数学归纳法原理
数学归纳法证明的原理

数学归纳法证明的原理数学归纳法证明的原理数学归纳法证明的原理数学归纳法证明的原理数学归纳法证明的是与自然数有关的命题,它的依据是皮亚诺提出的自然数的序数理论,就是通常所说的自然数的皮亚诺公理,内容是:(1)l是自然数。
(2)每个自然数a有一个确定的“直接后继”数a’,a也是自然数。
(2)a’≠1,即1不是任何自然数的“直接后继”数。
(4)由a’=b’,推得a=b,即每个自然数只能是另外的唯一自然的“直接后继”数。
(5)任一自然数的集合,如果包含1,并且假设包含a,也一定包含a的“直接后继”数a’,则这个集合包含所有的自然数。
皮亚诺公理中的(5)是数学归纳法的依据,又叫归纳公理数学归纳法的应用及举例。
因为由假设知42k+1+3k+2能被13整除,1342k+1也能被13整除,这就是说,当n=k+1时,f(k+l)能被13整除。
根据(1)、(2),可知命题对任何n∈N都成立。
下面按归纳步中归纳假设的形式向读者介绍数学归纳法的几种不同形式以及它们的应用。
(l)简单归纳法。
即在归纳步中,归纳假设为“n=k时待证命题成立”。
这是最常用的一种归纳法,称为简单归纳法,大家都比较熟悉,这里不再赘述。
(2)强归纳法。
这种数学归纳法,在归纳步中,其归纳假设为“n≥k时待证命题成立”。
我们称之为强归纳法,又叫串值归纳法。
通常,如果在证明p(n+l)成立时,不仅依赖于p(n)成立,而且还可能依赖于以前各步时,一般应选用强归纳法,下面举例说明其应用。
例有数目相等的'两堆棋子,两人轮流从任一堆里取几项棋子,但不能不取也不能同时从两堆里取,规定凡取得最后一项者胜。
求证后者必胜。
证:归纳元n为每堆棋子的数目。
设甲为先取者,乙为后取者。
奠基n=l,易证乙必胜。
归纳设Nn≤k时,乙必胜。
现证n=k+l时也是乙必胜。
设甲在某堆中先取r颗,O<r≤k。
乙的对策是在另一堆中也取r颗。
有二种可能:(1)若r<k,经过两人各取一次之后,两堆都只有k-r颗,k-r<k,现在又轮到甲先取,依归纳假设,乙必胜。
1、数学归纳法

a a2 a3 1 + + ⋅⋅⋅ + n ) + 。 n n 2 3
2
ak a2 a3 1 • 假设当 n = k 时,命题成立,即 ak > 2( + + ⋅⋅⋅ + ) + , k k 2 3 则 2ak 1 2 1 2 2 ak +1 = (ak + ) = ak + + k +1 k + 1 (k + 1) 2 a a a 1 2 1 1 > 2( 2 + 3 + ⋅⋅⋅ + k ) + + (ak +1 − )+ 2 3 k k k +1 k + 1 (k + 1) 2 a a a 1 1 = 2( 2 + 3 + ⋅⋅⋅ + k +1 ) + − 2 3 k + 1 k (k + 1) 2 ak +1 a2 a3 1 )+ > 2( + + ⋅⋅⋅ + k +1 k +1 2 3
,知 n = k + 1时(1)(2)成立。 ,
• 故(1)(2)对一切自然数都成立,因此命题成立。 ,
1 3 • 例 7 证明: ( )( ) 2 4
2n − 1 1 ( )≤ 。 2n 3n
• 分析:用数学归纳法直接证明原不等式,当 n = k + 1时,即证 1 3 2n − 1 2n + 1 1 ( )( ) ( )( )≤ 。 2 4 2n 2n + 2 3n + 3
xk = 1时, x1 + x2 +
大学课件:数学归纳法及原理

证明 如果命题T不是对所有自然数都成立,那么使 命题不成立的自然数集合M就是非空集合,由定 理2,M中含有一个最小数k,且k>1(因为k=1命题
正确),所以对一切n < k,命题T成立,又由(2)
推出命题T对k正确. 结论矛盾. 下面我们给出两个只能应用第二数学归纳法 而不能应用第一数学归纳法解题的例子
命题3 若 b > a,则b a+1. (即数a与a+1是邻接的两个数,中间没有其他
自然数,不存在b,使得a+1>b>a. )
证明 若b > a,则b = a + k. 因为k 1,所以a+k a+1,即b a+1.
