海淀区2013-2014学年初三第一学期期中考试数学试卷

合集下载

北京市海淀区2013届九年级上学期期末数学试题及答案 (2)

北京市海淀区2013届九年级上学期期末数学试题及答案 (2)

海淀区九年级第一学期上册期末考试试题数 学 试 卷(分数:120分 时间:120分钟) 2013.01班级 姓名 学号 成绩 一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.x 的取值范围是 A .12x ≠B .x ≥12C .x ≤12D .x ≠-122.将抛物线2y x =平移得到抛物线25y x =+,下列叙述正确的是 A.向上平移5个单位 B.向下平移5个单位C.向左平移5个单位D.向右平移5个单位3.如图,AC 与BD 相交于点E ,AD ∥BC .若:1:2AE EC =,则:AED CEB S S ∆∆为A.2:1B. 1:2C.3:1D. 1:44.下列一元二次方程中,有两个相等的实数根的是 A .2210x x -+=B . 2240x x +-=C .2250x x --=D .2240x x ++=5.如图,⊙O 是△ABC 的外接圆,∠A =40°,则∠OCB 等于 A .60°B .50°C .40°D .30°6.如图,平面直角坐标系中的二次函数图象所对应的函数解析式可能为 A .212y x =- B .21(1)2y x =-+ C .1)1(212---=x y D . 21(1)12y x =-+-7.已知0a <2a 可化简为A. a -B. aC. 3a -D. 3a8. 如图,以(0,1)G 为圆心,半径为2的圆与x 轴交于A 、B 两点,与y 轴交于C 、D 两点,点E 为⊙G 上一动点,CF AE⊥于F .当点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长为 A .BCD二、填空题(本题共16分,每小题4分) 9= .10. 若二次函数223y x =-的图象上有两个点(3,)A m -、(2,)B n ,则m n (填“<”或“=”或“>”).11.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 _________cm. 12.小聪用描点法画出了函数y =F ,如图所示.结合旋转的知识,他尝试着将图象F 绕原点逆时针旋转90︒得到图象1F ,再将图象1F 绕原点逆时针旋转90︒得到图象2F ,如此继续下去,得到图象n F .在尝试的过程中,他发现点P (4,2)--在图象 上(写出一个正确的即可);若点P (a ,b )在图象127F 上,则a = (用含b 的代数式表示) . 三、解答题(本题共30分,每小题5分) 13.计算:2011()(3)3π--+--14. 解方程:2280x x +-= .(0,1)I15.已知3a b +=,求代数式22285a b a b -+++的值.16.如图,正方形网格中,△ABC 的顶点及点O 在格点上. (1)画出与△ABC 关于点O 对称的△111A B C ;(2)画出一个以点O 为位似中心的△222A B C ,使得△222A B C 与△111A B C 的相似比为2.17.如图,在△ABC 与△ADE 中,C E ∠=∠,12∠=∠,AC AD =2AB ==6,求AE 的长.18.如图,二次函数223y x x =-++的图象与x 轴交于A 、B 两点,与y 轴交于点 C ,顶点为D , 求△BCD 的面积.四、解答题(本题共20分,每小题5分)19.已知关于x 的方程04332=++mx x 有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为符合条件的最大整数,求此时方程的根.20. 已知:二次函数2y ax bx c =++(0)a ≠中的x 和y 满足下表:(1) 可求得m 的值为 ; (2) 求出这个二次函数的解析式;(3) 当03x <<时,则y 的取值范围为 .21.图中是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度为多少米?22.如图,AB 为⊙O 的直径,BC 切⊙O 于点B ,AC 交⊙O 于点D ,E 为BC 中点. 求证:(1)DE 为⊙O 的切线;(2)延长ED 交BA 的延长线于F ,若DF =4,AF =2,求BC 的长.五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)23. 小明利用等距平行线解决了二等分线段的问题.作法:(1)在e 上任取一点C ,以点C 为圆心,AB 长为半径画弧交c 于点D ,交d 于点E ; (2)以点A 为圆心,CE 长为半径画弧交AB 于点M ; ∴点M 为线段AB 的二等分点.图1解决下列问题:(尺规作图,保留作图痕迹)(1)仿照小明的作法,在图2中作出线段AB 的三等分点;图2(2)点P 是∠AOB 内部一点,过点P 作PM ⊥OA 于M ,PN ⊥OB 于N ,请找出一个满足下列条件的点P . (可以利用图1中的等距平行线)①在图3中作出点P ,使得PM PN =; ②在图4中作出点P ,使得2PM PN =.图3 图424.抛物线2(3)3(0)y mx m x m =+-->与x 轴交于A 、B 两点,且点A 在点B 的左侧,与y 轴交于点C ,OB=OC . (1)求这条抛物线的解析式;(2)若点P 1(,)x b 与点Q 2(,)x b 在(1)中的抛物线上,且12x x <,PQ=n . ①求2124263x x n n -++的值;② 将抛物线在PQ 下方的部分沿PQ 翻折,抛物线的其它部分保持不变,得到一个新图象.当这个新图象与x 轴恰好只有两个公共点时,b 的取值范围是 .25.如图1,两个等腰直角三角板ABC 和DEF 有一条边在同一条直线l 上,2DE =, 1AB =.将直线EB 绕点E 逆时针旋转45︒,交直线AD 于点M .将图1中的三角板ABC 沿直线l 向右平移,设C 、E 两点间的距离为k .图1 图2 图3解答问题:(1)①当点C 与点F 重合时,如图2所示,可得AMDM的值为 ; ②在平移过程中,AMDM的值为 (用含k 的代数式表示); (2)将图2中的三角板ABC 绕点C 逆时针旋转,原题中的其他条件保持不变.当点A 落在线段DF 上时,如图3所示,请补全图形,计算AMDM的值; (3)将图1中的三角板ABC 绕点C 逆时针旋转α度,0α<≤90,原题中的其他条件保持不变.计算AMDM的值(用含k 的代数式表示).海淀区九年级第一学期期末练习数学试卷答案及评分参考二、填空题(本题共16分,每小题4分)13. 计算:2011()(3)3π--+--解:原式191+-- …………………………………………4分=7 …………………………………………5分 14. 解方程:2280x x +-= .解法一:(4)(2)0x x +-=. …………………………………………3分40x +=或20x -=.∴ 124,2x x =-=. …………………………………………5分解法二: 1,2,8a b c ===-, …………………………………1分2241(8)360∆=-⨯⨯-=>. ……………………………………2分∴ x =. …………………………………………3分∴ 124,2x x =-=. …………………………………………5分15.解法一:∵3a b +=,∴ 22285a b a b -+++=()()285a b a b a b +-+++ ………………………2分 =3()285a b a b -+++ ………………………3分 =5()5a b ++ ………………………4分 =535⨯+=20. ………………………5分解法二:∵3a b +=,∴3b a =-. .…………………………1分原式= 22(3)28(3)5a a a a --++-+.…………………………2分=22(96)22485a a a a a --+++-+ .…………………………3分 =582426922+-++-+-a a a a a .…………………………4分=20. ………………………5分16.例如:∴△111A B C 、△222A B C 为所求.(注:第(1)问2分;第(2)问3分,画出一个正确的即可.) 17. 解:∵12∠=∠,∴CAB EAD ∠=∠. ………………………1分 ∵C E ∠=∠,∴△CAB ∽△EAD . ………………………3分∴AB ACAD AE=. ………………………4分 ∵AC AD =2AB ==6, ∴=3AB . ∴36=6AE. ∴12AE =. ………………………5分18. 解法一:依题意,可得223y x x =-++=214x --+(). ∴顶点(1,4)D . ……………1分 令0y =,可得3x =或1x =-.∴A (1,0)-、B (3,0). (2)分令0x =,可得3y =.∴(0,3)C . ……………3分∴直线CD 的解析式为3y x =+. 设直线CD 交x 轴于E . ∴(3,0)E -.∴6BE =. …….………….…………4分 ∴3BCD BED BCE S S S =-= .∴△BCD 的面积为3. …….………….…………5分解法二:同解法一,可得A (1,0)-、B (3,0)、(0,3)C 、(1,4)D . ……………3分∴直线BC 的解析式为3y x =-+. 过点D 作DE ∥BC 交x 轴于E ,连接CE . ∴设过D 、E 两点的直线的解析式为y x b =-+.∵(1,4)D ,∴直线DE 的解析式为5y x =-+. ∴(5,0)E .∴2BE =. ….…………4分 ∵DE ∥BC , ∴132BCD BCE S S BE OC ==⨯⨯= . ∴△BCD 的面积为3. . .………….………………5分 四、解答题(本题共20分,每小题5分)19.解:(1)∵关于x 的方程04332=++mx x 有两个不相等的实数根, ∴∆930m =->. …………………………1分 ∴3m <. .…………………………2分 (2)∵m 为符合条件的最大整数,∴2m =. .…………………………3分∴23302x x ++=. 2223333()()222x x ++=-+.233()24x +=.2331-=x ,2332--=x . ∴方程的根为2331-=x ,2332--=x . .…………………………5分 20.解:(1)m 的值为3; .…………………………1分(2) ∵二次函数的图象经过点(1,0),(3,0),∴设二次函数的解析式为(1)(3)y a x x =--. .…………………………2分 ∵图象经过点(0,3),∴1a =. .…………………………3分∴这个二次函数的解析式为243y x x =-+. .…………………………4分 (3) 当03x <<时,则y 的取值范围为 1-≤3<y . .…………………5分 21. 解:如图所示,建立平面直角坐标系.设二次函数的解析式为2y ax =(0)a ≠. .…………………1分 ∵图象经过点(2,2)-, .…………………2分∴24a -=,12a =-. ∴212y x =-. .…………………3分当3y =-时,x = .…………………4分答:当水面高度下降1米时,水面宽度为. .…………………5分 22.(1)如图,连接,OD BD . ………………1分∵在⊙O 中,OD OB =,∴∠1=∠2.∵AB 是⊙O 的直径, ∴90ADB CDB ∠=∠=︒. ∵E 为BC 中点, ∴12ED BC EB ==. ∴∠3=∠4.∵BC 切⊙O 于点B , ∴90EBA ∠=︒.∴132490∠+∠=∠+∠=︒, 即90ODE ∠=︒.∴OD ⊥DE .∵点D 在⊙O 上,∴DE 是⊙O 的切线. ……………2分(2)∵OD ⊥DE ,∴90FDO ∠=︒.设OA OD r ==.∵222OF FD OD =+, DF =4,AF =2,∴222(2)4r r +=+.解得3r =. ……………………………………3分∴3,8OA OD FB ===.∵,90F F FDO FBE ∠=∠∠=∠=︒,∴△FDO ∽△FBE . ……………………………………4分 ∴FD OD FB BE=. ∴ 6.BE = ∵E 为BC 中点,∴212.BC BE ==……………………………………5分五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)23. 解:(1)……………………2分(注:直接等分不给分,在等距平行线上有正确痕迹的给分,作出一个给1分.)(2)① ②……………………4分 ……………………7分24.解:(1)解法一:∵抛物线2(3)3(0)y mx m x m =+-->与y 轴交于点C ,∴(0,3)C -. ……………………1分∵抛物线与x 轴交于A 、B 两点,OB=OC ,∴B (3,0)或B (-3,0).∵点A 在点B 的左侧,0m >,∴抛物线经过点B (3,0). ……………………2分∴093(3)3m m =+--.∴1m =.∴抛物线的解析式为322--=x x y . ……………………3分 解法二:令0y =,∴2(3)3=0mx m x +--.∴(1)(3)0x mx +-=. ∴31,=x x m=-. 0m > ,点A 在点B 的左侧, ∴3(1,0),(,0)A B m-. ……………………1分 令0x =,可得3y =-.∴(0,3)C -.∴3OC =. ……………………2分OB OC = , ∴33m=. ∴1m =. ∴322--=x x y . ……………………3分(2)①由抛物线322--=x x y 可知对称轴为1x =. ……………4分 ∵点P 1(,)x b 与点Q 2(,)x b 在这条抛物线上,且12x x <,PQ n =, ∴121,122n n x x =-=+. ……………………5分 ∴1222,22x n x n =-=+.∴原式=736)2()2(2=+++--n n n n . ……………………6分 ②42b -<<-或0b =. ……………………8分(注:答对一部分给1分.)25.解:(1)①1;……………………1分②2k ;……………………2分 (2)解:连接AE .∵ABC DEF ∆∆,均为等腰直角三角形,2,1DE AB ==, ∴2,1,90,4545.EF BC DEF ==∠=︒∠=∠=︒∴90.DF AC EFB ==∠=︒∴2,DF AC AD ==∴点A 为CD 的中点. ……………………3分∴,.EA DF EA DEF ⊥∠平分∴90,45MAE AEF ∠=︒∠=︒,AE∵45,BEM ∠=︒∴1+2=3+2=45∠∠∠∠︒.∴1= 3.∠∠∴AEM ∆∽FEB ∆. ∴.AM AE BF EF= ……………………4分∴AM =∴22DM AD AM =-==∴1AM DM=. ……………………5分 (3) 过B 作BE 的垂线交直线EM 于点G ,连接AG 、BG . ∴90EBG ∠=︒.∵45BEM ∠=︒,∴45EGB BEM ∠=∠=︒.∴BE BG =.∵△ABC 为等腰直角三角形,∴90.BA BC ABC =∠=︒,∴12∠=∠.∴△ABG ≌△CBE . ……………………6分∴34AG EC k ==∠=∠,.∵3+65+4=45∠∠=∠∠︒,∴65∠=∠.∴AG ∥DE .∴△AGM ∽△DEM . ∴.2AM AG k DM DE == ……………………7分 (注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分.)。

