1.5 归纳法原理与反归纳法

合集下载

数学归纳法的发展、原理及其在数学中的应用-精品资料-精品资料-精品资料-精品资料

数学归纳法的发展、原理及其在数学中的应用-精品资料-精品资料-精品资料-精品资料

数学归纳法的发展及其在数学中的应用摘要:在数学论证中,数学归纳法是一种常用的数学方法,用途很广,对于某些结论是自然数的函数命题,往往都可以通过数学归纳法来加以证明。

本文叙述了数学归纳法名称的发展,数学归纳法内容的发展,并分别从良序原理、数学归纳法、第二数学归纳法、数学归纳法的有效性这四个方面对数学归纳法的原理做了介绍,都有相关的例子,能帮助读者深入的理解数学归纳法的原理。

本文也列举了几种常见的数学归纳法的形式,如第一数学归纳法、第二数学归纳法、倒推归纳法、螺旋式归纳法。

在了解数学归纳在数学中的应用后,本文重点叙述了数学归纳法在证明恒等式、证明不等式、证明整除问题、证明几何问题、探索与正整数有关的问题中的具体应用过程。

通过本文,能使读者更加深入的了解数学归纳法,并且能更好的运用数学归纳法解决数学学科中的一些问题。

关键词:数学归纳法发展原理应用一、数学归纳法的发展(一)数学归纳法名称的发展“数学归纳法”名称是由英国数学家创立, 并由英国教科书作者普遍采用推广。

在名称上迈出重要一步的是英国数学家德摩根。

1838年在伦敦出版的《小百科全书》中,德摩根在他的条目“归纳法里建议使用“逐收归纳法”。

但在该条目的最后他偶然地使用了术语数学归纳法,这是我们所能看到这一术语的最早使用。

无论是毛罗利科还是帕斯卡,也无论是伯努利还是其后的数学家们,虽然都在不断地使用数学归纳法,但在很长的时期内并授有给他们的方法以任何名称。

只是由于沃利斯以及雅各布·伯努利的工作,才引进了“归纳法”这一名称。

并在两种截然不同的意义上应用于数学:(1)以特此获得一般结论的沃利斯方式(2)指定的步骤论证,并且影响了其后的数学家们,使这种混用状态大约持续了140年。

到l9世纪上半叶,英国的数学家皮科克在他的《代数学》的排列与组合部分,谈到梅成的规律用归纳法延伸到任意数,是从预攫 f 意义上以沃利斯方式使用归纳法的。

后来,他又将从“到R+1的论证称之为证明归纳法。

数学归纳法证明的原理

数学归纳法证明的原理

数学归纳法证明的原理数学归纳法证明的原理数学归纳法证明的原理数学归纳法证明的原理数学归纳法证明的是与自然数有关的命题,它的依据是皮亚诺提出的自然数的序数理论,就是通常所说的自然数的皮亚诺公理,内容是:(1)l是自然数。

(2)每个自然数a有一个确定的“直接后继”数a’,a也是自然数。

(2)a’≠1,即1不是任何自然数的“直接后继”数。

(4)由a’=b’,推得a=b,即每个自然数只能是另外的唯一自然的“直接后继”数。

(5)任一自然数的集合,如果包含1,并且假设包含a,也一定包含a的“直接后继”数a’,则这个集合包含所有的自然数。

皮亚诺公理中的(5)是数学归纳法的依据,又叫归纳公理数学归纳法的应用及举例。

因为由假设知42k+1+3k+2能被13整除,1342k+1也能被13整除,这就是说,当n=k+1时,f(k+l)能被13整除。

根据(1)、(2),可知命题对任何n∈N都成立。

下面按归纳步中归纳假设的形式向读者介绍数学归纳法的几种不同形式以及它们的应用。

(l)简单归纳法。

即在归纳步中,归纳假设为“n=k时待证命题成立”。

这是最常用的一种归纳法,称为简单归纳法,大家都比较熟悉,这里不再赘述。

(2)强归纳法。

这种数学归纳法,在归纳步中,其归纳假设为“n≥k时待证命题成立”。

我们称之为强归纳法,又叫串值归纳法。

通常,如果在证明p(n+l)成立时,不仅依赖于p(n)成立,而且还可能依赖于以前各步时,一般应选用强归纳法,下面举例说明其应用。

例有数目相等的'两堆棋子,两人轮流从任一堆里取几项棋子,但不能不取也不能同时从两堆里取,规定凡取得最后一项者胜。

求证后者必胜。

证:归纳元n为每堆棋子的数目。

设甲为先取者,乙为后取者。

奠基n=l,易证乙必胜。

归纳设Nn≤k时,乙必胜。

现证n=k+l时也是乙必胜。

设甲在某堆中先取r颗,O<r≤k。

乙的对策是在另一堆中也取r颗。

有二种可能:(1)若r<k,经过两人各取一次之后,两堆都只有k-r颗,k-r<k,现在又轮到甲先取,依归纳假设,乙必胜。

数学归纳法(二)

数学归纳法(二)

一、用数学归纳法证明等式问题 练习1. 求证:(n+1)(n+2)…(n+n)=2n• 1• 3•… •(2n-1)
证明:① n=1时:左边=1+1=2,右边=21•1=2,左边=右边,等 式成立. ② 假设当n=k((k∈N )时有: (k+1)(k+2)…(k+k)=2k• 1• 3•…• (2n-1), 当n=k+1时: 左边=(k+2)(k+3)…(k+k)(k+k+1)(k+k+2)
1、三个步骤缺一不可:第一步是是奠基步 骤,是命题论证的基础,称之为归纳基础;第 二步是归纳关键,是推理的依据,是判断命题 的正确性能否由特殊推广到一般,它反映了无 限递推关系,其中 “假设n=k时成立” 称为归 纳假设(注意是“假设”,而不是确认命题成 立)。如果没有第一步,第二步就没有了意义; 如果没有第二步,就成了不完全归纳,结论就 没有可靠性; 2、在第二步的证明中必须用到前面的归纳 假设,否则就不是数学归纳法了。 注意:完成一,二步后,最后第三步对命题做 6 一个总的结论一定不要忘了。
上述证明方法叫做数学归纳法。
2
例1.试判断下列两例的证明过程是否正确,若不正确 请说明理由. (1)用数学归纳法证明
1 3 5 ... (2n 1) n 1(n N )
2 *
证明: 2 假设n=k时命题成立,即1 3 5 ... (2k 1) k 1 ,