最小数原理
定理2 自然数的任何非空集合A含有一个最小数,
即存在一个数 a A ,使得对集合A中任意数b, 均有 b a .
证明 设M这样的集合:
对于M中任意元素 m M ,对A中任意元素a,均
有
am
,则M是非空集合.
因为1 M ,由归纳公理(4)知,一定存在一 个元素 m M . , 但 m M ,即 m 1 M 可能.
否则由 m M m M 得M=N,这显然不
现在我们证明 m A . 因为若 m A 则A中任意元素a>m.
足够了: 但是毕竟自然数是无限的,因而上述描述是
不够严格的,有了皮阿罗公理后,我们就能给出归纳 法的严格证明.
定理1 如果某个命题T,它的叙述含有自然数,如果
命题T对n=1是正确的,而且假定如果命题T对n的正确性
就能推出命题T对n+1也正确,则命题T对一切自然数都成 立.(第一数学归纳法)
数学归纳法

(一)第一数学归纳法:一般地,证明一个与自然数n有关的命题P(n),有如下步骤:(1)证明当n取第一个值n0时命题成立。
n0对于一般数列取值为0或1,但也有特殊情况;(2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。
综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。
(二)第二数学归纳法:对于某个与自然数有关的命题P(n),(1)验证n=n0时P(n)成立;(2)假设n0≤n<=k时P(n)成立,并在此基础上,推出P(k+1)成立。
综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。
(三)倒推归纳法(反向归纳法):(1)验证对于无穷多个自然数n命题P(n)成立(无穷多个自然数可以是一个无穷数列中的数,如对于算术几何不等式的证明,可以是2^k,k≥1);(2)假设P(k+1)(k≥n0)成立,并在此基础上,推出P(k)成立,综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立;(四)螺旋式归纳法对两个与自然数有关的命题P(n),Q(n),(1)验证n=n0时P(n)成立;(2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设Q(k)成立,能推出P(k+1)成立;综合(1)(2),对一切自然数n(≥n0),P(n),Q(n)都成立。
(1)确定一个表达式在所有自然数范围内是成立的或者用于确定一个其他的形式在一个无穷序列是成立的。
(2)数理逻辑和计算机科学广义的形式的观点指出能被求出值的表达式是等价表达式。
(3)证明数列前n项和与通项公式的成立。
(4)证明和自然数有关的不等式。
变体在应用,数学归纳法常常需要采取一些变化来适应实际的需求。
下面介绍一些常见的数学归纳法变体。
从0以外的数字开始如果我们想证明的命题并不是针对全部自然数,而只是针对所有大于等于某个数字b 的自然数,那么证明的步骤需要做如下修改:第一步,证明当n=b时命题成立。
数学归纳法总结

数学归纳法总结数学归纳法是数学中一种常用的证明方法,通过对基础情况的证明和对后续情况的假设进行归纳推理,从而证明一般情况成立。
本文将从介绍数学归纳法的定义和原理出发,阐述数学归纳法的使用步骤和注意事项,最后总结其在数学领域的应用。
1. 数学归纳法的定义和原理数学归纳法是一种证明方法,其基本思想是通过两个步骤来证明某个命题的成立。
首先,证明命题在某个基础情况下成立,通常这个基础情况是一个整数。
其次,假设命题在某个情况下成立,然后通过数学推理证明命题在下一个情况下也成立。
2. 数学归纳法的使用步骤(1)第一步,证明基础情况。
首先,我们需要证明命题在基础情况下成立。
通常情况下,基础情况是一个整数,我们可以进行直接计算或推理,证明命题在该整数下成立。
(2)第二步,假设归纳假设。
假设在某个情况下,命题成立。
这个假设是数学归纳法步骤中最为关键的一步,通过该假设,我们可以推导出命题在下一个情况下的成立。
(3)第三步,证明归纳步骤。