北京市海淀区2013年中考一模数学试卷含答案

北京市海淀区2013年中考一模数学试卷含答案

海淀区九年级第二学期期中练习含答案数 学2013.5 一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2的相反数是( )A. 2B.2-C.21 D.21- 2.十八大开幕当天,网站关于此信息的总浏览量达5.5亿次.将5.5亿用科学记数法表示为A. 8105.5⨯B. 81055⨯C. 755010⨯ D. 10100.55⨯3.如图是某几何体的三视图,则这个几何体是( )A. 圆柱B. 正方体C. 球D. 圆锥4.一个多边形的外角和是内角和的一半,则这个多边形的边数为( )A. 5B.6C. 7D. 85.小林在元宵节煮了20个元宵,其中10个黑芝麻馅,6个山楂馅,4个红豆馅(除馅料不同外,其它都相同).煮好后小明随意吃一个,吃到红豆馅元宵的概率是( )A .12 B .13 C . 15D .25 6.一副三角板如图放置,若∠1=90︒,则∠2的度数为( )A .45°B .60°C .75°D .90°7.在篮球比赛中,某队员连续10场比赛中每场的得分情况如下表所示:则这10场比赛中他得分的中位数和众数分别是( )A.10, 4B.10,7C.7,13D. 13,48.如图,△ABC 是等边三角形,6AB =厘米,点P 从点B 出发,沿BC 以每秒1厘米的速度运动到点C 停止;同时点M 从点B 出发,沿折线BA -AC 以每秒3厘米的速度运动到点C 停止.如果其中一个点停止运动,则另一个点也停止运动.设点P 的运动时间为t 秒,P 、M 两点之间的距离为y 厘米,则表示y 与t 的函数关系的图象大致是( )A. B. C. D.二、填空题(本题共16分,每小题4分)9. 分解因式:22369a b ab b -+= .10.若关于x 的一元二次方程230x x m -+=有实数根,则m 的取值范围是.11.如图,将正方形纸片对折,折痕为EF .展开后继续折叠,使点A 落在EF 上,折痕为GB ,则ABG ∠的正切值是 .12. 如图1所示,圆上均匀分布着11个点12311,,,,A A A A .从A 1起每隔k 个点顺次连接,当再次与点A 1连接时,我们把所形成的图形称为“k +1阶正十一角星”,其中18k ≤≤(k 为正整数).例如,图2是“2阶正十一角星”,那么1211A A A ∠+∠++∠= °;当1211A A A ∠+∠++∠= 900°时,k = .图1 图2三、解答题(本题共30分,每小题5分)130112cos301)()8-︒+- .EDCBA14.解不等式组:20,11.2x x x +>⎧⎪⎨-+≥⎪⎩15.先化简,再求值:4212112--÷⎪⎭⎫ ⎝⎛-+x x x ,其中3=x .16.已知:如图,点A ,D ,C 在同一直线上,AB ∥EC ,AC CE =,.B EDC ∠=∠求证:.BC DE =17. 如图,在平面直角坐标系xOy 中,反比例函数xy 2-=的图象与一次函数k kx y -=的图象的一个交点为(1,)A n -. (1)求这个一次函数的解析式;(2)若P 是x 轴上一点,且满足45APO ∠=︒,直接写出点P 的坐标.18. 列方程(组)解应用题:雅安地震灾情牵动全国人民的心.某厂计划加工1500顶帐篷支援灾区,加工了300顶帐篷后,由于救灾需要,将工作效率提高到原计划的2倍,结果提前4天完成了任务.求原计划每天加工多少顶帐篷.四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,DAB ∠=CDB ∠=90︒,ABD ∠=45︒,∠DCA =30︒,AB =.求AE 的长和△ADE的面积.=.以AB为直径的⊙O交BC于点D,过点D作20.已知:如图,在△ABC中,AB ACDE⊥AC于点E.(1)求证:DE与⊙O相切;AB=,(2)延长DE交BA的延长线于点F.若6sin B求线段AF的长.21. 下图为北京某天空气质量指数实时查询的一个结果.为了解今年北京市春节假期空气质量情况,小静查到下表所示的某天15个监测子站的空气质量指数;小博从环境监测网随机抽取了某天部分监测点的空气质量情况,并绘制了以下两个统计图.解答下列问题:(1)小静查到的统计表中重度污染出现的频率为;(2)计算小博抽取的监测点的个数,并补全条形统计图;(3)据统计数据显示,春节期间燃放烟花爆竹成为空气污染的一个重要原因. 市民在今年春节期间自觉减少了购买和燃放烟花爆竹的数量,全市销售烟花爆竹37万余箱,比去年减少35%.求今年比去年同期少销售多少万箱烟花爆竹.(结果保留整数)22.问题:如图1,a、b、c、d是同一平面内的一组等距平行线(相邻平行线间的距离为1).画出一个正方形ABCD,使它的顶点A、B、C、D分别在直线a、b、d、c上,并计算它的边长.图1 图2小明的思考过程:的正方形网格,得到了辅助正方形EFGH,如他利用图1中的等距平行线构造了33图2所示, 再分别找到它的四条边的三等分点A 、B 、C 、D ,就可以画出一个满足题目要求的正方形.请回答:图2中正方形ABCD 的边长为 . 请参考小明的方法,解决下列问题:(1)请在图3的菱形网格(最小的菱形有一个内角为60︒,边长为1)中,画出一个等边△ABC ,使它的顶点A 、B 、C 落在格点上,且分别在直线a 、b 、c 上;(3)如图4,1l 、2l 、3l 是同一平面内的三条平行线,1l 、2l 之间的距离是215,2l 、3l 之间的距离是2110,等边△ABC 的三个顶点分别在1l 、2l 、3l 上,直接写出△ABC 的边长.图3 图4五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy 中,抛物线22y mx mx n =-+与x 轴交于A 、B 两点,点A 的坐标为(2,0)-. (1)求B 点坐标; (2)直线y =12x +4m +n 经过点B . ①求直线和抛物线的解析式;②点P 在抛物线上,过点P 作y 轴的垂线l ,垂足为(0,)D d .将抛物线在直线l 上方的部分沿直线l 翻折,图象的其余部分保持不变,得到一个新图象G .请结合图象回答:当图象G 与直线y =12x +4m +n 只有两个公共点时,d 的取值范围是 .24.在△ABC 中,∠ACB =90︒.经过点B 的直线l (l 不与直线AB 重合)与直线BC 的夹角等于ABC ∠,分别过点C 、点A 作直线l 的垂线,垂足分别为点D 、点E .(1)若45ABC ∠=︒,CD =1(如图),则AE 的长为 ;(2)写出线段AE 、CD 之间的数量关系,并加以证明; (3)若直线CE 、AB 交于点F , 56CF EF =,CD =4,求BD 的长.25. 在平面直角坐标系xOy 中,抛物线222y x mx m m =-++的顶点为C . (1) 求点C 的坐标(用含m 的代数式表示);(2) 直线2y x =+与抛物线交于A 、B 两点,点A 在抛物线的对称轴左侧.② 若P 为直线OC 上一动点,求△APB 的面积;②抛物线的对称轴与直线AB 交于点M ,作点B 关于直线MC 的对称点'B . 以M 为圆心,MC 为半径的圆上存在一点Q ,使得'2QB +的值最小,则这个最小值为 .EDCBA2013海淀中考一模数学参考答案数学试卷答案及评分参考一、选择题(本题共32分,每小题4分)三、解答题(本题共30分,每小题5分) 130112cos301)()8-︒+- .解:原式218=+- ………………………4分 7=.………………………5分解:由①得 2x >-.………………………2分 由②得 1x ≤.………………………4分则不等式组的解集为12≤<-x .………………………5分 15.先化简,再求值:4212112--÷⎪⎭⎫ ⎝⎛-+x x x ,其中3=x . 解:原式2212421x x x x -+-=⋅-- ………………………2分 )1)(1()2(221+--⋅--=x x x x x ………………………3分 12+=x . ………………………4分 当3=x 时,原式=2112=+x .………………………5分16.证明:AB ∥EC ,∴.A DCE ∠=∠ ………………………1分 在△ABC 和△CDE 中,,,,B EDC A DCE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CDE .………………………4分 ∴.BC DE = ………………………5分17.解:(1)∵ 点A (1,)n -在反比例函数xy 2-=的图象上, ∴ 2n =. ………………………1分 ∴ 点A 的坐标为12-(,). ∵ 点A 在一次函数y kx k =-的图象上, ∴2k k =--.∴1-=k .………………………2分∴ 一次函数的解析式为1+-=x y .………………………3分 (2)点P 的坐标为(-3,0)或(1,0).………………………5分 (写对一个给1分)18.解:设原计划每天加工x 顶帐篷. ………………………1分1500300150030042x x---=.………………………3分 解得 150x =. ………………………4分 经检验,150x =是原方程的解,且符合题意. 答:原计划每天加工150顶帐篷. ………………………5分 四、解答题(本题共20分,每小题5分)19. 解:过点A 作AF ⊥BD 于F . ∵∠CDB =90°,∠1=30°,∴∠2=∠3=60°. ………………………1分 在△AFB 中,∠AFB =90°.∵∠4=45°,AB =,∴AF =BF ………………………2分 在△AFE 中,∠AFE =90°.∴1,2EF AE ==.………………………3分 在△ABD 中,∠DAB =90°.∴DB =∴1DE DB BF EF =--=-.………………………4分∴111)22ADE S DE AF ∆=⋅==………………………5分 20.(1)证明:连接OD . ………………………1分∵AB =AC , ∴B C ∠=∠. 又∵OB OD =, ∴1B ∠=∠.∴1C ∠=∠.∴OD ∥AC .∵DE ⊥AC 于E ,∴DE ⊥OD .∵点D 在⊙O 上,∴DE 与⊙O 相切. ………………………2分(2)解:连接AD .∵AB 为⊙O 的直径,∴∠ADB =90°.∵AB =6,sin B =55, ∴sin AD AB B =⋅=556.………………3分 ∵123290∠+∠=∠+∠=︒,∴13∠=∠.∴ 3.B ∠=∠在△AED 中,∠AED =90°.∵sin 3AE AD ∠==,∴65AE AD ===. ………………………4分 又∵OD ∥AE ,∴△FAE ∽△FOD . ∴FA AE FO OD=. ∵6AB =,∴3OD AO ==. ∴235FA FA =+. ∴2AF =. ………………………5分21.(1)13.………………………1分 (2)∵(3318)80%30++÷=,∴被小博同学抽取的监测点个数为30个. ………………………2分………………………3分(3)设去年同期销售x 万箱烟花爆竹.(135%)37x -=. 解得125613x =.………………………4分 ∴1212563719201313-=≈. 答:今年比去年同期少销售约20万箱烟花爆竹. ……………………… 5分22.(1………………………2分(2)①如图:(答案不唯一) ………………………4分………………………5分 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)依题意,可得抛物线的对称轴为212m x m-=-=.………………………1分 ∵抛物线与x 轴交于A 、B 两点,点A 的坐标为(2,0)-,∴点B 的坐标为 (4,0).………………………2分(2)∵点B 在直线 y =12x +4m +n 上, ∴024m n =++①.∵点A 在二次函数2-2y mx mx n =+的图象上,∴044m m n =++②. ………………………3分 由①、②可得12m =,4n =-. ………………………4分 ∴ 抛物线的解析式为y =2142x x --,直线的解析式为y =122x -. ……………5分 (3)-502d <<. ………………………7分 24.(1)2AE =.………………………1分(2)线段AE 、CD 之间的数量关系为2AE CD =.………………………2分 证明:如图1,延长AC 与直线l 交于点G .依题意,可得∠1=∠2.∵∠ACB =90︒,∴∠3=∠4.∴BA BG =.∴CA =CG .………………………3分∵AE ⊥l ,CD ⊥l ,∴CD ∥AE .∴△GCD ∽△GAE .∴ 12CD GC AE GA ==.∴2AE CD =.………………………4分(3)解:当点F 在线段AB 上时,如图2,过点C 作CG ∥l 交AB 于点H ,交AE 于点G .∴∠2=∠HCB .∵∠1=∠2,∴∠1=∠HCB .∴CH BH =.∵∠ACB =90︒,∴∠3+∠1=∠HCB +∠4 =90︒.∴∠3=∠4.∴CH AH BH ==.∵CG ∥l ,∴△FCH ∽△FEB .∴ 56CFCHEF EB ==.设5,6CH x BE x ==,则10AB x =.∴在△AEB 中,∠AEB =90︒,8AE x =.由(2)得,2AE CD =.∵4CD =,∴8AE =.∴1x =.∴10,6,5AB BE CH ===.∵CG ∥l ,∴△AGH ∽△AEB . ∴12HGAHBE AB ==.图3图2∴3HG =.………………………5分∴8CG CH HG =+=.∵CG ∥l ,CD ∥AE ,∴四边形CDEG 为平行四边形.∴8DE CG ==.∴2BD DE BE =-=.……………………6分当点F 在线段BA 的延长线上时,如图3,同理可得5CH =,3GH =,6BE =.∴DE =2CG CH HG =-=.∴ 8BD DE BE =+=.∴2BD =或8.……………………7分25.解:(1)()2222y x mx m m x m m =-++=-+ ,……………………1分 ∴顶点坐标为C m ,m ().……………………2分(2)①2y x =+ 与抛物线222y x mx m m =-++交于A 、B 两点, ∴2222x x mx m m +=-++.解方程,得121,2x m x m =-=+.……………………4分A 点在点B 的左侧,∴(1,1),(2,4).A m m B m m -+++∴AB =……………………5分直线OC 的解析式为y x =,直线AB 的解析式为2y x =+,∴AB ∥OC ,两直线AB 、OC 之间距离h =∴11322APB S AB h =⋅=⨯= .………………………6分……………………8分(注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分)。