13
五、小结
(1)理解数学归纳法原理。 (2)数学归纳法的两个步骤缺一不可,前者 是基础,后者是递推的依据,也是证明中的难 点和关键。 (3)数学归纳法主要应用于解决与正整数有关 的数学问题。

数学归纳法及其应用

数学归纳法及其应用

数学归纳法及其应用发表时间:2019-01-23T16:43:27.747Z 来源:《教育学》2019年1月总第166期作者:折小妹[导读] 数学归纳法是数学证明的一种重要工具,它常用来证明与自然数有关的命题。

陕西省大柳塔第一小学719315摘要:数学归纳法是一种证明与正整数有关命题的极为有效的科学方法。

本文主要对数学归纳法的原理与方法、理论与应用进行分析,并介绍了数学归纳法在数学整除问题、数列、不等式以及几何等问题中的应用。

关键词:数学归纳法数列不等式一、数学归纳法的概述1.归纳法与数学归纳法。

(1)归纳法。

①完全归纳法。

②不完全归纳法。

③典型归纳推理。

(2)数学归纳法。

数学归纳法是数学证明的一种重要工具,它常用来证明与自然数有关的命题。

它基于自然数的一个重要性质:任意一个自然数的集合,如果包含数1,并且假设包含数k,也一定包含k的后继数k+1,那么这个集合包含所有的自然数。

这一重要性质,为解决有限与无限的矛盾提供了理论依据。

也就是说,如果能证明:①当n=1时命题成立。

②假设当n=k时命题成立,有n=k+1时命题成立。

那么我们就能由n=1时命题成立,推出n=1+1=2时命题成立;由n=2时命题成立,推出n=2+1=3时命题也成立;如此继续下去,虽然我们没有对所有的自然数一一逐个加以验证,但根据自然数的重要性质,实质上已经对所有的自然数做了验证。

这样的证明方法叫作数学归纳法,可见数学归纳法是一种完全归纳法。

2.数学归纳法的基础。

严格意义上的数学归纳法产生于16世纪以后,意大利数学家莫罗利科首先对与自然数有关的命题做了深入考察。

递归推理的思想方法是指:它首先确定命题对于第一个自然数是正确的,然后再证明命题对于以后的自然数具有递推性,即如果一个命题对于第一个自然数是正确的,那么作为一种逻辑必然,它对于该数的后继数也是正确的。

