面面平行的性质定理

合集下载

线面平行面面平行的性质与判定定理

线面平行面面平行的性质与判定定理
直线与平面平行的性质 平面与平面平行的性质
提问
一、直线与平面有什么样的位置关系?
1.直线在平面内——有无数个公共点;
2.直线与平面相交——有且只有一个公共点;
3.直线与平面平行——没有公共点。
a
a
a
精面外一条直线和这个平面内的一条直 线平行,那么这条直线和这个平面平行。
线//面
面//面
由a //, 通过构造过直线 a 的平面 与平面
相交于直线b,只要证得a // b即可。
精选课件
17
二、两个平面平行具有如下的一些性质:
⑴如果两个平面平行,那么在一个平面内的所 有直线都与另一个平面平行
⑵如果两个平行平面同时和第三个平面相交, 那么它们的交线平行.
⑶如果一条直线和两个平行平面中的一个相交, 那么它也和另一个平面相交
⑷夹在两个平行平面间的所有平行线段相等
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
精选课件
20
证明:∵α∩γ=a,β∩γ=b ∴aα,bβ ∵α∥β ∴a,b没有公共点, 又因为a,b同在平面γ内, 所以,a∥b
这个结论可做定理用
定理 如果两个平行平面同时和 第三个平面相交,那么它们的交 线平行。
用符号语言表示性质定理:
//=a,=ba//b
想一想:这个定理的作用是什么?
答:可以由平面与平面平 行得出直线与直线平行
小结:一、直线和平面平行的性质定理
如果一条直线和一个平面平行,经过这条直
线的任意平面和这个平面相交,那么这条直线和
交线平行。
a// ,
a
a ,
a // b
b
= b
注意:
1、定理三个条件缺一不可。

线面定理性质

线面定理性质

线面、面面平行和垂直的定理性质
一、线面平行
1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行。

符合表示:
2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

符号表示:
二、面面平行
1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。

符号表示:
变形:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。

符号表示:
(更加实用的性质:一个平面内的任一直线平行另一平面)
三、线面垂直
1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

符号表示:
(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

符号表示:
三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。

2、性质定理:垂直同一平面的两条直线互相平行。

(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。


变形:垂直于同一条直线的两个平面平行
四、面面垂直
1、判定定理:经过一个平面的垂线的平面与该平面垂直。

(如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直)
其他:两个平面相交,如果它们所成的二面角是直角,则这两个平面互相垂直。

2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。

线面、面面平行的判定与性质

线面、面面平行的判定与性质

【线面平行】1.判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.符号表示:ααα//,//,,a b a b a 则⊂⊄.2.直线与平面平行的性质性质定理:如果一条直线与一个平面平行,经过这条直线的任一平面和这个平面相交,那么这条直线和交线平行.符号表示:b a b a a //,,,//则=⋂⊂βαβα3.直线与平面平行的证明方法(1)利用定义:证明直线与平面无公共点.(2)利用直线与平面平行的判定定理:即证明平面外的一条直线与平面内的一条直线平行.(3)利用平面与平面平行的的定义:两个平面平行,则一个平面内的所有直线都平行于另一个平面,即若βαβα//,,//l l 则⊂.【例题与变式】例1.在长方体1111ABCD A B C D -中,1AB BC ==,12AA =,点M 是BC 的中点.点N 是1AA 的中点.求证://MN 平面1A CD ;FEDCAP变式2-1.如图,在四棱锥P ABCD -中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且22PA PD AD ==,若E 、F 分别为线段PC 、BD 的中点.求证:直线EF //平面PAD ;变式2-2.已知,,,E F G H 为空间四边形ABCD 的边,,,AB BC CD DA 上的点,且//EH FG .求证://EH BD .变式2-3.如图,在正方体ABCD D C B A 1111-中,(1)求证:1BC ∥平面11D AB ;(2)若E、F 分别为C D 1、BD 的中点,则EF∥平面11A ADD .H G FE D BAC【面面平行】2.平面与平面平行的判定:定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.符号表示:.//,//,//,,,βαααββ则b a P b a b a =⋂⊂⊂3.平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.【例题与变式】例2.已知m、n 是两条直线,βα、是两个平面,有以下命题:①m,n 相交且都在平面βα、外,βαβαβα//,//,//,//,//则n n m m ;②若βαβα//,//,//则m m ;③若βαβα//,//,//,//则n m n m .其中正确的命题个数是()A.0B.1C.2D.3变式2-1.已知βα、是两个不重合的平面,在下列条件中,可确定βα//的是()A.βα、都平行于直线lB.α内有三个不共线的点到β的距离相等C.l,m 是α内两条直线,且ββ//,//m l D.l,m 是两条异面直线,且ααββ//,////,//m l m l ,例3.如图,在三棱锥S −ABC 中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A 作AF⊥SB,垂足为F,点E,G 分别是棱SA,SC 的中点.求证:(1)平面EFG∥平面ABC;变式3-1.如图所示,在三棱柱1111D C B A ABCD -中,点D,E 分别是BC 与11C B 的中点.求证:平面EB A 1//平面1ADC .1.如图,已知在正方体''''D C B A ABCD -中,对角线'AB 、'BC 上分别有两点E、F,且FC E B ''=求证:(1)EF∥平面ABCD;(2)平面'ACD ∥平面''BC A .。