(教委直发)WORD海淀区2013-2014初三第一学期期末练习含答案(终稿1.14)

(教委直发)WORD海淀区2013-2014初三第一学期期末练习含答案(终稿1.14)

海淀区九年级第一学期期末测评数 学 试 卷(分数:120分 时间:120分钟) 2014.1班级 姓名 学号 成绩 试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.A .3B .-3C .3±D .62.如图,将一张矩形纸片沿对角线剪开得到两个直角三角形纸片,将这两个直角三角形纸片通过图形变换构成以下四个图形,这四个图形中是中心对称.....图形的是ABC D3.如图,在△ABC 中,点D 、E 分别为边AB 、AC 上的点,且DE ∥BC ,若5AD =,10BD =,3AE =,则CE 的长为A .3B .6C .9D .124.二次函数22+1y x =-的图象如图所示,将其绕坐标原点O 旋转180 ,则旋转后的抛物线的解析式为A .221y x =--B .221y x =+C .22y x =D .221y x =-E DCBA矩形纸片22+1y x =-5.在平面直角坐标系xOy 中,以点(3,4)为圆心,4为半径的圆与y 轴所在直线的位置关系是A .相离B .相切C .相交D .无法确定6.若关于x 的方程2(1)1x k +=-没有实数根,则k 的取值范围是A .1k ≤B . 1k <C .1k ≥D .1k > 7. 如图,AB 是⊙O 的切线, B 为切点,AO 的延长线交⊙O 于C 点,连接BC ,若30A ∠=,AB =AC 等于 A. 4 B.6C.D.8.如图,Rt △ABC 中,AC=BC =2,正方形CDEF 的顶点D 、F 分别在AC 、BC 边上, C 、D 两点不重合,设CD 的长度为x ,△ABC 与正方形CDE F 重叠部分的面积为y ,则下列图象中能表示y 与x 之间的函数关系的是A B C D二、填空题(本题共16分,每小题4分)9.比较大小:(填 “>”、“=”或“<”).10.如图,A B C 、、是⊙O 上的点,若100AOB ∠= , 则ACB ∠=___________度.11.已知点P (-1,m )在二次函数21y x =-的图象上,则m 的值为 ;平移此二次函数的图象,使点P 与坐标原点重合,则平移后的函数图象所对应的解析式为 .12.在△ABC 中,E F 、分别是AC BC 、边上的点,1231n P P P P - 、、、、是AB 边的n 等分点,1CE AC n=,1CF BC n=.如图1,若40B ∠= ,AB BC =,则∠1EPF +∠2EP F +∠3EP F + +∠-1n EP F = 度;如图2,若A α∠=,B β∠=,则∠1EPF +∠2EP F +∠3EP F + +∠-1n EP F = (用含α,β的式子表示).三、解答题(本题共30分,每小题5分) 130(2013)|+-+-.14.解方程:(3)2(3)x x x -=-.15.如图,在△ABC 和△CDE 中,90B D ∠=∠= ,C 为线段BD 上一点,且AC CE ⊥. 求证:AB BC CDDE=.16.已知抛物线2y x bx c =++经过(0,-1),(3,2)两点. 求它的解析式及顶点坐标.17.如图,在四边形ABCD 中,AD ∥BC 且BD DC =,E 是BC 上一点,且CE DA =. 求证:AB ED =.EDCBAEDCBA图218.若关于x 的方程 22+10x x k +-=有实数根. (1)求k 的取值范围;(2)当k 取得最大整数值时,求此时方程的根.四、解答题(本题共20分,每小题5分)19.如图,用长为20米的篱笆恰好围成一个扇形花坛,且扇形花坛的圆心角小于180°,设扇形花坛的半径为r 米,面积为S 平方米.(注:π的近似值取3) (1)求出S 与r 的函数关系式,并写出自变量r 的取值范围;(2)当半径r 为何值时,扇形花坛的面积最大,并求面积的最大值.20.如图,AB 为 O 的直径,射线AP 交 O 于C 点,∠PCO 的平分线交 O 于D 点,过点D 作DE AP ⊥交AP 于E 点.(1)求证:DE 为 O 的切线;(2)若3DE =,8AC =,求直径AB 的长.21.已知二次函数22y x m =+.(1)若点1(2,)y -与2(3,)y 在此二次函数的图象上,则1y 2y (填 “>”、“=”或“<”);(2)如图,此二次函数的图象经过点(04)-,,正方形ABCD 的顶点C 、D 在x 轴上, A 、B 恰好在二次函数的图象上,求图中阴影部分的面积之和.PABC DEO22.晓东在解一元二次方程时,发现有这样一种解法: 如:解方程(4)6x x +=.解:原方程可变形,得[(2)2][(2)2]6x x +-++=.22(2)26x +-=, 22(2)62x +=+, 2(2)10x +=.直接开平方并整理,得1222x x =-+=-.我们称晓东这种解法为“平均数法”.(1)下面是晓东用“平均数法”解方程(2)(6)5x x ++=时写的解题过程. 解:原方程可变形,得[() ][() ]5x x +-++= .22() 5x +-= , 22()5x +=+ .直接开平方并整理,得 12,x x ==☆¤.上述过程中的“ ”,“ ” ,“☆”,“¤”表示的数分别为_____,_____,_____,_____. (2)请用“平均数法”解方程:(3)(1)5x x -+=.五、解答题(本题共22分,第23、24小题各7分,第25小题8分) 23.已知抛物线2(1)21y m x mx m =--++(1m >). (1)求抛物线与x 轴的交点坐标;(2)若抛物线与x 轴的两个交点之间的距离为2,求m 的值;(3)若一次函数y kx k =-的图象与抛物线始终只有一个公共点,求一次函数的解析式.24.已知四边形ABCD 和四边形CEFG 都是正方形 ,且AB>CE . (1)如图1,连接BG 、DE .求证:BG =DE ;(2)如图2,如果正方形ABCDCEFG 绕着点C 旋转到某一位置时恰好使得CG //BD ,BG=BD . ①求BDE ∠的度数;②请直接写出正方形CEFG 的边长的值.25.如图1,已知二次函数232y x bx b =++的图象与x 轴交于A 、B 两点(B 在A 的左侧),顶点为C , 点D (1,m )在此二次函数图象的对称轴上,过点D 作y 轴的垂线,交对称轴右侧的抛物线于E 点.(1)求此二次函数的解析式和点C 的坐标;(2)当点D 的坐标为(1,1)时,连接BD 、BE .求证:BE 平分ABD ∠; (3)点G 在抛物线的对称轴上且位于第一象限,若以A 、C 、G 为顶点的三角形与以G 、D 、E 为顶点的三角形相似,求点E 的横坐标.GF EDCBA图2图1ABCDEFG图1备用图1 备用图2海淀区九年级第一学期期末练习2014.1数学试卷答案及评分参考阅卷须知:1. 为便于阅卷,本试卷答案中有关解答题的推导步骤写的较为详细,阅卷时,只要考生将主要过程正确写出即可.2. 若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3. 评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)9.<; 10.130; 11.0, 22y x x=-(每空2分); 12.70,180αβ-- (每空2分). 三、解答题(本题共30分,每小题5分) 13.(本小题满分5分)0(2013)|-+- 1=+ ………………………………………………………………4分1=. …………………………………………………………………………5分14.(本小题满分5分)解:原方程可化为(3)2(3)0x x x -+-=. ……………………………………………1分(3)(2)0x x -+=,30x -=或20x +=, ……………………………………………………………4分 ∴123 2x ,x ==-.…………………………………………………………………5分15.(本小题满分5分)证明:∵90B ∠= ,∴90A ACB ∠+∠= .∵C 为线段BD 上一点,且AC CE ⊥, ∴90ACB ECD ∠+∠=.∴A ECD ∠=∠ . …………………………………………………………………2分 ∵B D ∠=∠=90 , …………………………………………………………………3分 ∴△ABC ∽△CDE .………………………………………………………………4分∴AB BC CDDE=.………………………………………………………………………5分ED CB A16.(本小题满分5分)解:∵抛物线2y x bx c =++过(0,-1),(3,2)两点,∴1,293c b c.-=⎧⎨=++⎩解得,12c ,b .=-⎧⎨=-⎩ ………………………………………………………………………2分∴抛物线的解析式为221y x x =--. ……………………………………………3分 ∵2221(1)2y x x x =--=--,……………………………………………………4分 ∴抛物线的顶点坐标为(1,-2). ……………………………………………5分17.(本小题满分5分)证明:∵AD ∥BC ,∴ADB DBC ∠=∠. ………………………………………………………………1分 ∵BD CD =, ∴DBC C ∠=∠.……………………………………………………………………2分 ∴ADB C ∠=∠. …………………………………………………………………3分 在△ABD 与△EDC 中, ,,,AD EC ADB C BD DC =∠=∠=⎧⎪⎨⎪⎩∴△ABD ≌△EDC .………………………………………………………………4分 ∴AB ED =. ……………………………………………………………………5分18.(本小题满分5分)解:(1)∵关于x 的方程 22+10x x k +-=有实数根,∴44(1)0k ∆=--≥. ………………………………………………………1分解不等式得, 2k ≤.………………………………………………………2分 (2)由(1)可知,2k ≤,∴k 的最大整数值为2.………………………………………………………3分 此时原方程为2210x x ++=. ………………………………………………4分 解得, 121x x ==-. …………………………………………………………5分E DCB A四、解答题(本题共20分,每小题5分) 19.(本小题满分5分)解:(1)设扇形的弧长为l 米.由题意可知,220l r +=. ∴202l r =-.∴21(202)+102S r r r r =-=-. …………………………………………………2分 其中410r <<.…………………………………………………………………3分 (2)∵22+10(5)25S r r r =-=--+.∴当5r =时,25S =最大值.……………………………………………………5分20.(本小题满分5分)解:(1)证明:连接OD .∵OC OD =, ∴13∠=∠.∵CD 平分∠PCO , ∴1=2∠∠.∴2=3∠∠.……………………………1分 ∵DE AP ⊥,∴2=90EDC ∠+∠ . ∴3=90EDC ∠+∠ . 即=90ODE ∠ . ∴OD DE ⊥.∴DE 为 O 的切线. …………………………………………………………2分(2) 过点O 作OF AP ⊥于F .由垂径定理得,AF CF =. ∵8AC =,∴4AF =.………………………………………………………………………3分 ∵OD DE ⊥, DE AP ⊥, ∴四边形ODEF 为矩形. ∴OF DE =. ∵3DE =,∴3OF =.………………………………………………………………………4分在Rt △AOF 中,222224325OA OF AF =+=+=. ∴5OA =.∴210AB OA ==.………………………………………………………………5分21.(本小题满分5分)解:(1)1y < 2y .……………………………………………………………………2分 (2)∵二次函数22y x m =+的图象经过点(0,-4),∴m = -4. ……………………………………………………………………3分∵四边形ABCD 为正方形,又∵抛物线和正方形都是轴对称图形,且y 轴为它们的公共对称轴, ∴OD=OC ,=BCOE S S 阴影矩形. 设点B 的坐标为(n ,2n )(n >0), ∵点B 在二次函数224y x =-的图象上, ∴2224n n =-.解得,122,1n n ==-(舍负). …………………………………………4分 ∴点B 的坐标为(2,4).∴=BCOE S S 阴影矩形=2⨯4=8.…………………………………………………5分22. (本小题满分5分)(1) 4 , 2 , -1 , -7 . (最后两空可交换顺序) ………2分 (2)(3)(1)5x x -+=.原方程可变形,得 [(1)2][(1)2]x x ---+=. ……………………………3分22(1)25x --=, 22(1)52x -=+,2(1)9x -=. ……………………………………………………………4分直接开平方并整理,得124, 2x x ==-.………………………………………………………5分五、解答题(本题共22分,第23、24小题各7分,第25小题8分)23. (本小题满分7分)解:(1)令0y =,则2(1)210m x mx m --++=.∵2(2)4(1)(1)4m m m ∆=---+=, 解方程,得 222(1)m x m ±=-.∴11x =,211m x m +=-. ∴抛物线与x 轴的交点坐标为(1,0),(11m m +-,0). …………………2分(2) ∵1m >, ∴111m m +>-. 由题意可知,1121m m +-=-. …………………………………………………3分解得,2m =.经检验2m =是方程的解且符合题意.∴2m =.………………………………………………………………………4分(3)∵一次函数y kx k =-的图象与抛物线始终只有一个公共点,∴方程2(1)21kx k m x mx m -=--++有两个相等的实数根. 整理该方程,得 2(1)(2)10m x m k x m k --++++=,∴222(2)4(1)(1)44(2)0m k m m k k k k ∆=+--++=++=+=, 解得 122k k ==-. …………………………………………………………6分 ∴一次函数的解析式为22y x =-+.………………………………………7分24. (本小题满分7分)解:(1)证明:∵四边形ABCD 和CEFG 为正方形,∴BC DC =,CG CE =,90BCD GCE ∠=∠=︒. ∴BCD DCG GCE DCG ∠+∠=∠+∠.BCG DCE ∠=∠即:. ……………………1分 ∴△BCG ≌△DCE .∴BG DE =.………………………………2分(2)①连接BE .由(1)可知:BG=DE . ∵//CG BD ,∴=45DCG BDC ∠∠=︒.∴9045135BCG BCD GCD ∠=∠+∠=︒+︒=︒. ∵90GCE ∠=︒,∴36036013590135BCE BCG GCE ∠=︒-∠-∠=︒-︒-︒=︒. ∴=BCG BCE ∠∠.…………………………3分 ∵BC BC CG CE ==,, ∴△BCG ≌△BCE .∴BG BE =.………………………………4分 ∵BG BD DE ==, ∴BD BE DE ==. ∴△BDE 为等边三角形.∴60.BDE ∠=︒ …………………………5分②正方形CEFG1. ……………………………………………7分ABCDEFGB25. (本小题满分8分)解:(1)∵点D (1,m )在232y x bx b =++图象的对称轴上,∴112b -=. ∴2b =-.∴二次函数的解析式为223y x x =--.………………………………………1分 ∴C (1,-4). …………………………………………………………………2分(2)∵D (1,1),且DE 垂直于y 轴, ∴点E 的纵坐标为1,DE 平行于x 轴. ∴DEB EBO ∠=∠.令1y =,则2231x x --=,解得121xx ==∵点E 位于对称轴右侧,∴E (1 1)+. ∴D E令0y =,则223=0x x --,求得点A 的坐标为(3,0),点B 的坐标为(-1,0). ∴BD =.∴BD = D E .……………………………………………………………………3分∴ DEB DBE ∠=∠. ∴ DBE EBO ∠=∠.∴BE 平分ABD ∠.……………………………………………………………4分 (3)∵以A 、C 、G 为顶点的三角形与以G 、D 、E 为顶点的三角形相似,且△GDE 为直角三角形, ∴△ACG 为直角三角形.∵G 在抛物线对称轴上且位于第一象限, ∴90CAG ∠= .∵A (3,0)C (1,-4),A F C G⊥,图1∴求得G 点坐标为(1,1). ∴AGAC= ∴AC =2 AG .∴GD =2 DE 或 DE =2 GD .设()2, 23E t t t --(t >1) ,1︒.当点D 在点G 的上方时,则DE=t -1,GD = (223t t --)1-=224t t --. i. 如图2,当 GD =2 DE 时, 则有, 224t t --= 2(t -1).解得,=2t 舍负)………………………5分 ii. 如图3,当DE =2GD 时, 则有,t -1=2(224t t --). 解得,127=1=2t t -,.(舍负)…………………6分 2︒. 当点D 在点G 的下方时,则DE=t -1,GD =1- (223t t --)= -2+2+4t t . i. 如图4,当 GD =2 DE 时, 则有, 2+2+4t t -=2(t -1).解得,=t ±舍负) ………………………7分 ii. 如图5,当DE =2 GD 时, 则有,t -1=2(2+2+4t t -). 解得,123=3=2t t -,.(舍负) …………………8分 综上,E点的横坐标为72或3.图3图4图5。

