线面平行的性质定理
线面平行的性质定理

线面平行的性质定理
一条直线与一个平面无公共点(不相交),称为直线与平面平行。
线面平行的性质定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。
线面平行的性质定理
定理1:
一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
此定理揭示了直线与平面平行中蕴含着直线与直线平行。
通过直线与平面平行可得到直线与直线平行。
这给出了一种作平行线的重要方法。
注意:直线与平面平行,不代表与这个平面所有的直线都平行,但直线与平面垂直,那么这条直线与这个平面内的所有直线都垂直。
定理2:
一条直线与一个平面平行,则该直线垂直于此平面的垂线。
线面定理性质

线面、面面平行和垂直的定理性质
一、线面平行
1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行。
符合表示:
2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
符号表示:
二、面面平行
1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。
符号表示:
变形:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。
符号表示:
(更加实用的性质:一个平面内的任一直线平行另一平面)
三、线面垂直
1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
符号表示:
(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
符号表示:
三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。
2、性质定理:垂直同一平面的两条直线互相平行。
(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。
)
变形:垂直于同一条直线的两个平面平行
四、面面垂直
1、判定定理:经过一个平面的垂线的平面与该平面垂直。
(如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直)
其他:两个平面相交,如果它们所成的二面角是直角,则这两个平面互相垂直。
2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。
线面平行的性质定理

AB1C,求线段EF的长度
应用巩固
例3、如图所示的一块木料中,棱BC平行于 面A´C´.
(1)要经过面A´C´内的一点P和棱BC将木 料锯开,应怎样画线?
(2)所画的线和平面AC有什么关系?
F
E
课堂小结:
1.直线与平面平行的性质定理
判定定理:找(作) 面内一条直线与已知
2.线线平行 直线平行
性质定理:找(作) 一个过已知直线的平 面,确定其与已知平 面的交线
应用巩固
例1、已知平面外的两条平行直线中的一 条平行于这个平面,求证:另一条也平行于这 个平面.
如图,已知直线a,b,平面 α ,且a//b, a//α, a,b都在平面α外,求证:b//α.
ab
应用巩固
例变式2、:如如图图,,用用平一行个于平四面面去体截A四B面C体D 的一组对 棱ABACBD,,C得D 的到平的面截截面此M四NP面Q体是.平求行证四:边截面 M形N.P求Q证是:平AB行//M四N边形.
若如“果共一面条”直必线平和行一,个换平句面话平说行,,如经果过过该直直线线a的平面
的某个平面与平面相交,则直线a就和这条交
线平和行这.个平面相交,那么这条直线和交线平行.
线面平行的性质定理: 一条直线和一个平面平行,则过这条直线 的任一平面与此平面的交线与该直线平行.
β a
b α
作用:判定直线与直线平行的重要依据. 关键:寻找平面与平面的交线.
*
1. 定义: 直线与平面无公共点.
2. 判定定理: 线线平行 线面平行
若平面外一条直线与此平面内的
一条直线平行,则该直线与此平面
平行.
a
b
a /
b
a
//
2.2.3_线面平行的性质定理

点、直线、平面之间的位置关系
2.判断下列命题是否正确,若正确,请简述理由, 若不正确,请给出反例.
(1)如果a、b是两条直线,且a∥b,那么a 平行于经过b的 任何平面;( ) (2)如果直线a、b和平面α 满足a ∥ α , b ∥ α ,那么a ∥ b ;( )
(3)如果直线a、b和平面α 满足a ∥ b,a ∥ α ,b α , 那么 b ∥ α ;( )
B1 P M D N C
A
B
PM PN AC // MN MA NC
CC 1 AA1
MN 面ABCD AC 面ABCD
MN // 面ABCD
必修2
第二章
点、直线、平面之间的位置关系
巩固练习:
5、已知ABCD是平行四边形,点P是平面ABCD
外一点,M是PC的中点,在DM上取一点G,
关键:寻找平面与平面的交线。
简述:线面平行,则线线平行
必修2 第二章 点、直线、平面之间的位置关系
如果一条直线和一个平面平行,则这条直线( D )
A 只和这个平面内一条直线平行;
B 只和这个平面内两条相交直线不相交; C 和这个平面内的任意直线都平行; D 和这个平面内的任意直线都不相交。
必修2
第二章
必修2
第二章
点、直线、平面之间的位置关系
巩固练习:
长方体ABCD -A1 B1C1 D1中,点P BB (异于 B、B1) 4、 1 PA BA1 M , PC BC 1 N , 求证:MN // 平面ABCD
A1 D1 C1 B1 P M D N C
A
B
必修2
第二章
点、直线、平面之间的位置关系
必修2 第二章 点、直线、平面之间的位置关系
立体几何常考定理的总结(八大定理)