3.数学归纳法的原理。

数学归纳法所根据的原理是正整数集的一个最基本的性质——最小数原理。

数学归纳法的七种变式及其应用

数学归纳法的七种变式及其应用

数学归纳法的七种变式及其应用1 引言数学归纳法是数学中关于自然数命题的主要证明方法.学会并熟练运用这种方法,不仅可以帮助我们学习有关自然数的命题,而且还可以使我们更有力地解决相关问题.一般地说,与正整数有关的恒等式、不等式、数的整除性、数列的通项及前n 项和等问题,都可以用数学归纳法解决.这种方法的难点在于由n k =时成立,去证1n k =+时成立.很多情形下用常规的方法由n k =成立时,去推1n k =+成立会走进死胡同,这时须另辟他径,完成证明.本文旨在通过对数学归纳法的主要七种变式加以剖析,以及一些证法技巧的介绍,使初学者提高对数学归纳法的认识和应用能力.2 数学归纳法的原理和定义 2.1 数学归纳法的原理[1](36)P假定对一切自然数n ,我们有一个命题,设为()M n .如果下面两条成立: (1) (1)M 是真命题;(2) 对于任意的k ,()M k 是真命题蕴含着(1)M k +是真命题,则对一切自然数n 命题()M n 为真命题.2.2 数学归纳法的定义当0n n =时某命题正确,若在n k =正确的情况下,能推出1n k =+也正确,便可递推下去.虽然我们没有对所有的自然数逐一的加以验证,但事实上这种递推就已经把所有自然数都验证了.这种方法就是数学归纳法.其步骤是: (1) 验证当0n n =时某命题正确(2) 假设n k =时,命题正确,从而推出当1n k =+时命题也正确.因此原命题正确.其中第一步是递推的基础,解决了特殊性;第二步是递推的依据,解决了从有限到无限的过度,这两步缺一不可,若只有第一步,则属于不完全归纳法;若只有第二步,则失去了假设的基础.对于1n k =+时的证明是整个数学归纳法的重点和难点.3 数学归纳法的七种变式和应用3.1 第一数学归纳法3.1.1 这种方法是我们运用最多的,也是应用最广泛的一种方法.其步骤为[2](18)P :(1) 奠基步骤:证明当n 取第一个允许值0n 时,结论正确 .注意0n 不一定是1,也可能是其他的自然数.(2) 递推步骤:假设当n k =(0,k N k n ∈>)时结论正确,并以此来证明1n k =+时结论也正确.由步骤(1)、(2)得出结论:命题对于从0n 开始的一切自然数均成立. 3.1.2 例题解析 例1 求证1111223(1)1nn n n ++⋅⋅⋅+=⨯⨯++ (n N ∈) 证明 (1) 当1n =时,111211=⨯+这显然是成立的. (2) 假设n k =时命题正确;即:1111223(1)1kk k k ++⋅⋅⋅+=⨯⨯++ 则当1n k =+时,11111223(1)(1)(2)k k k k ++⋅⋅⋅++⨯⨯+++ 11(1)(2)k k k k =++++ (2)11(1)(2)2k k k k k k +++==+++所以,对于所有的自然数n ,等式都成立.例2 求证 111111234212n n -+-+⋅⋅⋅+--111()122n N n n n=++⋅⋅⋅+∈++ 证明 (1) 当1n =时;左边11112211-===+右边. (2) 假设n k =时等式成立,即:111111234212k k -+-+⋅⋅⋅+--111122k k k=++⋅⋅⋅+++ 当1n k =+时,左边1111111(1)2342122122k k k k =-+-+⋅⋅⋅+-+--++11111()1222122k k k k k =++⋅⋅⋅++-++++ 111112322122k k k k k =++⋅⋅⋅+++++++=右边 即1n k =+时等式成立 .由(1)(2)得对于一切*n N ∈等式成立.例3 设n N ∈用数学归纳法证明:224621n n n +++⋅⋅⋅+=++ 证明 假设当n k =时等式成立,即 224621k k k +++⋅⋅⋅+=++ 那么,当1n k =+时,有24622(1)k k +++⋅⋅⋅+++ 212(1)k k k =++++ 2(1)(1)1k k =++++ 这就是说当 1n k =+时等式成立.所以,n N ∈时,224621n n n +++⋅⋅⋅+=++成立.剖析 这是一种错证,缺少第一步.实际上当1n =时等式不成立,题目本身是个错题.不要以为第一步“当1n =时等式成立”无关紧要,可有可无,缺少第一步相当于失去了归纳基础,缺少第一步也会导出荒谬的结论,例如可以证出所有自然数都相等的结论.事实上,假定1k k =+成立,两边各加1就会得出:12k k +=+由此可得出全体自然数相等!例4 1n <+ (*)n N ∈.证明 (1) 当1n =11<+,不等式成立.(2) 假设当n k =1k <+成立那么,当1n k =+2(1)1k k <=+=++这就是说,当1n k =+时成立.综合(1)(2)知原不等式对(*)n N ∈成立.剖析 这种证法是错误的,在数学归纳法的第二步中,在推证1n k =+时命题也成立的时候必须把归纳假设即n k =时的命题作为条件用上,否则就不是数学归纳法了.正解 (1) 当1n =11<+不等式成立.(2) 假设当n k =1k <+,也就是22(1)k k k +<+那么,当1n k =+<2(1)1k k <=+=++就是说,当1n k =+时不等式也成立. 综合(1)(2)知原不等式对n N ∈成立. 3.2 第二数学归纳法 3.2.1[2](58)P 通过仔细学习数学归纳法原理,不难发现,如果将归纳假设改写成“假设当n k≤时,命题成立”,那里的证明仍可通过,这就启发我们在必要的时候,可以将归纳假设中的“n k =”改写为“n k ≤”事实上在很多问题的证明中,我们就是这么做的.这种假设形式的数学归纳法称作第二数学归纳法.3.2.2 例题剖析 例5[2](60)P 证明每一个正整数都可以表示成互不相同的斐波那契数列之和.证明 首先来看一下关于斐波那契数列,所谓的斐波那契数列是按照法则:12211,(1)n n n M M M M M n ++===+≥所定义的数列.当1n =时,有11M =知原命题成立.假设当n k ≤时,命题成立,要证对1n k =+时命题成立,也就是要证明1k +可以表示成不同的斐波那契数列之和.观察斐波那契数列可发现从3M 开始斐波那契数列严格单调上升,故知存在m 使:11m m M k M +≤+<,如果1m k M +=则命题成立;如果1m k M +>,则有01m k M k <+-≤由于1m k M +-是一个不超过k 的自然数,所以由归纳假设知对其命题成立,即可将它表示成互不相同的斐波那契数列之和.又因为111m m m m k M M M M +-+-<-=所以用以表示(1)m k M +-的斐波那契数均小于1m M -,因此都不与m M 相同,当将1k +写成m M 与这些数的和之后,即得到了1n k =+时的命题,可见对1n k =+,命题也成立,所以对一切自然数n 命题都成立.在这里,由于我们是对(1)m k M +-使用归纳假设而(1)m k M +-并不一定就等于k ,而是有可能小于k .所以若采用“n k =”的归纳假设形式就会很麻烦了.