2014海淀区初三(上)期中数 学

2014海淀区初三(上)期中数    学

2014海淀区初三(上)期中数学一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.(4分)如图图形是中心对称图形的是()A.B.C.D.2.(4分)将抛物线y=x2向上平移1个单位,得到的抛物线的解析式为()A.y=x2+1 B.y=x2﹣1 C.y=(x+1)2+1 D.y=(x﹣1)2+13.(4分)袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋子中摸出1个球.下面说法正确的是()A.这个球一定是黑球B.这个球一定是白球C.“摸出黑球”的可能性大D.“摸出黑球”和“摸出白球”的可能性一样大4.(4分)用配方法解方程x2﹣2x﹣3=0时,配方后得到的方程为()A.(x﹣1)2=4 B.(x﹣1)2=﹣4 C.(x+1)2=4 D.(x+1)2=﹣45.(4分)如图,⊙O为正五边形ABCDE的外接圆,⊙O的半径为2,则的长为()A.B.C.D.6.(4分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°7.(4分)已知二次函数y=x2﹣4x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣4x+m=0的两个实数根是()A.x1=1,x2=﹣1 B.x1=﹣1,x2=2 C.x1=﹣1,x2=0 D.x1=1,x2=38.(4分)如图,C是半圆O的直径AB上的一个动点(不与A,B重合),过C作AB的垂线交半圆于点D,以点D,C,O为顶点作矩形DCOE.若AB=10,设AC=x,矩形DCOE的面积为y,则下列图象中能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(本题共16分,每小题4分)9.(4分)如图,PA,PB分别与⊙O相切于点A,B,连接AB.∠APB=60°,AB=5,则PA的长是.10.(4分)若关于x的一元二次方程x2﹣4x+k=0有两个相等的实数根,则k的值为.11.(4分)在平面直角坐标系xOy中,函数y=x2的图象经过点M(x1,y1),N(x2,y2)两点,若﹣4<x1<﹣2,0<x2<2,则y1 y2 .(用“<”,“=”或“>”号连接)12.(4分)如图,正方形ABCD中,点G为对角线AC上一点,AG=AB.∠CAE=15°且AE=AC,连接GE.将线段AE 绕点A逆时针旋转得到线段AF,使DF=GE,则∠CAF的度数为.三、解答题(本题共30分,每小题5分)13.(5分)解方程:x2+3x﹣1=0.14.(5分)如图,∠DAB=∠EAC,AB=AD,AC=AE.求证:BC=DE.15.(5分)已知二次函数的图象经过点(0,1),且顶点坐标为(2,5),求此二次函数的解析式.16.(5分)如图,四边形ABCD内接于⊙O,∠ABC=130°,求∠OAC的度数.17.(5分)若x=1是关于x的一元二次方程x2﹣4mx+2m2=0的根,求代数式2(m﹣1)2+3的值.18.(5分)某厂工业废气年排放量为450万立方米,为改善城市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到288万立方米,如果每期治理中废气减少的百分率相同,求每期减少的百分率是多少?四、解答题(本题共20分,每小题5分)19.(5分)如图是某市某月1日至15日的空气质量指数趋势图,空气质量指数不大于100表示空气质量优良,空气质量指数大于200表示空气重度污染.(1)由图可知,该月1日至15日中空气重度污染的有天;(2)小丁随机选择该月1日至15日中的某一天到达该市,求小丁到达该市当天空气质量优良的概率.20.(5分)已知关于x的方程ax2+(a﹣3)x﹣3=0(a≠0).(1)求证:方程总有两个实数根;(2)若方程有两个不相等的负整数根,求整数a的值.21.(5分)如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,点G在直径DF的延长线上,∠D=∠G=30°.(1)求证:CG是⊙O的切线;(2)若CD=6,求GF的长.22.(5分)阅读下面材料:小丁在研究数学问题时遇到一个定义:对于排好顺序的三个数:x1,x2,x3,称为数列x1,x2,x3.计算|x1|,,,将这三个数的最小值称为数列x1,x2,x3的价值.例如,对于数列2,﹣1,3,因为|2|=2,=,=,所以数列2,﹣1,3的价值为.小丁进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的价值.如数列﹣1,2,3的价值为;数列3,﹣1,2的价值为1;….经过研究,小丁发现,对于“2,﹣1,2”这三个数,按照不同的排列顺序得到的不同数列中,价值的最小值为.根据以上材料,回答下列问题:(1)数列﹣4,﹣3,2的价值为;(2)将“﹣4,﹣3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的价值的最小值为,取得价值最小值的数列为(写出一个即可);(3)将2,﹣9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的价值的最小值为1,则a的值为.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)在平面直角坐标系xOy中,抛物线y=x2﹣(m﹣1)x﹣m(m>0)与x轴交于A,B两点(点A在点B 的左侧),与y轴交于点C.(1)求点A的坐标;(2)当S△ABC=15时,求该抛物线的表达式;(3)在(2)的条件下,经过点C的直线l:y=kx+b(k<0)与抛物线的另一个交点为D.该抛物线在直线l上方的部分与线段CD组成一个新函数的图象.请结合图象回答:若新函数的最小值大于﹣8,求k的取值范围.24.(7分)将线段AB绕点A逆时针旋转60°得到线段AC,继续旋转α(0°<α<120°)得到线段AD,连接CD.(1)连接BD,①如图1,若α=80°,则∠BDC的度数为;②在第二次旋转过程中,请探究∠BDC的大小是否改变.若不变,求出∠BDC的度数;若改变,请说明理由.(2)如图2,以AB为斜边作直角三角形ABE,使得∠B=∠ACD,连接CE,DE.若∠CED=90°,求α的值.25.(8分)如图,在平面直角坐标系xOy中,点P(a,b)在第一象限.以P为圆心的圆经过原点,与y轴的另一个交点为A.点Q是线段OA上的点(不与O,A重合),过点Q作PQ的垂线交⊙P于点B(m,n),其中m≥0.(1)若b=5,则点A坐标是;(2)在(1)的条件下,若OQ=8,求线段BQ的长;(3)若点P在函数y=x2(x>0)的图象上,且△BQP是等腰三角形.①直接写出实数a的取值范围:;②在,,这三个数中,线段PQ的长度可以为,并求出此时点B的坐标.数学试题答案一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.【解答】A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选B.2.【解答】抛物线y=x2的顶点坐标为(0,0),点(0,0)向上平移1个单位得到的点的坐标为(0,1),所以所得到的抛物线的解析式为y=x2+1.故选A.3.【解答】∵布袋中有除颜色外完全相同的6个球,其中4个黑球、2个白球,∴从布袋中随机摸出一个球是黑球的概率为=,摸出一个球是白球的概率为=,∴摸出黑球”的可能性大;故选C.4.【解答】把方程x2﹣2x﹣3=0的常数项移到等号的右边,得到x2﹣2x=3,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=4,配方得(x﹣1)2=4.故选:A.5.【解答】如图所示:∵⊙O为正五边形ABCDE的外接圆,⊙O的半径为2,∴∠AOB==72°,∴的长为:=π.故选:D.6.【解答】∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=59°,∴∠A=90°﹣∠ABD=31°,∴∠C=∠A=31°.故选B.7.【解答】∵二次函数y=x2﹣4x+m(m为常数)的图象与x轴的一个交点为(1,0),∴关于x的一元二次方程x2﹣4x+m=0的一个根是x=1.∴设关于x的一元二次方程x2﹣4x+m=0的另一根是t.∴1+t=4,解得t=3.即方程的另一根为3.故选:D.8.【解答】根据题意结合图形,分情况讨论:如图,①当点C在半径OA上时,连接AD、BD;∵AB为半圆O的直径,∴∠ADB=90°,而DC⊥AB,∴DC2=AC•BC,而AC=x,BC=10﹣x,∴DC=,而OC=5﹣x,∴y=(5﹣x);②当点C在半径OB上,即点C′的位置时,同理可求:y=(x﹣5),综上所述,y与x的函数关系式为:y=.