,102×102×102=102+2+2=106,•因此(102)3=106.
【教师活动】下面有问题:
利用刚才的推导方法推导下面几个题目:
(1)(a 2)3;(2)(24)3;(3)(b n )3;(4)-(x 2)2

【学生活动】推导上面的问题,个别同学上讲台演示.
【教师推进】请同学们根据所推导的几个题目,推导一下(a )的结果是多少?
【学生活动】归纳总结并进行小组讨论,最后得出结论:
(a m )n =()n m m
m m m m m m a a a a a +++=个n 个= a mn
. 评析:通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:幂的乘方,底数不变,指数相乘.
二、范例学习,应用所学
【例】计算:
(1)(103)5;(2)(b 3)4;(3)(x n )3;(4)-(x 7)7.
【思路点拨】要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.
【教师活动】启发学生共同完成例题.
【学生活动】在教师启发下,完成例题的问题:并进一步理解幂的乘方法则: 解:(1)(103)5=10
3×5=1015; (3)(x n )3=x n ×3=x 3n ; (2)(b 3)4=b 3×4=b 12; (4)-(x 7)7=-x 7×7=-x 49
. 三、随堂练习,巩固练习
课本P143练习.
【探研时空】
计算:-x 2·x 2·(x 2)3+x 10

【教师活动】巡视、关注中等、中下的学生,媒体显示练习题.
【学生活动】书面练习、板演.
四、课堂总结,发展潜能
1.幂的乘方(a m )n =a mn (m ,n 都是正整数)使用范围:幂的乘方.方法:底数不变,指数相乘.
2.知识拓展:这里的底数、指数可以是数,可以是字母,•也可以是单项式或多项式.
3.幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,•一个是“指数相加”.
五、布置作业,专题突破
课本习题
板书设计。

相关文档
最新文档