例6 已知对一切,0,n n N a ∈>且3211()nnjj j j aa ===∑∑,证明 n a n =.证明 当1n =时由3211a a =及0n a >,知11a =,命题成立.假设当n k ≤时,命题已成立,即有,1,2,,j a j j k ==⋅⋅⋅.要证,也有11k a k +=+,此时,一方面有:3333121k k a a a a +++⋅⋅⋅++23121()k k a a a a +=++⋅⋅⋅++,另一方面有 3333121k k a a a a +++⋅⋅⋅++2121()k k a a a a +=++⋅⋅⋅++22121121()2()k k k k a a a a a a a a ++=++⋅⋅⋅++++⋅⋅⋅++ 比较上述两式:即得:32111212()k k k k a a a a a a +++=++⋅⋅⋅++将121,2,,k a a a k ==⋅⋅⋅=代入其中,得到32111(1)k k k a k k a a +++=++又因为1k a +0>故由上式可得211(1)0k k a a k k ++--+=解此方程,得到11k a k +=+或1k a k +=-.由于10k a +>知1k a k +=-(舍).因此:1k a k +=+1从而知1n k =+时,命题也成立,所以对一切自然数都有n a n =.本题采用“n k ≤”的假设,在通过方程求解1k a +的过程中我们首先遇到的化简方程的问题,而这里面首先就是一个对12k a a a ++⋅⋅⋅+求和的问题,为了求出这个和数,离开了“命题已对n k ≤全都成立”的假设,问题就不好解决了.3.3 逆向数学归纳法 3.3.1这种命题的表述为[3](185)P :如果: (1) 对任一自然数n ,总有0n n ≥使0()p n 真.(2) ()p k 真⇒(1)p k -真. 那么,()p n 对一切自然数n 真.这种方法也可以形象地称为“留空回填”第一步证明了有无数个自然数n x 使()n p x 真(1,2,3n =⋅⋅⋅)剩下的就是()1,n n x x -上的自然数尚未证明,再由第二步,有()n p x 真⇒ (1)n p x -真⇒ … ⇒ 1(1)n p x -+真,这就把“空”填上了,所以这里的逆向倒推暗藏着正向推进的一面.3.3.2 例题解析例7 求证n 个非负数的几何平均数不大于它们的算术平均数. 证明分析 n 个非负数的几何平均数是112()nn a a a ⋅⋅⋅ 算术平均数是12na a a n++⋅⋅⋅+本题就是证明:11212()nnn a a a a a a n++⋅⋅⋅+⋅⋅⋅≤(1)证明 当1n =是,(1)式显然是成立的,如果12,,,n a a a ⋅⋅⋅里面有一个等于0,(1)式也是成立的.当2n =时,(1)式是112212()2a a a a +≤ 这可以由112212()0a a -≥推出,现在我们来证明当2pn =,p 是任意自然数的时候,定理都是成立的.假设当2kn =的时候(1)式是成立的,那么1112122()k k a a a ++⋅⋅⋅111122212221222[()()]kkkkkk a a a a aa +++=⋅⋅⋅⋅⋅⋅11122122212221[()()]2k kk kkk a a a a aa +++≤⋅⋅⋅+⋅⋅⋅1122212221[]222k kkk k ka a a a a a +++++⋅⋅⋅+++⋅⋅⋅+≤+112212k k a a a ++++⋅⋅⋅+= 所以当12k n +=的时候(1)式也成立.因此当2pn =,p 是任何自然数的时候(1)式都是成立的.进一步在推到一般的n ,我们在假设当n k =的时候(1)式成立的前提,下面来证明:当1n k =-时,它也成立. 取1211k k a a a a k -++⋅⋅⋅+=-,因为当n k =的时候(1)式是成立的.所以1211k a a a k -++⋅⋅⋅+-121k ka a a a k-++⋅⋅⋅++=1121()k k k a a a a -≥⋅⋅⋅1121121[]1k k k a a a a a a k --++⋅⋅⋅+=⋅⋅⋅-两边同时除以1121[]1k k a a a k -++⋅⋅⋅+-得11121121[]()1k k k k k a a a a a a k ---++⋅⋅⋅+≥⋅⋅⋅- 由此得11211121()1k k k a a a a a a k ---++⋅⋅⋅+≥⋅⋅⋅- 即得所证. 至此命题已得到了完全的证明.3.4 有限项数学归纳法 3.4.1 这一证法的步骤是[3](183)P :设m 为一给定的自然数如果:(1) (1)p 真;(2) ()p k 真(1)k m ≤<(1)p k ⇒+真; 那么()p n 对不超过m 的自然数n 真. 3.4.2 例题解析例8 已知,m n N ∈且3n m ≥≥ 求证:(1)mmmn n ≥+.证明 对m 用数学归纳法.(1) 当3m =时,33332323326331(1)n n n n n n n n n =+≥+>+++=+命题成立. (2) 设m k n =<命题成立.即(1)k k kn n ≥+ 则1(1)(1)()()k k k k k n k nn kn n kn k n ++=+=+≥+1(1)(1)(1)(1)k k k n kn n n n +=+>++=+这表明1m k =+时命题成立.所以原不等式成立. 3.5 跳跃式数学归纳法 3.5.1这一变式的证法步骤是[3](184)P :如果:(1)p(1),(2),,()p p m ⋅⋅⋅真;(2)()p k 真()p k m ⇒+真,那么()p n 对一切自然数n 真.3.5.2 例题解析例9 设01a <<.定义 11a a =+;11n na a a +=+ (1)n ≥ 证明;对一切n 有1n a >. 证明 (1)当1n =时,11a a =+>1命题成立.当2n =时,2221111111a a a a a a a a++=+==+>++, 命题成立. (2)假设n k =时,命题成立,1k a > 则221111111111k k k a a a a a a a a a a a ++++=+=+>+=>+++这就表明2n k =+时命题成立. 所以原命题成立.剖析 这一方法的主要证明思路是:当1,2,,n l =⋅⋅⋅时,这个命题都是成立的,并且证明了“假设当n k =时,这个命题正确,那么当n k l =+时这个命题也正确”于是当n 是任何自然数时,这个命题都是正确的. 3.6 翘翘板归纳法3.6.1 这一变式的方法是[4](34)P :有两个命题,n n A B 如果“1A 是正确的”、“假设k A 是正确的,那么k B 也是正确的”、“假设k B 是正确的,那么1k A +也是正确的.”那么,对于任何自然数n ,命题,n n A B 都是正确的.3.6.2 例题解析 例10[4](34)P 在级数137121927374861+++++++++⋅⋅⋅里,如果n a 是它的第n 项,那么:223n a n =,213(1)1n a n n -=-+这里n 是大于或者等于1的整数.求证:2211(431)2n S n n n -=-+ 221(431)2n S n n n =++ 证明 令n A =2211(431)2n S n n n -=-+ n B =221(431)2n S n n n =++.