所以,y与x之间的函数关系可以用两段二次函数图象表示.故选:A.二、填空题(本题共16分,每小题4分)9.【解答】∵PA,PB分别与⊙O相切于点A,B,∴PA=PB,∵∠APB=60°,∴△PAB是等边三角形,∴AB=PA=5,故答案为:5.10.【解答】根据题意得△=(﹣4)2﹣4k=0,解得k=4.故答案为4.11.【解答】由y=x2可知,∵a=1>0,∴抛物线的开口向上,∵抛物线的对称轴为y轴,∴当x>0时,y随x的增大而增大,∵﹣4<x1<﹣2,0<x2<2,∴2<﹣x1<4,∴y1>y2.12.【解答】∵线段AE绕点A逆时针旋转得到线段AF,∴AE=AF,∵四边形ABCD是正方形,∴AB=AD,∵AG=AB,∴AD=AG,在△AGE和△ADF中,,∴△AGE≌△ADF(SSS),∴∠DAF=∠CAE=15°,∵AC为正方形ABCD的对角线,∴∠CAD=45°,点F在AD的下方时,∠CAF=∠CAD﹣∠DAF=45°﹣15°=30°,点F在AD的上方时,∠CAF=∠CAD+∠DAF=45°+15°=60°,综上所述,∠CAF的度数为30°或60°.故答案为:30°或60°.三、解答题(本题共30分,每小题5分)13.【解答】这里a=1,b=3,c=﹣1,∵△=9+4=13,∴x=,则x1=,x2=.14.【解答】证明:∵∠DAB=∠EAC,∴∠DAB+∠BAE=∠EAC+∠BAE,∴∠DAE=∠BAC,在△BAC和△DAE中,∴△BAC≌△DAE,∴BC=DE.15.【解答】设抛物线的解析式为:y=a(x﹣2)2+5,把(0,1)代入解析式得,1=a(0﹣2)2+5,解得a=﹣1,则抛物线的解析式为:y=﹣x2+4x+1.16.【解答】∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,∵∠ABC=130°,∴∠ADC=180°﹣∠ABC=50°,∴∠AOC=2∠ADC=100°.∵OA=OC,∴∠OAC=∠OCA,∴∠OAC=(180°﹣∠AOC)=40°.17.【解答】依题意,得1﹣4m+2m2=0,∴2m2﹣4m=﹣1,∴2(m﹣1)2+3=2(m2﹣2m+1)+3=2m2﹣4m+5=﹣1+5=4.即2(m﹣1)2+3=4.18.【解答】设每期减少的百分率为x,根据题意得:450×(1﹣x)2=288,解得:x1=1.8(舍去),x2=0.2解得x=20%.答:每期减少的百分率是20%.四、解答题(本题共20分,每小题5分)19.【解答】(1)根据统计图可得:空气质量指数大于200的有5日、8日、15日,共3天;故答案为:3.(2)小丁随机选择该月1日至15日中的某一天到达该市,则到达该市的日期有15种不同的选择,在其中任意一天到达的可能性相等,由图可知,其中有9天空气质量优良,则P(到达当天空气质量优良)==.20.【解答】(1)∵a≠0,∴原方程为一元二次方程.∴△=(a﹣3)2﹣4×a×(﹣3)=(a+3)2.∵(a+3)2≥0.∴此方程总有两个实数根.(2)解原方程,得x1=﹣1,x2=.∵此方程有两个负整数根,且a为整数,∴a=﹣1或﹣3.∵x1=﹣1,x2=.∴a≠﹣3.∴a=﹣1.21.【解答】(1)证明:连接OC.∵OC=OD,∠D=30°,∴∠OCD=∠D=30°.∵∠G=30°,∴∠DCG=180°﹣∠D﹣∠G=120°.∴∠GCO=∠DCG﹣∠OCD=90°.∴OC⊥CG.又∵OC是⊙O的半径.∴CG是⊙O的切线.(2)解:∵AB是⊙O的直径,CD⊥AB,∴CE=CD=3.∵在Rt△OCE中,∠CEO=90°,∠OCE=30°,∴EO=CO,CO2=EO2+CE2.设EO=x,则CO=2x.∴(2x)2=x2+32.解得x=(舍负值).∴CO=2.∴FO=2.在△OCG中,∵∠OCG=90°,∠G=30°,∴GO=2CO=4.∴GF=GO﹣FO=2.22.【解答】(1)因为|﹣4|=4,||=3.5,||=,所以数列﹣4,﹣3,2的价值为.(2)数列的价值的最小值为||=,数列可以为:﹣3,2,﹣4,;或2,﹣3,﹣4.(3)当||=1,则a=0,不合题意;当||=1,则a=11或7;当||=1,则a=4或10.故答案为:;,﹣3,2,﹣4,;或2,﹣3,﹣4;11或4或7或10.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.【解答】(1)∵抛物线y=x2﹣(m﹣1)x﹣m(m>0)与x轴交于A、B两点,∴令y=0,即x2﹣(m﹣1)x﹣m=0,解得:x1=﹣1,x2=m,又∵点A在点B左侧,且m>0,∴点A的坐标为(﹣1,0);(2)由(1)可知点B的坐标为(m,0),∵抛物线与y轴交于点C,∴点C的坐标为(0,﹣m),∵m>0,∴AB=m+1,OC=m,∵S△ABC=15,∴m(m+1)=15,即m2+m﹣30=0,解得:m=﹣6或m=5,∵m>0,∴m=5;则抛物线的表达式为y=x2﹣4x﹣5;(3)由(2)可知点C的坐标为(0,﹣5),∵直线l:y=kx+b(k<0)经过点C,∴b=﹣5,∴直线l的解析式为y=kx﹣5(k<0),∵y=x2﹣4x﹣5=(x﹣2)2﹣9,∴当点D在抛物线顶点处或对称轴左侧时,新函数的最小值为﹣9,不符合题意;当点D在抛物线对称轴右侧时,新函数的最小值有可能大于﹣8,令y=﹣8,即x2﹣4x﹣5=﹣8,解得:x1=1(不合题意,舍去),x2=3,∴抛物线经过点(3,﹣8),当直线y=kx﹣5(k<0)经过点(3,﹣8)时,可求得k=﹣1,由图象可知,当﹣1<k<0时新函数的最小值大于﹣8.24.【解答】(1)①∵线段AC,AD由AB旋转而成,∴AB=AC=AD.∴点B、C、D在以A为圆心,AB为半径的圆上.∴∠BDC=∠BAC=30°.故答案为:30°.②不改变,∠BDC的度数为30°.方法一:由题意知,AB=AC=AD.∴点B、C、D在以A为圆心,AB为半径的圆上.∴∠BDC=∠BAC=30°.方法二:由题意知,AB=AC=AD.∵AC=AD,∠CAD=α,∴∠ADC=∠C==90°﹣α.∵AB=AD,∠BAD=60°+α,∴∠ADB=∠B===60°﹣α.∴∠BDC=∠ADC﹣∠ADB=(90°﹣α)﹣(60°﹣α)=30°.(2)过点AM⊥CD于点M,连接EM.∵∠AMD=90°,∴∠AMC=90°.在△AEB与△AMC中,,∴△AEB≌△AMC(AAS).∴AE=AM,∠BAE=∠CAM.∴∠EAM=∠EAC+∠CAM=∠EAC+∠BAE=∠BAC=60°.∴△AEM是等边三角形.∴EM=AM=AE.∵AC=AD,AM⊥CD,∴CM=DM.又∵∠DEC=90°,∴EM=CM=DM.∴AM=CM=DM.∴点A、C、D在以M为圆心,MC为半径的圆上.∴α=∠CAD=90°.25.【解答】(1)过点P作PH⊥OA于点H,∴OA=2OH,∵b=5,∴OH=5,∴OA=10,∴点A坐标是(0,10).故答案为:(0,10).(2)连接BP、OP.∵b=5,PH⊥OA,∴OH=AH=5.∵OQ=8,∴QH=OQ﹣OH=3.在Rt△QHP中,PQ2=QH2+PH2=9+PH2,在RtPHO中,PO2=OH2+PH2=25+PH2=BP2,在RtBQP中,BQ2=BP2﹣PQ2=(25+PH2)﹣(9+PH2)=16.∴BQ=4.(3)①∵点P在函数y=x2(x>0)的图象上,∴b=a2,∴a≥1,故答案为:a≥1;②在,,这三个数中,线段PQ的长度可以为,理由如下:∵△BQP是等腰直角三角形,PQ=,∴半径BP=2.又∵P(a,a2),∴OP2=a2+a4=(2)2.即a4+a2﹣20=0.解得a=±2.∵a>0∴a=2.∴P(2,4).如图,作BM⊥y轴于点M,则△QBM≌△PQH.∴MQ=PH=2,∴MB=QH==.∴B1(,6+).若点Q在OH上,由对称性可得B2(,2﹣)综上,当PQ=时,B点坐标为(,6+)或(,2﹣).。

2013年初三海淀一模数学试题及答案-推荐下载

2013年初三海淀一模数学试题及答案-推荐下载
海淀区九年级第二学期期中练习
一、选择题(本题共 32 分,每小题 4 分)
下面各题均有四个选项,其中只有一个是符合题意的.
1.2 的相反数是
A. 2
B. 2
数学
2.十八大开幕当天,网站关于此信息的总浏览量达 5.5 亿次.将 5.5 亿用科学记数法表示为
A. 5.5 108
C. 550 107
不同外,其它都相同).煮好后小明随意吃一个,吃到红豆馅元宵的概率是
A. 1 2
B. 1 3
6.一副三角板如图放置,若∠1= 90 ,则∠2 的度数为
A.45° B.60° C.75° D.90° 7.在篮球比赛中,某队员连续 10 场比赛中每场的得分情况如下表所示:
场次(场) 1
得分(分) 13
2
C.