通过使用数学推理,证明命题在下一个情况下成立。
这一步骤通常是利用归纳假设和基本推理规则进行推导。
3. 数学归纳法的注意事项(1)确保基础情况成立。
在进行数学归纳法证明时,必须确保命题在基础情况下成立,否则归纳法无法进行。
(2)确保归纳步骤正确。
在归纳步骤中,必须正确使用归纳假设和基本推理规则进行推导,以保证命题在后续情况下的成立。
(3)注意命题的递推关系。
数学归纳法证明的前提是命题在某情况下成立,则在下一个情况下也成立。
因此,需要确保命题的递推关系正确,以保证证明的有效性。
4. 数学归纳法在数学领域的应用数学归纳法在数学领域被广泛应用,特别是在证明整数的性质和定理时。
例如,证明任意正整数的和公式、整数的奇偶性、斐波那契数列等都可以通过数学归纳法进行证明。
此外,在计算机科学、概率论等领域中,数学归纳法也具有重要的应用价值。
5. 总结数学归纳法是一种常用的证明方法,通过对基础情况的证明和对后续情况的假设进行归纳推理,能够有效证明数学命题的成立。
数学三大原理

数学三大原理
1.数学的公理化原理:数学的基础是公理,公理是不需要证明的基本事实或假设。
公理是数学推理的出发点,从公理出发,推导出定理和结论。
数学的公理化使得数学变得精确、严密和可靠。
2. 数学归纳法原理:数学归纳法是一种常见的证明方法,它基于以下原理:若一个命题在某个整数上成立,并且对于任意一个整数n,若命题在n上成立,则命题在n+1上也成立。
这个原理使得我们可以证明有关自然数性质的定理。
3. 数学无矛盾性原理:数学无矛盾性原理是指数学中不存在矛盾的结论。
这个原理是数学的基本特点之一,它使得数学推理的结果是可靠的,并保证了数学研究的正确性。
数学家们一直在努力保持数学的无矛盾性,这也是数学研究的长期目标之一。
- 1 -。
数学归纳法的原理与应用

数学归纳法的原理与应用在数学的广袤领域中,数学归纳法是一种极为重要的证明方法。
它为我们提供了一种有力的工具,用于证明与自然数相关的命题。
数学归纳法的原理就像是攀登一个无穷的楼梯。
假设我们要证明对于所有的自然数 n,某个命题 P(n) 都成立。
首先,我们需要证明当 n=1 时,命题P(1) 成立,这就好比是我们踏上了楼梯的第一步。
然后,我们要假设当 n = k 时命题成立,也就是我们在某一级楼梯上站稳了脚跟,接着去证明当 n = k + 1 时命题也成立,这相当于从当前的楼梯迈向更高的一级,并且能保证这样的步伐可以一直持续下去。
那么,为什么通过这样两步就能证明对于所有的自然数 n,命题都成立呢?我们可以这样来理解。
第一步证明了命题在起始点(n = 1)成立,而第二步则表明如果命题在某个自然数 k 成立,那么它在 k + 1 时也一定成立。
这就像我们已经有了踏上第一步的能力,并且知道只要能站在某一级楼梯上,就一定能踏上更高的一级。
所以,按照这样的逻辑,我们就能够从 1 逐步到达 2,从 2 到达 3,以此类推,最终能够到达任意的自然数 n。
数学归纳法有两种常见的形式:第一数学归纳法和第二数学归纳法。
第一数学归纳法的步骤如前所述,先证明基础步骤(n = 1 时命题成立),然后证明归纳步骤(假设 n = k 时命题成立,推出 n = k + 1 时命题成立)。
第二数学归纳法则稍有不同。
它在基础步骤上通常也是证明 n = 1时命题成立,但在归纳步骤中,假设对于所有小于或等于 k 的自然数 n,命题 P(n) 都成立,然后去证明 P(k + 1) 成立。
数学归纳法在数学的各个分支中都有着广泛的应用。
在数列的研究中,经常会用到数学归纳法。
例如,证明等差数列和等比数列的通项公式。
我们先通过计算得出当n =1 时通项公式成立,然后假设当 n = k 时通项公式成立,进而推导出当 n = k + 1 时通项公式依然成立。
数学归纳法【公开课教学PPT课件】

反思感悟 用数学归纳法证明整除问题时,首先从要证的式子中 拼凑出假设成立的式子,然后证明剩余的式子也能被某式(数)整除. 其中的关键是“凑项”,可采用增项、减项、拆项和因式分解等方法 分析出因子,从而利用归纳假设使问题得到解决.