显而易见1n =时. 11A =是正确的.假设2211(431)2k S k k k -=-+,那么222211(431)3(431)22k S k k k k k k k =-++=++ 这就是说,假设假设k A 是正确的,那k B 也是正确的.又假设221(431)2k S k k k =++,那么2211(431)3(1)12k S k k k k k +=+++++ 21(1)[4(1)3(1)1]2k k k =++-++因此对于任何自然数n ,命题,n n A B 都是正确的. 即原命题正确.3.7 超限归纳法这一变式是为了证明某些特殊命题的需要,将数学归纳法从正整数集推广至所有良序集而得到的.本文对这一变式只给出原理以便读者了解这种方法,就不再给出例题及证明了.超限归纳法原理:设(,)S ≤是一个良序集,()p x 是与元素x S ∈有关的一个命题:(1) 如果对于S 中的最小元0a ,0()p a 成立.(2) 假定对于任何x a <,()p x 成立,可证明()p a 也成立.则()p x 对于任何x S ∈都成立.4 数学归纳法的简单应用及证法技巧数学归纳法在数学上是很常用的方法,很多命题都可以用这种方法加以证明,请看下例: 例11 设{}n x 是由12x =,11(*)2n n nx x n N x +=+∈定义的数列.求证:1n x n<<成立. 分析由于112n n n x x x +=+>=n x >剩下的只要证1n x n<即可,考虑到其右边是一个与n 有关的代数式.故试用数学归纳法证之.证明 (1) 当1n =时,11x <,不等式成立.(2) 设(1)n k k =≥时,不等式成立,即1k x k<,那么,1n k =+时 由112k k k x x x +=+和归纳假设,知1k x k <,所以122k x k<+ ①111kx k>②,因①,②不为同向不等式,无法完成从k 到1k +的证明. 事实上,要证明1n k =+时命题成立,只有找到关系1kA x <才能推导下去,所以,寻觅出1k x A<中的A是此题的关键所在.如果我们注意到本题开头已证n x >了.k x >, 因为1k x <所以1111221k k k x x x k k +=+<<+ 即1k x +<11k +. 例12 已知n 个圆中每两个圆都相交于两点,且无三个圆过同一点,用数学归纳法证明:这n 个圆将平面分成22n n -+块区域.分析:用数学归纳法证明几何问题时,关键是要把n k =时和1n k =+时之间的关系弄清楚. 证明 (1)当1n =时,1个圆将平面分成2块区域,而22112=-+,所以命题正确. (2)假设n k =时命题正确,即满足条件的k 个圆将平面划分成22k k -+块区域.当1n k =+时,平面上增加了2k 个交点,而这2k 个点将1k +个圆分成2k 段弧,每块弧将原来的一块区域割成了两块区域,所以平面上增加2k 块区域,所以1k +圆将平面划分成222(2)22(1)(1)2k k k k k k k -++=++=+-++块区域.所以1n k =+时命题正确,由(1)(2),得命题对一切*n N ∈都正确.例13 设*n N ∈,用数学归纳法证明:23111112222n +++⋅⋅⋅+<. 证明 (1)当1n =时,不等式显然成立.(2)假设当n k =时不等式成立,即23111112222k +++⋅⋅⋅+< 那么,当1n k =+时,有231231111111111111()112222222222222k k k ++++⋅⋅⋅++=++++⋅⋅⋅+<+⨯= 这就是说,当1n k =+时不等式成立. 综合(1)(2)知原不等式成立.剖析 在将归纳假设“23111112222k +++⋅⋅⋅+<”作为条件证明, “23111111122222k k ++++⋅⋅⋅++<”时,应设法从2311111122222k k ++++⋅⋅⋅++中配凑出 2311112222k +++⋅⋅⋅+.但若按“23111111111222222k k k +++++⋅⋅⋅++<+”要其小于1则显然是不可能!至此,有的初学者会认为此题不能用数学归纳法,其实不然,只是配凑不恰当而已. 5 学好数学归纳法的几种方法5.1 学会从头看起在数学归纳法中,最原始而又不失去重要性的地方,便是从头做起.也就是1,2,3n =的 情形,向这些简单的情形讨教是最合算的,也是最可靠的.事实上,在很多问题上,如果真把这些最开头的几步看透了弄清了,想仔细了,那么解决的办法也就有了.在数学归纳法中更是如此.若失去了基础步骤也就是第一步,可能会得出荒谬的结论.所以说基础的也是最重要的. 5.2 在起点上下功夫起点的重要不仅仅表现在验证,而是其对后面归纳过度的启示.有时我们也会遇到一些问题,在其归纳的第一步上就很难,需要认真地下一番功夫,需要开阔思路,寻找合理的切入点.如:在第一步我们证明1n =成立.而第二步的证明中需要验证2n k =+这时我们的第一步就出问题了.第一步不仅要证1n =成立,还要证2n =时成立才能满足第二步的需要. 5.3 正确选择起点和跨度在数学归纳法的基本形式之下,第一步通常总是由验证0()p n 做起,这叫做“起步”, 0n 叫做“起点”,在通常情况下,起点一般只有一个.第二步则通常是由()p k 推出(1)p k +,或者说是由“n k =”跨到“1n k =+”,即每次跨一步.换句话说通常是以“跨度1”前进的,那么,这是不是说这种安排起点和跨度的方式一定不能改变的呢?显然不是的,人们可以根据问题的需要对起点和跨度作灵活而适当的安排.不过需要注意的是绝对不能造成逻辑上的漏洞.事实上,前面我们说到的跳跃式归纳法就是灵活而又恰当的安排了起点和跨度.5.4 选择适当的归纳假设形式在数学归纳法中,归纳假设总是以“假设当n k =时命题成立”的形式出现的.其实,这并不是归纳假设的唯一形式,前文我们所谈到的“有限项归纳法”和“第二数学归纳法”都是灵活地选取了归纳假设形式.5.5 非常规的归纳途径在数学归纳法的递推步骤中,无论是常规的一步一跨,由n k =到1n k =+;还是加大跨度数步一跨;甚至改变归纳假设形式,使得可由某个n k ≤跨至1n k =+;归纳中的进军路线都是一直-----WORD格式--可编辑--专业资料-----向前,只进不退的但有的时候,这种强硬方针导致一定的困难.这时,就应当采取较为灵活的态度,改变只进不退的进军路线,采用有进有退,进退结合的方式选取一条合适的归纳途径.这种方法就是我们前文说到的逆向归纳法,这种归纳途径往往是不甚规则的,在处理诸如此类的问题时,便要求我们在归纳途径的选择上持较为灵活的态度.5.6 合理选取归纳对象这种方法的运用上涉及的范围较广,只希望读者了解有这么一种方法而已.事实上,我们有时会遇到一些问题,其中的变量不止一个.甚至并不直接与自然数n有关,这时就要求我们对该问题合理的分析对归纳对象作出合理的安排与选择.总之,数学归纳法的应用比较广泛,方法也很多,可以讲凡是关系到自然数的结论都可以用它来验证.学习和应用数学归纳法能够培养学生的运算能力、观察能力、数学化能力、逻辑思维能力和解决综合问题能力.另外,数学归纳法也是初等数学与高等数学衔接的一个纽带.--完整版学习资料分享----。

数学归纳法的变式及应用

数学归纳法的变式及应用

61……设 a n 为其第n项,S n 为其前n项的和,其中
a 2 l 3 l2,a 2 l 1 3 ll 1 1求证:
S 2 l 1 1 2 l4 l2 3 l 1,S 2 l 1 2 l4 l2 3 l 1.
证明:令 A n 为 S2n11 2n4n23n1 ;
为 为 B n
S2n
设 p n 是一个关于自然数n的命题,如果 (1) p n 对无穷多个自然数成立; (2) 假设 p n 对于自然数k正确,就能推出 命题对自然数k-1正确; 那么,p n 对任意自然数n都成立。
例 求证n个正实数的算术平均值大于或等 于这n个数的几何平均值,即
a1a2 n anna1a2 an
法证明,反之亦然。
3.数学归纳法的变式
1 跳跃归纳法 跳跃归纳法的基本形式为:
设 p n 是一个关于自然数n的命题,如果 (1) p1、 p2、pl成立;
(2) 假设对于自然数k正确,就能推出命题对自然
数k+l正确;
那么,p n 对任意自然数都成立。
2 反归纳法(倒推归纳法)
反归纳法的基本形式为:
为真。
(2) 对于任意自然数n 15,假定命题 p n 为真 即可以用4分和5分邮票来组成k(15kn)分邮
资。 为了组成n+1分邮资,用组成n-3分邮资的邮 票加上1个4分邮票就可以了。
两类数学归纳法是等价的
第一数学归纳法和第二数学归 纳法是等价的,即用第一数学归纳
法证明的 p n 可以用第二数学归纳
设 p n 是一个关于自然数n的命题,如果
(1) p 1 成立;
(2) 假设 p n 对于所有适合n<k的正整
数n成立,则 p k 也成立; 那么,p n 对任意自然数n都成立。