.
.
D.
2
三、解答题(本题共 30 分,每小题 5 分)
13.计算: 12 2 cos 30 ( 3 1)0 (1)1 . 8
14.解不等式组:
x 2 0,

x
1 2

1
图1

15.先化简,再求值: 1 1 x 2 1 ,其中 x 3 . x 2 2x 4
5
4
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

北京市海淀区2014届九年级上期末考试数学试题及答案

北京市海淀区2014届九年级上期末考试数学试题及答案

) A. 4
B.6 C. 4 3
B
A
D. 6 3
8.如图,Rt△ABC 中,AC=BC=2,正方形 CDEF 的顶点 D、F 分别在 AC、BC 边上,
C、D 两点不重合,设 CD 的长度为 x,△ABC 与正方形 CDEF 重叠部分的面积为 y,则下
列图象中能表示 y 与 x 之间的函数关系的是( )
y
y
y
y
2
2
2 4
1
1
O
1
2x
O
1
2x
1
O
12
1
x
O
1
2x
A
B
C
D
二、填空题(本题共 16 分,每小题 4 分)
9.比较大小: 2 2
3 (填 “>”、“=”或“<”).
10.如图, A、B、 C 是⊙O 上的点,若 AOB 100o,则 ACB ___________度.
11.已知点 P(-1,m)在二次函数 y x2 1的图象上,则 m 的值为
C
4.二次函数 y 2x2
+1的图象如图所示,将其绕坐标原点 O 旋转180o
则旋转后的抛物线的解析式为( )

A. y 2x2 1
B. y 2x2 1
y 2x2 +1
C. y 2x2
D. y 2x2 1
5.在平面直角坐标系 xOy 中,以点 (3, 4) 为圆心,4 为半径的圆与 y 轴所
EP1F
+∠ EP F
2
+
∠ EP 3F + L +∠ EP F n-1
度;如图

2014年北京市海淀区初三一模数学试题及答案

2014年北京市海淀区初三一模数学试题及答案

2014年北京海淀中考一模数学试卷一、 选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.13-的绝对值是( ).A .3-B .3C .13-D .132.据教育部通报,2014年参加全国硕士研究生入学考试的人数约为1720000.数字1720000用科学记数法表示为( ).A .517.210⨯B .61.7210⨯C .51.7210⨯D .70.17210⨯ 3.下列图形中,既是轴对称图形又是中心对称图形的是( ).A .B .C .D .4.一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为( ). A .23 B .12 C .13D .165.如图,AB 为⊙O 的弦,OC AB ⊥于C ,8AB =,3OC =,则⊙O 的半径长为( ). A .7 B .3 C .4 D .56.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数x 与方差2s :甲 乙 丙 丁 平均数x (cm )561560561560方差2s (cm2)3.5 3.5 15.5 16.5 根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( ). A .甲B .乙C .丙D .丁ABCO7.如图,在平行四边形ABCD 中,ABC ∠的平分线交AD 于E ,150BED ∠=︒,则A ∠的大小为( ).A .150︒B .130︒C .120︒D .100︒8.如图,点P 是以O 为圆心,AB 为直径的半圆的中点,2AB =,等腰直角三角板45︒角的顶点与点P 重合,当此三角板绕点P 旋转时,它的斜边和直角边所在的直线与直径AB 分别相交于C 、D 两点.设线段AD 的长为x ,线段BC 的长为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( ).A B C D二、填空题(本题共16分,每小题4分) 9.分解因式:24=xy x - .10.已知关于x 的方程220x x a -+=有两个不相等的实数根,则a 的取值范围是_________.11.如图,矩形台球桌ABCD 的尺寸为2.7m 1.6m ⨯,位于AB 中点处的台球E 沿直线向BC 边上的点F 运动,经BC 边反弹后恰好落入点D 处的袋子中,则BF 的长度为 m .12.在一次数学游戏中,老师在A 、B 、C 三个盘子里分别放了一些糖果,糖果数依次为0a ,0b ,0c ,记为0G =(0a ,0b ,0c ).游戏规则如下:若三个盘子中的糖果数不完全相同,则从糖果数最多的一个盘子中拿出两个,给另外两个盘子各放一个(若有两个盘子中的糖果数相同,且都多于第三个盘子中的糖果数,则从这两个盘子字母序在前的盘子中取糖果),记为一次操作.若三个盘子中的糖果数都相同,游戏结束.n 次操作后的糖果数记为n G =(n a ,n b ,n c ).(1)若0G =(4,7,10),则第_______次操作后游戏结束;(2)小明发现:若0G =(4,8,18),则游戏永远无法结束,那么2014G =________.E DCBA O PA BC D 2121yx O 2121yx O 2121yxO 2121yx O F EDCB A 1.6m2.7m3 / 152014海淀一模三、解答题(本题共30分,每小题5分)13.计算:0(3π)-+2tan 60︒+11()273--.14.解不等式组:491322x x x x >-⎧⎪⎨+>⎪⎩.15.已知2340x x +-=,求代数式2(3)(3)(23)x x x +++-的值.16.如图,在ABC △中,90ACB ∠=︒,D 是AC 上的一点,且AD BC =,DE AC ⊥于D ,90EAB ∠=︒. 求证:AB AE =.EDCBA17.列方程(组)解应用题:某市计划建造80万套保障性住房,用于改善百姓的住房状况.开工后每年建造保障性住房的套数比原计划增加25%,结果提前两年保质保量地完成了任务.求原计划每年建造保障性住房多少万套?18.如图,在平面直角坐标系xOy 中,一次函数y ax a =-(a 为常数)的图象与y 轴相交于点A ,与函数2(0)y x x=>的图象相交于点(,1)B m .(1)求点B 的坐标及一次函数的解析式;(2)若点P 在y 轴上,且PAB △为直角三角形,请直接写出点P 的坐标.四、解答题(本题共20分,每小题5分)19.如图,在ABC △中,90ACB ∠=︒,30ABC ∠=︒,23BC =,以AC 为边在ABC △的外部作等边ACD △,连接BD .(1)求四边形ABCD 的面积; (2)求BD 的长.A BCD5 / 152014海淀一模20. 社会消费品通常按类别分为:吃类商品、穿类商品、用类商品、烧类商品,其零售总额是反映居民生活水平的一项重要数据.为了了解北京市居民近几年的生活水平,小红参考北京统计信息网的相关数据绘制了统计图的一部分:(1)北京市2013年吃类商品的零售总额占社会消费品零售总额的百分比为 ; (2)北京市2013年吃类商品零售总额约为1673亿元,那么当年的社会消费品零售总额约为 亿元;请补全条形统计图,并标明相应的数据.......; (3)小红根据条形统计图中的数据,绘制了北京市2010至2013年社会消费品零售总额年增长率统计表(如下表),其中2013年的年增长率为 (精确到1%);请你估算,如果按照2013年的年增长率持续增长,当年社会消费品零售总额超过10000亿元时,最早要到 年(填写年份).北京市2010至2013年社会消费品零售总额年增长率统计表2010年 2011年 2012年 2013年年增长率(精确到1%)17%11%12%21.如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与边BC 、AC 分别交于D 、E 两点, DF ⊥AC 于F . (1)求证:DF 为⊙O 的切线;(2)若3cos 5C =,CF =9,求AE 的长.OF EABC D5310 62296900 7703总额/亿元 年份 吃类商品 8.7%64.1% 7.2% 用类商品 穿类商品烧类商品 北京市2009至2013年社会消费品零售总额统计图 北京市2013年各类社会消费品 零售总额分布统计图22.阅读下面材料:在学习小组活动中,小明探究了下面问题:菱形纸片ABCD 的边长为2,折叠菱形纸片,将B 、D 两点重合在对角线BD 上的同一点处,折痕分别为EF 、GH .当重合点在对角线BD 上移动时,六边形AEFCHG 的周长的变化情况是怎样的? 小明发现:若∠ABC =60°,①如图1,当重合点在菱形的对称中心O 处时,六边形AEFCHG 的周长为_________;②如图2,当重合点在对角线BD 上移动时,六边形AEFCHG 的周长_________(填“改变”或“不变”). 请帮助小明解决下面问题:如果菱形纸片ABCD 边长仍为2,改变∠ABC 的大小,折痕EF 的长为m . (1)如图3,若∠ABC =120°,则六边形AEFCHG 的周长为_________;(2)如图4,若∠ABC 的大小为2α,则六边形AEFCHG 的周长可表示为________.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy 中,二次函数2()y mx m n x n =-++(0m <)的图象与y 轴正半轴交于A 点. (1)求证:该二次函数的图象与x 轴必有两个交点;(2)设该二次函数的图象与x 轴的两个交点中右侧的交点为点B ,若45ABO ∠=,将直线AB 向下平移2个单位得到直线l ,求直线l 的解析式;(3)在(2)的条件下,设M (,)p q 为二次函数图象上的一个动点,当30p -<<时,点M 关于x 轴的对称点都在直线l 的下方,求m 的取值范围.12345-1-2-3-4-5-5-4-3-2-154321yxO图1 H G F E O D C B A 图2 HG FED C B A图3 H GF E D CB AH G FE D CBA 图47 / 152014海淀一模24.在△ABC 中,AB=AC ,将线段AC 绕着点C 逆时针旋转得到线段CD ,旋转角为α,且0180α<<,连接AD 、BD .(1)如图1,当∠BAC =100°,60α=时,∠CBD 的大小为_________; (2)如图2,当∠BAC =100°,20α=时,求∠CBD 的大小;(3)已知∠BAC 的大小为m (60120m <<),若∠CBD 的大小与(2)中的结果相同,请直接写出α的大小.图2DCBA图1AB CD25.