点拨 数学归纳法一般被用来证明某些涉及正整数n的命题,n可 取无限多个值,但不能简单地说所有涉及正整数n的命题都可以用 数学归纳法证明。一般来说,从n=k到n=k+1时,如果问题中存在可 利用的递推关系,则可以用数学归纳法,否则使用数学归纳法就有 困难.
在运用数学归纳法时,要注意起点n0并非一定取1,也可能取0,2等
(2)数学归纳法:
数学归纳法可以用于证明与正整数 n 有关的命题.证明需要经
过三个步骤:
①验证当n取第一个值n0(如n0=1或2等)时命题成立. ②假设当n=k时(k∈N+,k≥n0)命题成立,
证明当n=k+1 时命题也成立.在完成了上述两个步骤之后,
就可以断定命题对于从n0开始的所有正整数都成立.
正解当 n=1 时,a1=3,当 n≥2
时,an=Sn-Sn-1=6-2an+1-(6-2an)=2an-2an+1,即 an+1=12an.
∵a1=3,
∴a2=12a1=32,a3=34,a4=38.
3,������ = 1,
猜想
an=
3 2������-1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明 由对称性,不妨设 a≥b≥c>0, 于是 a+b≥a+c≥b+c, 1 1 1 故 a ≥b ≥c , ≥ ≥ , b+c c+a a+b
网格构建
讲练互动
7. 数学归纳法主要用于解决与正整数有关的数学问题 . 证明 时,它的两个步骤缺一不可 . 它的第一步 ( 归纳奠基 )n = n0 时结论成立.第二步(归纳递推)假设n=k时,结论成立,推
得n=k+1时结论也成立.数学归纳法原理建立在归纳公理
的基础上,它可用有限的步骤(两步)证明出无限的命题成 立.
等式和贝努利不等式,会用贝努利不等式证明有关的简单
问题.
网格构建
讲练互动
知识结构
网格构建
讲练互动
知识梳理
1.二维形式的柯西不等式
2 2 (1)定理 1(二维):设 a1,a2,b1,b2 均为实数,则(a2 + a )· ( b 1 2 1 2 +b2 ) ≥ ( a b + a b ) 2 1 1 2 2 ,上式等号成立⇔a1b2=a2b1.
2 2 2
网格构建
讲练互动
由排序不等式得: a2 b2 c2 c2 a2 b2 + + ≥ + + b+c c+a a+b b+c c+a a+b a2 b2 c2 b2 c2 a2 + + ≥ + + b+c c+a a+b b+c c+a a+b
章末复习提升
学习目标 1.认识柯西不等式的几种不同形式,理解它们的几何意义, 会用二维、三维柯西不等式进行简单的证明与求最值. 2.了解n个正数的平均值不等式,n维柯西不等式,排序不等 式.
网格构建
讲练互动
3.理解数学归纳法原理,会用数学归纳法证明与正整数有关 的等式、不等式、整除性问题和几何问题. 4.会用数学归纳法证明绝对值不等式、均值不等式、柯西不
(2)( 二 维 变 式 ) :
a2+b2 ·
c2+d2 ≥ |ac + bd| ,
a2+b2· c2+d2≥|ac|+|bd|. (3)(向量形式): 设 α, β 为平面上的两个向量, 则|α||β|≥|α·β|, 当 α 及 β 为非零向量时,上式中等号成立⇔向量 α 与 β 共 线(或平行)⇔存在实数 λ≠0,使得 α=λβ.