数学归纳法原理:【第二归纳法】【跳跃归纳法】【反向归纳法】

数学归纳法原理:【第二归纳法】【跳跃归纳法】【反向归纳法】

数学归纳法原理(六种):【第二归纳法】【跳跃归纳法】【反向归纳法】一行骨牌,如果都充分地靠近在一起(即留有适当间隔),那么只要推倒第一个,这一行骨牌都会倒塌;竖立的梯子,已知第一级属于可到达的范围,并且任何一级都能到达次一级,那么我们就可以确信能到达梯子的任何一级;一串鞭炮一经点燃,就会炸个不停,直到炸完为止;……,日常生活中这样的事例还多着呢!数学归纳法原理设P(n)是与自然数n有关的命题.若(I)命题P(1)成立;(Ⅱ)对所有的自然数k,若P(k)成立,推得P(k+1)也成立.由(I)、(Ⅱ)可知命题P(n)对一切自然数n成立.我们将在“最小数原理”一章中介绍它的证明,运用数学归纳法原理证题的方法,是中学数学中的一个重要的方法,它是一种递推的方法,它与归纳法有着本质的不同.由一系列有限的特殊事例得出一般结论的推理方法,通常叫做归纳法,用归纳法可以帮助我们从具体事例中发现一般规律,但是,仅根据一系列有限的特殊事例得出的一般结论的真假性还不能肯定,这就需要采用数学归纳法证明它的正确性.一个与自然数n有关的命题P(n),常常可以用数学归纳法予以证明,证明的步骤为:(I)验证当n取第1个值no时,命题P(no)成立,这一步称为初始验证步.(Ⅱ)假设当n=k(k∈N,后≥no)时命题P(k)成立,由此推得命题P(k+1)成立.这一步称为归纳论证步.(Ⅲ)下结论,根据(I)、(Ⅱ)或由数学归纳法原理断定,对任何自然数(n≥no)命题 P(n)成立.这一步称为归纳断言步,为了运用好数学归纳法原理,下面从有关注意事项与技巧及运用递推思想解题等几个方面作点介绍.运用数学归纳法证题时应注意的事项与技巧三个步骤缺一不可第一步是递推的基础,第二步是递推的依据,第三步是递推的过程与结论.三步缺一不可.数学归纳法的其他几种形式还有:第二数学归纳法;跳跃数学归纳法;倒推数学归纳法(反向归纳法);分段数学归纳法二元有限数学归纳法;双向数学归纳法;跷跷板数学归纳法;同步数学归纳法等。

第 11 讲 数学归纳法(第1课时-证题原理及步骤)

第 11 讲 数学归纳法(第1课时-证题原理及步骤)

第 11 讲 数学归纳法-证题原理及步骤(第1课时)数学归纳法⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧+==明探索性问题的猜想与证有关整除问题的证明等式或不等式证明数学归纳法的应用时命题成立推证时命题成立假设验证初始值数学归纳法证明的步骤推思想)数学归纳法的原理(递1k n k n n 重点:1.数学归纳法的原理与证题步骤;2.数学归纳法的应用。

难点:1.归纳、猜想、证明猜想;2.由k n =时的命题成立推证1+=k n 时的命题成立。

2.能进行一些探索性问题的归纳、猜想与证明,初步形成“观察→归纳→猜想→证明”的思维方法。

主要为证明不等式、恒等式以及整除这三个方面的应用,考题又常以数列问题为背景,将数学归纳法证与一些探索性问题综合起来考察。

⑴ 定义按下述步骤证明一个与自然数有关的数学命题的方法叫做数学归纳法: ① 验证当n 取第一个值时这个命题成立;② 假设当k n =,命题成立,然后证明当1+=k n ,命题也成立。

⑵ 数学归纳法与不完全归纳法的区别与联系 归纳是一种由特殊事例导出一般原理的思维方法。

归纳推理分完全归纳推理与不完全归纳推理两种。

不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。

完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。

数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在数学解题中有着广泛的应用。

它是一种递推的数学论证方法,论证的第一步是证明命题在n =1(或n 0)时成立,这是递推的基础;第二步是假设在n =k 时命题成立,再证明n =k +1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。

这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或n ≥n 0且n ∈N )结论都正确”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