对于平面直角坐标系x Oy中的点P(a,b),若点P'的坐标为(bak+,ka b+)(其中k为常数,且k≠),则称点P'为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P'(1+42,214⨯+),即P'(3,6).(1)①点P(-1,-2)的“2属派生点”P'的坐标为____________;②若点P的“k属派生点” P'的坐标为(3,3),请写出一个符合条件的点P的坐标____________;(2)若点P在x轴的正半轴上,点P的“k属派生点”为P'点,且△OPP'为等腰直角三角形,则k的值为____________;(3)如图, 点Q的坐标为(0,43),点A在函数43yx=-(0x<)的图象上,且点A是点B的“3-属派生点”,当线段B Q最短时,求B点坐标.9 / 152014海淀一模此为过程稿,请以纸质版为准! 海淀区九年级第二学期期中测评数学试卷答案及评分参考2014.5一、选择题(本题共32分,每小题4分)1 2 34 5 6 7 8 DB ACD AC C二、填空题(本题共16分,每小题4分)9 10 11 12(2)(2)x y y +-1a <0.93; (11,9,10)三、解答题(本题共30分,每小题5分)13. 解:011(3π)2tan60()273--+︒+-=123333++- =43-.14. 解:49132 2x x x x >-⎧⎪⎨+>⎪⎩由49x x >-,得3x >-,由②,得1x <, ∴原不等式组的解集为31x -<<. 15. 解: 2(3)(3)(23)x x x +++- 22=69239x x x x ++++- 2=39.x x + 2340x x +-=, 234x x ∴+=.∴原式()233x x =+=34=12.⨯16. 证明:∵90EAB ∠=︒,∴90EAD CAB ∠+∠=︒. ∵90CAB ∠=︒,∴90B CAB ∠+∠=︒. ∴B EAD ∠=∠. ∵ED AC ⊥,∴90EDA ∠=︒.∴EDA ACB ∠=∠. 在ACB △和EDA △中, ,,,B EAD BC AD ACB EDA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ACB EDA ≅△△. ∴AB AE =.17. 解:设原计划每年建造保障性住房x 万套.EDCBA根据题意可得:80802(125%)x x-=+ . 解方程,得 8x =.经检验:8x =是原方程的解,且符合题意. 答:原计划每年建造保障性住房8万套.18.解:(1)∵B (,1)m 在2(0)y x x=>的图象上,∴2m =. ∴(2,1)B .∵(2,1)B 在直线y ax a =-(a 为常数)上, ∴12,a a =- ∴ 1.a =∴一次函数的解析式为 1.y x =- (2)P 点的坐标为(0,1)或(0,3).四、解答题(本题共20分,每小题5分)19. 解:(1)∵在ABC △中,90ACB ∠=︒,30ABC ∠=︒,23BD = ∴1cos ,2BC ABC AC AB AB ∠==,90903060BAC ABC ∠=-∠=-=. ∴234cos cos30BC AB ABC ===∠,1422AC =⨯=.∵ACD △为等边三角形,∴2AD CD AC ===,60DAC ∠=. 过点D 作DE AC ⊥于E , 则 sin 2sin 603DE AD DAC =∠=⨯=.∴ABC ACD ABCD S S S =+△△四边形1122AC BC AC DE =⋅+⋅ 112232322=⨯⨯+⨯⨯33=. (2)过点D 作DF AB ⊥于F . ∵180180606060DAF BAC DAC ∠=︒-∠-∠=︒--︒=︒,∴sin 2sin 603DF AD DAF =⋅∠=︒=. cos 2cos 601AF AD DAF =⋅∠=︒=. ∴415BF AB AF =+=+=. ∵DF AB ⊥,∴在Rt BDF △中,22222(3)528BD DF BF =+=+=. ∴27BD =. 20. 解:(1)20.0%;(2)8365;622969007703 总额/亿元 北京市2009至2013年社会消费品零售总额统计图 8365DCBAFE11 / 152014海淀一模(3)9%,2016.21. 解:(1)连接OD ,AD . ∵AB 是O 的直径, ∴90ADB ∠=︒. 又∵AB AC =, ∴D 为BC 的中点. 又∵O 为AB 的中点, ∴OD //AC . ∵DF ⊥AC , ∴DF ⊥OD .又∵OD 为⊙O 的半径, ∴DF 为⊙O 的切线. (2)∵DF ⊥AC ,9CF =,∴cos CFC CD =.∴3915cos 5CF CD C ==÷=. ∵90ADB ∠=, ∴90ADC ∠=.∴cos CDC AC =. ∴31525cos 5CD AC C ==÷=. . 连接BE . ∵AB 是⊙O 的直径, ∴90AEB ∠=. 又∵DF ⊥AC , ∴DF //BE .∴1CF CDEF BD==. ∴9EF CF ==. ∴25997AE AC EF CF =--=--=. 22. 解:①6; ②不变. (1)4+23; (2)4+4sin α.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)5310 年份OFEABCDCBAFD23. 解:(1)令2()=0mx m n x n -++,则 22=()4=()m n mn m n ∆+--.∵二次函数图象与y 轴正半轴交于A 点, ∴(0,)A n ,且0n >.又0m <,∴0m n -<. ∴2=()0m n ∆->.∴该二次函数的图象与x 轴必有两个交点. (2)令2()=0mx m n x n -++,解得:121,n x x m==. 由(1)得0nm<,故B 的坐标为(1,0). 又因为45ABO ∠=,所以(0,1)A ,即=1n . 则可求得直线AB 的解析式为1y x =-+. 再向下平移2个单位可得到直线:1l y x =--.(3)由(2)得二次函数的解析式为2(1)1y mx m x =-++ ∵M (,)p q 为二次函数图象上的一个动点, ∴2(1)1q mp m p =-++.∴点M 关于x 轴的对称点M '的坐标为(,)p q -. ∴点M '在二次函数2(1)1y mx m x =-++-上.∵当30p -<<时,点M 关于x 轴的对称点都在直线l 的下方, 当0p =时,1q =;当3p =-时,124q m =+; 结合图象可知:(124)2m -+≤,解得:12m ≥-,∴m 的取值范围为102m -≤<.24.解:(1)30︒;(2)如图作等边AFC △,连结DF 、BF . ∴AF FC AC ==,60FAC AFC ∠=∠=︒. ∵100BAC ∠=︒,AB AC =, ∴40ABC BCA ∠=∠=︒. ∵20ACD ∠=︒,∴20DCB ∠=︒.∴20DCB FCB ∠=∠=︒. ① ∵AC CD =,AC FC =, ∴DC FC =. ② ∵BC BC =,③∴由①②③,得 DCB FCB ≅△△, ∴DB BF =, DBC FBC ∠=∠. ∵100BAC ∠=︒, 60FAC ∠=︒, ∴40BAF ∠=︒.∵20ACD ∠=︒,AC CD =, ∴80CAD ∠=︒.213 / 152014海淀一模∴20DAF ∠=︒.∴20BAD FAD ∠=∠=︒. ④ ∵AB AC =, AC AF =, ∴AB AF =. ⑤ ∵AD AD =,⑥∴由④⑤⑥,得 D AB D AF ≅△△. ∴FD BD =. ∴FD BD FB ==. ∴60DBF ∠=︒.∴30CBD ∠=︒.(3)120m α=︒-, 60=︒α 或 240m α=︒- . 25. 解:(1)①(2,4)--;②答案不唯一,只需横、纵坐标之和为3即可,如(1,2) . (2)1±;(3)设(,)B a b .∵B 的“-3属派生点”是A , ∴A (3b a -,3a b -+).∵点A 还在反比例函数43y x=-的图象上, ∴3=-33b a a b -+()(-)4.∴23=12b a (-). ∵30b a >- ∴323b a =-. ∴323b a =+.∴B 在直线323y x =+上.过Q 作323y x =+的垂线Q 1B ,垂足为1B , ∵()0,43Q ,且线段BQ 最短, ∴1B 即为所求的B 点,∴易求得37(,3)22B . 注:其他解法请参照给分.2014年北京顺义中考一模数学试卷部分解析一、选择题1. 【答案】B【解析】3580000用科学记数法表示为63.5810⨯,故选B .2. 【答案】C【解析】-2的倒数是12-,故选C .3. 【答案】B【解析】一共6个球,其中黄色球4个,随机摸出一个球,摸到黄球的概率是42=63,故选B .4. 【答案】C【解析】一个多边形的每一个外角都是40?,外角和为360︒,360940n ︒==︒,故选C .5. 【答案】A【解析】9名学生参加竞赛,去前4名参加决赛,小英想知道自己能否参加决赛得看自己成绩是否高于中位数,故选A .6. 【答案】C【解析】∵AB AC =,AD BC ∥,100?BAC ∠=,∴40B C CAD ∠=∠=∠=︒,故选C .7. 【答案】D【解析】可以把学校、小明家、小丽家看作三个点,若这三个点不在同一直线上,即可围成三角形,三角形第三边介于两边之和和两边之差之间,当且仅当三点共线时取等号,5252x -+≤≤,故选D .8. 【答案】A【解析】连接OD ,由垂径定理可知DC EC =,2AB =,AC x =,当C 点在AO 上时,1OC x =-,21(1)CD x =--.211(1)2ADE S DE AC x x =⋅=⋅--△;当C 点在OB 上时,1O Cx =-,21(1)CD x =--.211(1)2ADE S DE AC x x =⋅=⋅--△;当C 点与O 重合,1x =,1ADE S =△,故选C .二、填空题 9. 【答案】3x =【解析】分式32x x -+的值为零,30x -=,3x =. 故答案为:3x =.10. 【答案】答案不唯一,1y x =-+【解析】一次函数y 的值随自变量x 的增大而减少,0k <,1b =即可.15 / 152014海淀一模故答案为:答案不唯一,1y x =-+.11. 【答案】15 【解析】由相似可得1.8=2.420h,解得15h =. 故答案为:15.12. 【答案】(0,13)-,(11,11)-,(,)n n -【解析】122A A =,等边三角形边长为2,高为3,3(1-3,0)A . 1(1,1)A -,4(2,2)A -,7(3,3)A -32(,)n A n n --,它们在y x =-这条直线上,31(11,11)A -.故答案为:(0,13)-,(11,11)-,(,)n n -.。