lmβααba立体几何的八大定理一、线面平行的判定定理:线线平行⇒线面平行文字语言:如果平面外.的一条直线与平面内.的一条直线平行,则这条直线与平面平行. 符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α关键点:在平面内找一条与平面外的直线平行的线...................... 二、线面平行的性质定理:线面平行⇒线线平行文字语言:如果一条直线和一个平面平行,经过..这条直线的平面和这个平面相交..,那么这条直线就和交线..平行. 符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m关键点:需要借助一个经过已知直线的平面,接着找交线。
.......................... 三、面面平行的判定定理:线面平行⇒ 面面平行文字语言:如果一个平面内.有两.条相交..直线都平行..于另一个平面..,那么这两个平面平行. 符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥ 关键点:在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。
................................... 四、面面平行的性质定理: 面面平行⇒线线平行、面面平行⇒线面平行 文字语言:如果两个平行平面同时..和第三..个.平面相交..,那么所得的两条交线..平行. 符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭关键点:找第三个平面与已知平面都相.................交,则交线平行.......文字语言:如果两个平面平行,那么其中一个平面内的任意..一条直线平行于另一个平面.符号语言://,//a a αβαβ⊂⇒ 关键:只要是其中一个平面内的直线就行..................nmAαaBA l βαaβα五、线面垂直的判定定理:线线垂直⇒线面垂直文字语言:如果一条直线和一个平面内.的两.条相交..直线垂直..,那么这条直线垂直于这个平面. 符号语言:,a ma n a m n A m n ααα⊥⎫⎪⊥⎪⇒⊥⎬⋂=⎪⎪⊂⊂⎭关键点:在平面内找两条相交直线与所要证的直线垂直........................ 六、线面垂直的性质定理:线面垂直⇒线线垂直文字语言:若一条直线垂直于一个平面,则这条直线垂直平面内的任意..一条直线. 符号语言:l l a a αα⊥⎫⇒⊥⎬⊂⎭关键点:往往线面垂直中的线线垂直需要用这个定理推出......................... 七、平面与平面垂直的判定定理:线面垂直⇒面面垂直文字语言:如果一个平面经过..另一个平面的一条垂线,则这两个平面互相垂直. (如果一条直线垂直于一个平面,并且有另一个平面经过这条直线,那么这两个平面垂直)符号表示:a a ααββ⊥⎫⇒⊥⎬⊂⎭关键点:....在需要证明的两个平面中找线面垂直................八、平面与平面垂直的性质定理:面面垂直⇒线面垂直文字语言:如果两个平面互相垂直,那么在一个平面内垂直..于它们的交线..的直线垂直于另一个平面.符号语言:l AB AB AB lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭关键点:先找交线,再在其中一个面内找与交线垂直的线。
线面平行的性质定理