---------------------------------------------------------------最新资料推荐------------------------------------------------------1.5 归纳法原理与反归纳法1.5 归纳法原理与反归纳法数学归纳法是中学教学中经常使用的方法.中学教材中的数学归纳法是这样叙述的:如果一个命题与自然数有关,命题对 n=1 正确;若假设此命题对 n-1 正确,就能推出命题对n 也正确,则命题对所有自然数都正确.通俗的说法:命题对 n=1 正确,因而命题对 n=2 也正确,然后命题对 n=3 也正确,如此类推,命题对所有自然数都正确.对于中学生来说,这样形象地说明就足够了;但是毕竟自然数是无限的,因而上述描述是不够严格的,有了皮阿罗公理后,我们就能给出归纳法的严格证明.定理 1.19 如果某个命题T,它的叙述含有自然数,如果命题T对 n=1 是正确的,而且假定如果命题T对 n 的正确性就能推出命题T对 n+1 也正确,则命题T对一切自然数都成立.(第一数学归纳法)证明设M是使所讨论的例题T正确的自然数集合,则 M1.设Mn ,则命题T对 n 正确,这时命题对(2) Mn 所以由归纳公理D,M含有所有自然数,即命题T对所有自然数都成立.下面我们给出一个应用数学归纳法的命题.例1求证(1) nn=+1也正确,即6)证明 (1)当 n=1 时,有 16) 112 () 11 (112=+++= 所以 n=1,公式正确. (2)假设当 k=n 时,公式正确,即那么当 k=n+1时,有1 / 912)(1(nnnn =++++6) 1( 6) 12)(1(2nnnn =+++6+)]1( 6) 12 (n)[1(nnn =+++6) 672)(1(2nnn =+++6+6) 32)(2)(1(nnn =++++) 1) 1( 2)(1) 1)((1(nnn 所以公式对 n+1 也正确.在利用数学归纳法证明某些命题时,证明的过程往往归纳到 n-1 或 n-2,而不仅仅是 n-1,这时上述归纳法将失败,因而就有了第二数学归纳法.在叙述第二归纳法以前,我们先证明几个与自然数有关的命题. ba ,则cbca++.证明因为ba 所以kba+=命题1若kcbckbca++=++=+)( 所以命题21是自然数中最小的一个.1a,则 a 有前元b,所以cbca++ 证明若.)1( 1+,==abaab 命题 3 若(即数 a 与 a +1是邻接的两个数,中间没有其他自然数,不存在 b,使得ab ,则kab+=.因为1k,所以1++aka,即由上述有关自然数大小的命题,我们得出下面定理,有时也称为最小数原理. ab ,则1+ ab. aba+1.)证明若1+ ab.定理 1.20 自然数的任何非空集合A含有一个最小数,即存在一个数合A中任意数 b,均有ab .证明设 M 是这样的集合:对于 M 中任意元素Mm,对 A 中任意元素 a ,均有 Aa ,使得对集ma 则 M 是非空集合. M1但Mm m现在我们证明因为,由归纳公理(4)知,一定存在一个元素Mm+1, MmM得M=N,这显然不可能. Am.因为若 Mm.,即否则由Am,则A中任意元素ma 1+ ma 所以Mm+1,与Mm+1矛盾,所以 m 即为A中最小元---------------------------------------------------------------最新资料推荐------------------------------------------------------ 素.上述定理也称为最小数原则,有的作者把它当成公理,用它也可以证明数学归纳法,下面我们给出所谓第二数学归纳法.(第二数学归纳法)定理 1.21 对于一个与自然数有关的命题T,若(1)当 n=1时命题T正确; (2)假设命题 T 对kn 正确,就能推出命题 T对则命题 T对一切自然数正确. kn =正确.证明如果命题T不是对所有自然数都成立,那么使命题不成立的自然数集合M就是非空集合,由定理 1.20,M中含有一个最小数 k,且命题 T成立,又由(2)推出命题 T 对 k 正确.结论矛盾.下面我们给出两个只能应用第二数学归纳法而不能应用第一归纳法解题的例子. 1k(∵k=1 命题正确),所以对一切kn ,例2已知数列,有 2123=nnnaaa且 2,2301==aa 求证12 +=nn a.证明对 n=1,有122322323101+===aaa 所以命题对 n=1 正确.假设命题对kn 正确,则=++==) 12 ( 2) 12 ( 3232121kkkkkaaa 122232311+=+kkk 所以命题对 n=k 正确.由第二数学归纳法本题得证.例3已知任意自然数Nn 均有2113}{i=i==niniaa (这里0ia)求证nan= 证明 (1)当 n=1 时,由2131aa =,得11=a 所以命题对 n=1 正确. (2)假设对kn 命题正确,这时,当n=k+1 时,3k1123k113113)(+=+=+=+=+=iiikikikiaaaaa (1) 但是=+==+=+=+=iii211112113)()(kkikikiaaaa2k111112)( 2)(+++==++ ikkiikiaaaa (2) 又因为归纳假设对3 / 9kn 命题正确,所以所以2) 1(1+==ikkaki 由(1)和(2)式得 2k1113k12+=+++=ikikaaaa 消去1 +k a,得 12k1) 1(++++=kakka 解得 kakakk=+=++11(1舍去)所以命题对 n=k+1 也正确.上边的两个例子,实际上例2命题归结到 n-1 和 n-2,而例3则需要归结到 1,2,k,由此可见,第二数学归纳法的作用是不能由第一归纳法所替代的.现在我们继续讲数学归纳法.当然,归纳并一定从 n=1 开始,例如例2数列的例子,也可以从某数 k 开始.数学归纳法还有许多变形,其中著名的有跳跃归纳法、双归纳法、反归纳法以及跷跷板归纳法等,下面我们就逐个介绍这些归纳法.跳跃归纳法若一个命题T对自然数都是正确的;如果由假定命题T对自然数k 正确,就能推出命题T对自然数证明因为任意自然数 lk + 正确.则命题对一切自然数都正确. lrrqln+=0 由于命题对一切lr 0中的 r 都正确,所以命题对都正确,因而对一切 n 命题都正确.下面我们给出一个应用跳跃归纳法的一个例子.例 4 求证用面值 3 分和 5 分的邮票可支付任何 n(n8 )分邮资.证明显然当 n=8,n=9,n=10 时,可用 3 分和 5 分邮票构成上面邮资(n=8 时,用一个 3分邮票和一个 5 分邮票, n=9 时,用 3 个3 分邮票, n=10 时,用 2 个 5 分邮票).下面假定 k=n 时命题正确,这时对于 k=n+3,命题也正确,因为 n 分可用 3 分与 5 分邮票构成,再加上一个 3 分邮票,就使3+n分邮资可用 3 分与5 分邮票构成.由跳跃归纳法知命题对一切 n8都成立.下面我---------------------------------------------------------------最新资料推荐------------------------------------------------------ 们介绍双归纳法,所谓双归纳法是所设命题涉及两个独立的自然数对(m,n),而不是一个单独的自然数 n.双归纳法若命题T与两个独立的自然数对 m 与 n 有关, (1)若命题T对 m=1 与 n=1 是正确的; (2)若从命题T对自然数对(m,n)正确就能推出该命题对自然数对(m+1,n)正确,和对自然数对(m,n+1)也正确.则命题T对一切自然数对(m,n)都正确.关于双归纳法的合理性证明我们不予说明,只给出一个例子.例5求证对任意自然数 m 与 n 均有 nnmm2 证明 (1)当1, 1==nm时,命题显然正确,即12 ,12111 (2)设命题对自然数对 m 与 n 正确,即 nnmm2 这时nnnnnnmnmmmm) 1()2 (2222) 1+(+== 即命题对数对(m+1,n)正确;另一方面 mmmmmnmnmnnn) 1+()2 (2222) 1+(== 即命题对数对(m,n+1)也正确,由双归纳法知,命题对一切自然数对(m,n)都成立.反归纳法若一个与自然数有关的命题T,如果 (1)命题T对无穷多个自然数成立; (2)假设命题T对 n=k 正确,就能推出命题T对 n=k-1 正确.则命题T对一切自然数都成立;上述归纳法称为反归纳法,它的合理性我们做如下简短说明:设M是使命题T不正确的自然数,如果M是非空集合,则M中存在最小数 m,使得命题T对 k=m 不正确;由于命题对无穷多个自然数正确,所以存在一个mn 0,且命题 T对0 n正确;由于命题 T 对 m 不正确,所以命题对1+=mm也不正确,否则由命题T对1+=mm正确就推出命题 T对 m 正确.矛盾!这样,命题T对5 / 9m+2 也不正确,经过mn 0次递推后,可得命题T对0 n 也不正确.这与已知矛盾,所以M是空集合.反归纳法又称倒推归纳法,法国数学家柯西(1789-1857)首次用它证明了 n 个数的算术平均值大于等于这 n 个数的几何平均值.例 6 求证 n 个正实数的算术平均值大于或等于这n 个数的几何平均值,即证明当 n=2 时, 21212aaaa+ 因此命题对n=2 正确.当n=4 时,443212432214321)4()2()2(aaaaaaaaaaaa+++++ 因此命题对 n=4 正确同理可推出命题对 n=23=8, n=24,, n=2s都正确(s 为任意自然数),所以命题对无穷多个自然数成立.设命题对 n=k 正确,令+++=k则(容易证明上述是一个恒等式.)由归纳假设命题对n=k 正确,所以112111211)(++++=kk所以即命题对n =k-1 也正确,由反归纳法原理知,命题对一切自然数成立.由于上述不等式是著名不等式,我们再给出几种证明:前已证明,命题对n=2m时正确,设n<2m,令这时我们有=+++=mmmmmnnnbbbSaaabbbb2221mmssnnsmm22)2)2 ((=+ 即命题对 n<2m正确利用数学归纳法证明不妨设 n 个数为,显然当 n=1 时命题正---------------------------------------------------------------最新资料推荐------------------------------------------------------7 / 9确. 设命题对kn =正确, 令 则 因为kksa+1, 所以 011++ksakk+)1)1(11k111111ksaSCSksaSSkkkkkkkkkkkk所以命题对 n=k+1 正确, 由第一归纳法知, 命题对一切自然数成立. 另一个有趣的证明是由马克罗林给出的, 我们知道, 若保持saa=+21和不变, 以221aa +分别代替1a 和2 a , 这时两个数2+21aa +的和仍然是 s ,但两个数的积却增加了, 即 21221)2(aaaa 实际上两个数的算术平均值大于几何平均值, 只有当两个数相等时才有等号成立. 现在我们变动诸数, 但保持它们的和不变, 这时乘积 必 然 在时取极大值. 因为 若jiaa =, 用2jiaa +分别 代替ia与j a 则仍然不变, 但它们的乘积却增加了. 而当时, 所以 n 个数的算术平均值大于等于几何平均值. 下面我们给出应用上述不等式的例子. 例7 在体积一定的圆柱形中, 求其中表面积最小的一个(即在容积一定罐头中, 求表面积最小的一个). 解设圆柱的高为 x , 底圆半径为 y , 体积为V=常数, 表面积为S ,则 2xyV= 222yxyS+= 其中V为常数, 欲求S 的极小值. 已知22222yxyxyyxyS++=+=, 所以 22232yxyxyyxyxy++ 即2422322)3(VyxS= 显然只有当22 yxyxy==时,S取最小值.即当x=2y 时,S值最小.例8求证在所有具有相同面积的凸四边形中,正方形的周长最短.证明用 abcd 表示四边形的四条边,ϕ为 a 与 b 的夹角,ϕ为 c 与 d 的夹角,如图1―1.用A表示四边形的面积,则) 2 (cos2cos2) 1ϕϕϕϕcddcabbacdabA+=++= 由(2)式得ϕϕϕϕsinsin8sin4sin4162222222abcddcbaA++=ϕϕϕϕϕcoscos84cos4)cos2cos2()(2222222222abcddcbacdabdcba+==+ 由(1)式得=++222222)(16dcbaA =++)coscossin)(sin( 8442222ϕϕϕϕabcddcba cos8442222abcddcba+ 其中ϕϕ+= 再利用半角公式12cos2cos2=,得=++222222)(16dcbaA =+) 12cos2)(( 84422222abcddcba 2cos16)( 42abcdcdab+ 所以2cos16)()( 41622222222abcddcbacdabA++= =2cos16)]()( 2)][()( 2 [222222222+++++dcbacdabdcbacdab=22cos16])()][()()[(2222abcddcbabadc++=2cos16))()()((2abcddcbacdbabdacabdc++++++++ 如令==+++pdcba2四边形周长,得2cos))()()((2cos16))()()((16162222abcddpcpbpapAabcddpcpbpap A== 因为02cos2abcd,所以 =++4+42)())()()((dpcpbpapdpcpbpapA 44)2()424(ppp= 42)2(PA 要使 p 最小(A 为常数),只有当上式取等号时.即当 dcba===,且90, 02cos2== ,这样的四边形只---------------------------------------------------------------最新资料推荐------------------------------------------------------9 / 9 能是正方形. 最后, 我们给出跷跷板归纳法. 有两个与自然数有关的命题 An 与 Bn , 若 (1)A1成立; (2)假设 Ak 成立, 就推出 Bk 成立, 假设 Bk 成立就推出 Ak+1成立. 则对一切自然数 n, An 与 Bn 都成立. A1 B1 A2这里我们只给出一个例子说明上述归纳法. 例 已知 2,1,1, 1011+=+=naaaaaann 求证 aan1111 证明 令 aaAkk1:, 1:kk aB (1)当 n=1 时, aaaaa=+=111112 所以 A1成立. (2) =++=+=aaaaa11112 aaaaaaa+=+++++1111)1 (1122 所以 A2成立. 设 Ak 成立, 则 1111111=+=++=aaaaaaakk 1k a 即Bk 成立. 若Bk 成立, 则 aaaaaaakk=++=+11111121 即 Ak+1成立. 由跷跷板归纳法知, 一切 An 和 Bn 都成立. 练习 1.5 (1)用数学归纳法证明. (2)求证 Nnnnnnnn=+++),12. (3)已知1x , 且2,, 0nNnx , 求证 nxxn++1)1(.。

相关文档
最新文档