海淀区2013-2014学年九年级第一学期期末数学试卷

海淀区2013-2014学年九年级第一学期期末数学试卷
2
C.相交
D.无法确定
C O
6.若关于 x 的方程 ( x 1) k 1 没有实数根,则 k 的取值范围是 A. k 1 B. k 1 C.k 1 D. k 1 7.如图, AB 是⊙ O 的切线, B 为切点, AO 的延长线交⊙ O 于 C 点,连接 BC ,
A 30 , AB 2 3 ,则 AC 等于 ( 若
EP3 F + +∠ EPn -1 F EP2 F +∠ EP3 F + +∠ EPn -1 F
度;如图 2,若 A , B ,则∠ EPF +∠ 1 (用含 , 的式子表示).
P1 P2 P3 Pn-1 E
图2
B
F C
A
三、解答题(本题共 30 分,每小题 5 分) 13.计算: 27
AD EC , ADB C , BD DC ,
B
E
C
∴△ ABD ≌△ EDC .………………………………………………………………4 分 ∴ AB ED . ……………………………………………………………………5 分 18. (本小题满分 5 分) 解:(1)∵关于 x 的方程 x 2 2x +k 1 0 有实数根, ∴ 4 4(k 1) 0 . ………………………………………………………1 分
2
B
旋转后的抛物 线的解析式为( A. y 2 x 1
2
) B. y 2 x 1
2
y 2 x 2 +1
C. y 2 x
2
D. y 2 x 1
2
5.在平面直角坐标系 xOy 中,以点 (3, 4) 为圆心,4 为半径的圆与 y 轴所 在直线的位置关系是( ) A.相离 B.相切
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档