• 可以理解为直线与平面之间距离恒定的一种关系。
的所有直线都保持相同的距离。
线面平行的性质及证明
线面平行的性质
• 性质1:如果一条直线与一个平面平行,那么这条直线与这个平面内的所有直线都平行。
• 性质2:如果一条直线与一个平面平行,那么这条直线与这个平面的任意一个投影都平行。
• 性质3:如果两条直线分别与一个平面平行,那么这两条直线平行。
• 利用线面平行的性质定理,可以求解立体几何中的角度问题,如求
圆锥曲线、球面曲线等的角度。
应用实例1:求解三垂线问题
• 利用线面平行的性质定理,可以证明三垂线相互平行,从而求解三垂
线的长度关系。
应用实例2:证明空间中的相似三角形
• 利用线面平行的性质定理,可以证明空间中的两个三角形相似,从而
求解未知长度和角度。
视觉效果。
升力。
感。
02
线面平行性质定理的证明
线面平行性质定理的
表述
• 线面平行性质定理的表述
• 定理:如果一条直线与一个平面平行,那么这条直线与这个平
面内的所有直线都平行。
• 定理:如果一条直线与一个平面平行,那么这条直线与这个平
面的任意一个投影都平行。
• 定理:如果两条直线分别与一个平面平行,那么这两条直线平
用价值。
教学方法
• 利用板书讲解,清晰地展示线面平行性质定理的证明过程,帮助学生理解定理。
• 利用多媒体教学,通过动画、视频等形式,形象地展示线面平行性质定理的应用,
提高学生的学习兴趣。
线面平行性质定理的教学评价与反馈教学评价教学反馈
• 通过课堂提问,了解学生对线面平行性质定理的理解程
• 通过学生反馈,了解学生对线面平行性质定理的疑惑和
线面平行的性质

4、已知正方体ABCD—A1B1C1D1的棱长为1, 点P是面AA1D1D的中心,点Q是B1D1上一点,
且PQ//面AB1,则线段 PQ长为
.
D1 A1
C
Q
1
B1
P D
A
C B
6、在长方体ABCD - A1B1C1D1中,点 P BB(1 不与B、B1重合), PA BA1 M, PC BC1 N,求证 : MN//平面ABCD
证明:∵AB∥平面 MNPQ, 平面 ABC∩平面 MNPQ=MN, 且 AB⊂平面 ABC, ∴由线面平行的性质定理,知 AB∥MN. ∴MN∥PQ.同理可得 MQ∥NP.
∴截面四边形 MNPQ 为平行四边形.
已知:直线a、b,平面,且a//b,a //,a,b ,
求证: b//
证明:过a作平面,且
例4.四边形ABCD是平行四边形,点P是平面ABCD
外一点,M是PC的中点,在DM上取一点G,
过G和AP作平面交平面BDM于GH.
求证:AP//GH
P
M
G
提示:连结AC 交BD于O,连
D H
C
结OM
O
A
B
[证明] 连接AC,设AC∩BD=O,连接 MO.∵四边形ABCD为平行四边形,
∴O是AC的中点,又M是PC的中点, ∴MO∥PA.又MO⊂平面BDM,
D1
提示 : 连结AC、 A1C1 A1
C1 B1
M D
P N
C
A
B
解 : 连结AC、 A1C1 长方体中A1A//C1C A1C1//AC
AC 面A1C1B A1C1 面A1C1B
D1 A1
M D
C1
B1
_线面平行的性质定理

必修2
第二章
点、直线、平面之间的位置关系
巩固练习:
长方体ABCD -A1 B1C1 D1中,点P BB (异于 B、B1) 4、 1 PA BA1 M , PC BC 1 N , 求证:MN // 平面ABCD
A1 D1 C1 B1 P M D N C
A
B
必修2
第二章
点、直线、平面之间的位置关系
AC // MN
MN 面ABCD AC 面ABCD
必修2 第二章
MN // 面ABCD
点、直线、平面之间的位置关系
证法2
(略写)
A1
D1
C1
利用相似三角形对应边成比例 及平行线分线段成比例的性质
PM PB PBM∽ AA1 M MA AA1 PN PB PBN ∽CC 1 N NC CC 1
第三步:书写证明过程
必修2 第二章 点、直线、平面之间的位置关系
定理的应用
例4 如图,已知直线a,b,平 面α,且a//b,a//α ,a,b都在 平面α 外.求证:b//α.
证明:过a作平面β ,使它与 平面α相交,交线为c. 因为a//α,a β ,α Çβ =c, 所以 a// c. 因为a//b,所以,b//c. 又因为c α, b α, 所以 b// α。
关键:寻找平面与平面的交线。
简述:线面平行,则线线平行
必修2 第二章 点、直线、平面之间的位置关系
1.如果一条直线和一个平面平行,则这条直线( D )
A 只和这个平面内一条直线平行;
B 只和这个平面内两条相交直线不相交; C 和这个平面内的任意直线都平行; D 和这个平面内的任意直线都不相交。
必修2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。