立体几何常考定理的总结(八大定理)

立体几何常考定理的总结(八大定理)

lmβααba立体几何的八大定理一、线面平行的判定定理:线线平行⇒线面平行文字语言:如果平面外.的一条直线与平面内.的一条直线平行,则这条直线与平面平行. 符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α关键点:在平面内找一条与平面外的直线平行的线...................... 二、线面平行的性质定理:线面平行⇒线线平行文字语言:如果一条直线和一个平面平行,经过..这条直线的平面和这个平面相交..,那么这条直线就和交线..平行. 符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m关键点:需要借助一个经过已知直线的平面,接着找交线。

.......................... 三、面面平行的判定定理:线面平行⇒ 面面平行文字语言:如果一个平面内.有两.条相交..直线都平行..于另一个平面..,那么这两个平面平行. 符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥ 关键点:在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。

................................... 四、面面平行的性质定理: 面面平行⇒线线平行、面面平行⇒线面平行 文字语言:如果两个平行平面同时..和第三..个.平面相交..,那么所得的两条交线..平行. 符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭关键点:找第三个平面与已知平面都相.................交,则交线平行.......文字语言:如果两个平面平行,那么其中一个平面内的任意..一条直线平行于另一个平面.符号语言://,//a a αβαβ⊂⇒ 关键:只要是其中一个平面内的直线就行..................nmAαaBA l βαaβα五、线面垂直的判定定理:线线垂直⇒线面垂直文字语言:如果一条直线和一个平面内.的两.条相交..直线垂直..,那么这条直线垂直于这个平面. 符号语言:,a ma n a m n A m n ααα⊥⎫⎪⊥⎪⇒⊥⎬⋂=⎪⎪⊂⊂⎭关键点:在平面内找两条相交直线与所要证的直线垂直........................ 六、线面垂直的性质定理:线面垂直⇒线线垂直文字语言:若一条直线垂直于一个平面,则这条直线垂直平面内的任意..一条直线. 符号语言:l l a a αα⊥⎫⇒⊥⎬⊂⎭关键点:往往线面垂直中的线线垂直需要用这个定理推出......................... 七、平面与平面垂直的判定定理:线面垂直⇒面面垂直文字语言:如果一个平面经过..另一个平面的一条垂线,则这两个平面互相垂直. (如果一条直线垂直于一个平面,并且有另一个平面经过这条直线,那么这两个平面垂直)符号表示:a a ααββ⊥⎫⇒⊥⎬⊂⎭关键点:....在需要证明的两个平面中找线面垂直................八、平面与平面垂直的性质定理:面面垂直⇒线面垂直文字语言:如果两个平面互相垂直,那么在一个平面内垂直..于它们的交线..的直线垂直于另一个平面.符号语言:l AB AB AB lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭关键点:先找交线,再在其中一个面内找与交线垂直的线。

04空间面面平行的判定与性质

04空间面面平行的判定与性质

空间面面平行的判定与性质北京四中 李伟一、空间的平行关系——线线判定公理4:平行于同一条直线的两条直线互相平行符号语言: //////a b b c a c ⎫⇒⎬⎭线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.符号语言: ////l l l m m ⎫⎪⊂⇒⎬⎪=⎭αβαβ一、空间的平行关系——线面判定判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.符号语言: ////a b a a b ⊄⎫⎪⊂⇒⎬⎪⎭ααα二、空间的平行关系——面面平行2.判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.符号语言: //////a b a b P a b ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭αααβββ证明:符号语言: //////a b a b P a b ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭αααβββ推论:如果一个平面内的两条相交直线分别平行于另一个平面的两条直线,那么这两个平面平行。

符号语言: //////a b a b P m n a m b n ⊂⎫⎪⊂⎪⎪=⎪⊂⇒⎬⎪⊂⎪⎪⎪⎭ααβαββ3.性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行.符号语言: ////m m n n ⎫⎪=⇒⎬⎪=⎭αβαγβγ证明线线平行的方法3典型例题例1点P 是△ABC 所在平面外一点,123,,G G G 分别是△PBC ,△APC ,△ABP 的重心,求证:面123//G G G 面ABC .证明:例2 如图,平面//αβ,线段AB 分别交,αβ于,M N 两点,线段AD 分别交,αβ于,C D 两点,线段BF 分别交,αβ于,F E ,若9,11,15,78FMC AM MN NB S ====,求END 的面积.解析:若AM BN =,求证:END FMC S S =.例3已知:正方形ABCD 与正方形ABEF 不共面,M 在DB 上,N 在AE 上且AN =DM .求证:MN ∥面BCE .证法一:证法二:证法三:。

平面几何常考定理总结(八大定理)

平面几何常考定理总结(八大定理)

lmβααba立体几何的八大定理一、线面平行的判定定理:线线平行⇒线面平行文字语言:如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行.符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α关键点:在平面内找一条与平面外的直线平行的线 二、线面平行的性质定理:线面平行⇒线线平行文字语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m关键点:需要借助一个经过已知直线的平面,接着找交线。

三、面面平行的判定定理:线面平行⇒ 面面平行文字语言:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥ 关键点:在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。

四、面面平行的性质定理: 面面平行⇒线线平行、面面平行⇒线面平行 文字语言:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行. 符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭关键点:找第三个平面与已知平面都相交,则交线平行文字语言:如果两个平面平行,那么其中一个平面内的任意一条直线平行于另一个平面.符号语言://,//a a αβαβ⊂⇒ 关键:只要是其中一个平面内的直线就行nmAαaBA l βαaβα五、线面垂直的判定定理:线线垂直⇒线面垂直文字语言:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面.符号语言:,a ma n a m n A m n ααα⊥⎫⎪⊥⎪⇒⊥⎬⋂=⎪⎪⊂⊂⎭关键点:在平面内找两条相交直线与所要证的直线垂直 六、线面垂直的性质定理:线面垂直⇒线线垂直文字语言:若一条直线垂直于一个平面,则这条直线垂直平面内的任意一条直线.符号语言:l l a a αα⊥⎫⇒⊥⎬⊂⎭关键点:往往线面垂直中的线线垂直需要用这个定理推出 七、平面与平面垂直的判定定理:线面垂直⇒面面垂直文字语言:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直.(如果一条直线垂直于一个平面,并且有另一个平面经过这条直线,那么这两个平面垂直)符号表示:a a ααββ⊥⎫⇒⊥⎬⊂⎭关键点:在需要证明的两个平面中找线面垂直八、平面与平面垂直的性质定理:面面垂直⇒线面垂直文字语言:如果两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面.符号语言:l AB AB AB lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭关键点:先找交线,再在其中一个面内找与交线垂直的线。

面面平行定理和判定定理

面面平行定理和判定定理

温馨小提示:本文主要介绍的是关于面面平行定理和判定定理的文章,文章是由本店铺通过查阅资料,经过精心整理撰写而成。

文章的内容不一定符合大家的期望需求,还请各位根据自己的需求进行下载。

本文档下载后可以根据自己的实际情况进行任意改写,从而已达到各位的需求。

愿本篇面面平行定理和判定定理能真实确切的帮助各位。

本店铺将会继续努力、改进、创新,给大家提供更加优质符合大家需求的文档。

感谢支持!(Thank you fordownloading and checking it out!)面面平行定理和判定定理一、面面平行定理面面平行定理的定义:面面平行定理是立体几何中的一个重要定理,它描述了空间中两个平面之间的平行关系。

具体来说,面面平行定理是指,如果一个平面同时与两个平行平面相交,那么它与这两个平行平面的交线也是平行的。

面面平行定理的表述:面面平行定理可以表述为:在空间中,如果平面α与平面β平行,并且平面α与平面γ相交于一条直线l,那么平面β与平面γ也平行,且它们的交线m也与直线l平行。

面面平行定理的证明方法:面面平行定理的证明通常采用反证法。

首先假设平面β与平面γ不平行,那么它们必须相交于一条直线n。

根据平面与直线的位置关系,直线l与直线n 都在平面α内,因此直线l与直线n平行。

但是这与假设直线l与直线n不平行相矛盾。

因此,假设不成立,平面β与平面γ必须平行。

同理,可以证明平面β与平面γ的交线m也与直线l平行。

这样,面面平行定理得证。

二、判定定理面面平行定理和判定定理是空间几何中的重要理论,其中判定定理包括线线平行定理、线面平行定理和面面平行定理。

这些定理在空间几何图形的判定和空间几何问题的求解中具有广泛的应用。

判定定理的种类线线平行定理是指,如果两条直线在同一平面内,且它们的交线与第三条直线平行,则这两条直线平行。

线面平行定理是指,如果一条直线与一个平面平行,那么这条直线上的所有点都与这个平面平行。

面面平行定理是指,如果两个平面上的对应线段平行,则这两个平面平行。

《面面平行的判定》课件

《面面平行的判定》课件
总结词
直接应用定义进行判定
详细描述
根据面面平行的定义,如果两个平面没有公共点,则它们平行。因此,通过检 查两个平面内所有对应点来确定它们是否平行。
反证法
总结词
通过假设相反情况来进行证明
详细描述
首先假设两个平面不平行,然后 根据假设推导出矛盾,从而证明 假设不成立,即两个平面平行。
平行四边形法
总结词
判定定理的应用
总结词:实际应用
详细描述:面面平行的判定定理在几何学中有着广泛的应用。例如,在建筑设计、机械工程和空间科 学等领域中,经常需要判断两个平面是否平行。通过应用面面平行的判定定理,可以准确地判断出两 个平面是否平行,从而为实际问题的解决提供重要的理论依据。
02
面面平行的判定方法
定义法
利用平行四边形的性质进行判定
详细描述
如果两个平面都与第三个平面平行, 并且它们之间的距离相等,则这两个 平面平行。这是基于平行四边形的性 质得出的结论。
03
面面平行的判定实例
实例一:长方体中的面面平行
总结词
直观易懂,易于理解
详细描述
长方体是三维空间中最简单的几何体之一,其六个面均为矩 形。通过观察长方体的结构,可以清晰地理解面面平行的概 念。在长方体中,相对的两个面是平行的,即它们永远不会 相交。
题目1
在一个长方体中,给出三个平 面的交线,判断这三个平面是
否平行,并说明理由。
题目2
在一个三棱锥中,给出四个平 面,判断它们之间的位置关系
,并说明理由。
题目3
根据给定的条件,判断两个平 面是否平行,并说明理由。
综合练习题
总结词
难度较大,考察综合运用和推 理能力
题目1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二年级学科数学教学设计
【教学过程】
〖组织教学〗做好课堂教学准备工作,及时到岗维持课堂
纪律
〖引入课题〗复习:
1. 判定定理
2. 位置关系
〖顺序讲解〗
一、平面与平面平行的性质定理
1、内容:如果两个平行平面同时与第三个平面相交,
则它们的交线相互平行。

a^Y = a,0G 丫=b,
二、求怔:夹在两个平行平面间的两条平行线段相等。

已知:a//B,AB和CD为夹a,B在间的平行线段。

求证:AB =CD
证明:
连结AD,BC
T AB// CD
••• AB与CD确定平面AC
又•••平面AC Aa =AD.
平面AC np = BC
结合实际
\
注意作图,
平行平面的画图则a//b
共同探讨
a
b
a〃B
••• AD // BC
•••四边形ABCD是平行四边形.
/•AB =CD
三、两条直线被三个平行平面所截,截得的对应线段成比例。

『巩固练习〗P96 A2、3
B2 、3结合图形
分析
学生自写步骤
分组完成。

相关文档
最新文档