网格构建
讲练互动
2 2 2 2 2 2.三维形式的柯西不等式:(a2 + a + a )( b + b + b 1 2 3 1 2 3)≥(a1b1+
a2b2+a3b3)2. 3.定理 2:柯西不等式的一般形式:设 a1,a2,…,an,b1,
2 2 2 1 2 b2,b3,…,bn 为实数,则(a1+a2+…+an) (b1+b2 2+…+
网格构建
讲练互动
8.运用数学归纳法时易犯的错误 (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时, 项数发生什么变化被弄错. (2)没有利用归纳假设. (3) 关键步骤含糊不清,“假设 n = k 时结论成立,利用此假
设证明n=k+1时结论也成立”,是数学归纳法的关键一步,
也是证明问题最重要的环节,对推导的过程要把步骤写完 整,注意证明过程的严谨性、规范性.
2
a1 a2 2 1 bn)2≥|a1b1+a2b2+…+anbn|, 其中等号成立⇔b =b =…= 1 2 an bn. 4.柯西不等式的一般形式的证明:参数配方法.
网格构建
讲练互动
5.排序不等式:设a1≤a2≤…≤an,b1≤b2≤…≤bn为两组实 数,c1,c2,…,cn为b1,b2,…,bn的任一排列,则有: a1bn + a2bn - 1 +…+ anb1 ≤ a1c1 + a2c2 +…+ ancn ≤ a1b1 +
a2b2+…+anbn.等号成立(逆序和等于顺序和)⇔a1=a2=…
=an或b1=b2=…=bn.排序原理可简记作:逆序和≤乱序 和≤顺序和.
网格构建
讲练互动
6.数学归纳法及其原理
数学归纳法是证明一些与正整数有关的数学命题的一种方
法.即先证明当n取第一个值n0(例如n0=1)时命题成立,然后 假设当n=k (k∈N+,k≥n0)时命题成立,证明当n=k+1时 命题也成立,那么就证明了这个命题成立 . 这种证明方法叫 做数学归纳法.
网格构建
讲练互动
专题二
利用柯西不等式求最值
【例 2】 已知 x+y+z=1, 求 3x+1+ 3y+2+ 3z+3的 最大值.
解 由柯西不等式,得
( 3x+1·1+ 3y+2·1+ 3z+3·1) ≤ 3x+1+3y+2+3z+3· 12+12+12 = 3(x+y+z)+6· 3= 27=3 3. 3x+1 3y+2 3z+3 等号成立⇔ 1 = 1 = 1 ,
1 1 1 1 (a+b+b+c+c+d+d+a)a+b+b+c+c+d+d+a
≥(1+1+1+1)2. 即
1 1 1 1 2(a+b+c+d)a+b+b+c+c+d+d+a ≥16,
网格构建
讲练互动
2 2 2 2 16 于是 + + + ≥ , a+b b+c c+d d+a a+b+c+d a+b b+ c c+d d+a 等号成立⇔ 1 = 1 = 1 = 1 a+b b+c c+d d+a ⇔a+b=b+c=c+d=d+a⇔a=b=c=d. 因题设 a,b,c,d 不全相等, 2 2 2 2 16 故 + + + > . a+b b+c c+d d+a a+b+c+d
网格构建
讲练互动
专题一
利用柯不等式证明不等式
2 2 【例 1】 设 a, b, c, d 为正数, 且不全相等, 求证: + a+b b+c 2 16 + > . d+a a+b+c+d
网格构建
讲练互动
证明
构造两组数 a+b, b+c, c+d, d+a,
1 1 1 1 与 , , , , a+b b+c c+d d+a 则由柯西不等式得:
网格构建
讲练互动
即 3x+1=3y+2=3z+3 设 3x+1=k, k-1 k-2 k-3 则 x= 3 ,y= 3 ,z= 3 . 代入 x+y+z=1,得 k=3. 2 1 ∴x=3,y=3,z=0 时取等号.
网格构建
讲练互动
专题三
利用排序不等式证明不等式
【例 3】 设 a,b,c 为正数,求证: