线面位置关系的八大定理

合集下载

立体几何常考定理总结(八大定理)

立体几何常考定理总结(八大定理)

立体几何常考定理总结(八大定理)一、线面平行的判定定理:线线平行线面平行文字语言:如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行、符号语言:关键点:在平面内找一条与平面外的直线平行的线二、线面平行的性质定理:线面平行线线平行文字语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行、符号语言:关键点:需要借助一个经过已知直线的平面,接着找交线。

三、面面平行的判定定理:线面平行面面平行文字语言:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行、符号语言:关键点:在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。

四、面面平行的性质定理: 面面平行线线平行、面面平行线面平行文字语言:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行、符号语言:关键点:找第三个平面与已知平面都相交,则交线平行文字语言:如果两个平面平行,那么其中一个平面内的任意一条直线平行于另一个平面、符号语言:关键:只要是其中一个平面内的直线就行五、线面垂直的判定定理:线线垂直线面垂直文字语言:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面、符号语言:关键点:在平面内找两条相交直线与所要证的直线垂直六、线面垂直的性质定理:线面垂直线线垂直文字语言:若一条直线垂直于一个平面,则这条直线垂直平面内的任意一条直线、符号语言:关键点:往往线面垂直中的线线垂直需要用这个定理推出七、平面与平面垂直的判定定理:线面垂直面面垂直文字语言:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直、(如果一条直线垂直于一个平面,并且有另一个平面经过这条直线,那么这两个平面垂直)符号表示:关键点:在需要证明的两个平面中找线面垂直八、平面与平面垂直的性质定理:面面垂直线面垂直文字语言:如果两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面、符号语言:关键点:先找交线,再在其中一个面内找与交线垂直的线。

立体几何常考定理的总结(八大定理)

立体几何常考定理的总结(八大定理)

lmβααba立体几何的八大定理一、线面平行的判定定理:线线平行⇒线面平行文字语言:如果平面外.的一条直线与平面内.的一条直线平行,则这条直线与平面平行. 符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α关键点:在平面内找一条与平面外的直线平行的线...................... 二、线面平行的性质定理:线面平行⇒线线平行文字语言:如果一条直线和一个平面平行,经过..这条直线的平面和这个平面相交..,那么这条直线就和交线..平行. 符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m关键点:需要借助一个经过已知直线的平面,接着找交线。

.......................... 三、面面平行的判定定理:线面平行⇒ 面面平行文字语言:如果一个平面内.有两.条相交..直线都平行..于另一个平面..,那么这两个平面平行. 符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥ 关键点:在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。

................................... 四、面面平行的性质定理: 面面平行⇒线线平行、面面平行⇒线面平行 文字语言:如果两个平行平面同时..和第三..个.平面相交..,那么所得的两条交线..平行. 符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭关键点:找第三个平面与已知平面都相.................交,则交线平行.......文字语言:如果两个平面平行,那么其中一个平面内的任意..一条直线平行于另一个平面.符号语言://,//a a αβαβ⊂⇒ 关键:只要是其中一个平面内的直线就行..................nmAαaBA l βαaβα五、线面垂直的判定定理:线线垂直⇒线面垂直文字语言:如果一条直线和一个平面内.的两.条相交..直线垂直..,那么这条直线垂直于这个平面. 符号语言:,a ma n a m n A m n ααα⊥⎫⎪⊥⎪⇒⊥⎬⋂=⎪⎪⊂⊂⎭关键点:在平面内找两条相交直线与所要证的直线垂直........................ 六、线面垂直的性质定理:线面垂直⇒线线垂直文字语言:若一条直线垂直于一个平面,则这条直线垂直平面内的任意..一条直线. 符号语言:l l a a αα⊥⎫⇒⊥⎬⊂⎭关键点:往往线面垂直中的线线垂直需要用这个定理推出......................... 七、平面与平面垂直的判定定理:线面垂直⇒面面垂直文字语言:如果一个平面经过..另一个平面的一条垂线,则这两个平面互相垂直. (如果一条直线垂直于一个平面,并且有另一个平面经过这条直线,那么这两个平面垂直)符号表示:a a ααββ⊥⎫⇒⊥⎬⊂⎭关键点:....在需要证明的两个平面中找线面垂直................八、平面与平面垂直的性质定理:面面垂直⇒线面垂直文字语言:如果两个平面互相垂直,那么在一个平面内垂直..于它们的交线..的直线垂直于另一个平面.符号语言:l AB AB AB lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭关键点:先找交线,再在其中一个面内找与交线垂直的线。

高中立体几何八大定理

高中立体几何八大定理

lmβααbanmA αa αbaaβα线面位置关系的八大定理一、直线与平面平行的判定定理:文字语言:如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行图形语言: 符号语言:作用:线线平行⇒线面平行二、直线与平面平行的性质定理:文字语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

图形语言:符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m作用:线面平行⇒线线平行 三、平面与平面平行的判定定理文字语言:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. 图形语言: 符号语言:作用:线线平行⇒ 面面平行四、平面与平面平行的性质定理:文字语言:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行 图形语言:符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭作用: 面面平行⇒线线平行五、直线与平面垂直的判定定理:文字语言:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面 图形语言: 符号语言: 作用:线线垂直⇒线面垂直 六、直线与平面垂直的性质定理:文字语言:若两条直线垂直于同一个平面,则这两条直线平行图形语言: 符号语言:作用:线面垂直⇒线线平行七、平面与平面垂直的判定定理:文字语言:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。

图形语言:符号表示:a a ααββ⊥⎫⇒⊥⎬⊂⎭注:线面垂直⇒面面垂直八、平面与平面垂直的性质定理:文字语言:如果两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另一个平面图形语言:符号语言:lAB ABAB lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭作用:面面垂直⇒线面垂直。

线面、面面平行和垂直的八大定理

线面、面面平行和垂直的八大定理

一、线面平行。

1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行。

符合表示: βββ////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

符号表示:b a b a a a ////⇒⎪⎪⎭⎪⎪⎬⎫=⊂⊄βαβααI 二、面面平行。

1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。

符号表示: βα//////⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫==N n m M b a a m b n I I 2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。

符号表示: d l d l ////⇒⎪⎭⎪⎬⎫==γβγαβαI I (更加实用的性质:一个平面内的任一直线平行另一平面)三、线面垂直。

1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

符号表示: α⊥⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫=⊥⊥a M c b b a c a I$:三垂线定理:(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

符号表示:PA a A oA a po oA a ⊥⇒⎪⎪⎭⎪⎪⎬⎫=⊥⊥⊂⊂ααα2、性质定理:垂直同一平面的两条直线互相平行。

(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。

)四、面面垂直。

1、判定定理:经过一个平面的垂线的平面与该平面垂直。

βααβ⊥⇒⊂⊥a a ,2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。

βαβαβα⊥⇒⊥⊂=⋂⊥a b a a b ,,,。

线面、面面平行和垂直的八大定理-平面八大定理

线面、面面平行和垂直的八大定理-平面八大定理

线面、面面平行和垂直的八大定理-平面八大定理
一、直线面平行定理
定理:如果两条直线平行,那么任何一个由两条直线夹成的角都是相等的。

证明:设直线AR、AB为两直线,角A、A’R为AR与AB所成角,角A’B为AB与AR
所成角,设AR ∥ AB,则知AR与AB所成的角A = A’B(因两条直线平行),∴角A=
A’R,证毕。

证明:设平面Alpha、Beta为两个平面,角α为Alpha与Beta所成角,角β为
Beta与Alpha所成角,设Alpha ∥ Beta,则β=α(因两个平面平行),∴角β=α,证毕。

证明:设直线AB与平面S、T垂直,则知AB∥S;AB∥T;∴S∥T,证毕。

结论:当直线与两个不同的平面都垂直时,两个平面一定是平行的。

这就是平面八大定理。

它揭示了直线与平面之间的相互关系,也提供了重要的绘画几
何图形的基础。

线面、面面平行和垂直的八大定理

线面、面面平行和垂直的八大定理

线面、面面平行和垂直的八大定理一、线面平行。

1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行。

符合表示: βββ////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

符号表示:b a b a a a ////⇒⎪⎪⎭⎪⎪⎬⎫=⊂⊄βαβαα二、面面平行。

1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。

符号表示: βα//////⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫==N n m M b a a m b n 2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。

符号表示: d l d l ////⇒⎪⎭⎪⎬⎫==γβγαβα (更加实用的性质:一个平面内的任一直线平行另一平面)三、线面垂直。

1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

符号表示: α⊥⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫=⊥⊥a M c b b a c a $:三垂线定理:(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

符号表示:PA a A oA a po oA a ⊥⇒⎪⎪⎭⎪⎪⎬⎫=⊥⊥⊂⊂ααα2、性质定理:垂直同一平面的两条直线互相平行。

(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。

)四、面面垂直。

1、判定定理:经过一个平面的垂线的平面与该平面垂直。

βααβ⊥⇒⊂⊥a a ,2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。

βαβαβα⊥⇒⊥⊂=⋂⊥a b a a b ,,,。

点线面位置关系定理总结

点线面位置关系定理总结

//a b
//a b
1.线面平行判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

(简述为线线平行
线面平行) 表述及图示 2.线面平行性质定理: 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

(简述为线面平行线线平行)
//a a b
α
βαβ⊂⋂= 3.平面平行判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。

////a b a b a b P
β
β
αα
⊂⊂⋂= //αβ
4.平面平行性质定理:如果两个平行平面都和第三个平面相交,那么它们的交线平行
//a b αβ
γαγβ⋂=⋂=
5.线面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,那么这条直线就垂直于这个平
面。

a b
a c
b c A b c α
α
⊥⊥⋂=⊂⊂ a α⊥
6.线面垂直性质定理:垂直于同一平面的两条直线平行。

a b αα⊥⊥ 7.面面垂直判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

简述为“线面垂直,则面面垂直”。

//a b a b
α
α
⊄⊂//a α//a b
a a αβ
⊂⊥ αβ⊥ 8.面面垂直性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

l a a l
αβ
αβα
⊥⋂=⊂⊥ αβ⊥。

线面面面平行和垂直的八大定理

线面面面平行和垂直的八大定理

线面、面面平行和垂直的八大定理
一、线面平行。

1、判定定理:平面外一条直线和平面内一条直线平行,那么这条直线和这个平面平行。

符合表示:
2、性质定理:如果一条直线和平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

符号表示:
二、面面平行。

1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。

符号表示:
2、性质定理:如果两个平面平行同时和第三个平面相交,那它们的交线平行。

符号表示:(更加实用的性质:一个平面内的任一直线平行另一平面)
三、线面垂直。

1、判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

符号表示:
$:三垂线定理:(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

符号表示:
PA a A oA a po oA a ⊥⇒⎪⎪
⎭⎪⎪⎬⎫=⊥⊥⊂⊂ααα
2、性质定理:垂直同一平面的两条直线互相平行。

(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。


四、面面垂直。

1、判定定理:经过一个平面的垂线的平面和该平面垂直。

βααβ⊥⇒⊂⊥a a ,
2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。

βαβαβα⊥⇒⊥⊂=⋂⊥a b a a b ,,,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形语言:
符号表示:
注:线面垂直 面面垂直
典例:如图,在四面体 中,
求证:平面 平面
八、平面与平面垂直的性质定理:
文字语言:如果两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另一个平面
图形语言:
符号语典例:如图, , ,求证:
典例:已知四棱锥 底面 ,底面 为正方形,且 , 分别为 的中点,
求证:(1) 平面 (2) (3) 平面
六、直线与平面垂直的性质定理:
文字语言:若两条直线垂直于同一个平面,则这两条直线平行
图形语言:
符号语言:
作用:线面垂直 线线平行
七、平面与平面垂直的判定定理:
文字语言:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。
图形语言:
符号语言:
作用:线面平行 线线平行
典例:如图, ,求证:
三、平面与平面平行的判定定理
文字语言:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.
图形语言:
符号语言:
作用:线线平行 面面平行
典例:如图,在三棱柱 中,点 分别是 与 的中点,
求证:平面 平面
四、平面与平面平行的性质定理:
文字语言:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行
图形语言:
符号语言:
作用:面面平行 线线平行
典例:如图, ,直线 与 分别交 于点 和点 ,
求证:
五、直线与平面垂直的判定定理:
文字语言:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面
图形语言:
符号语言:
作用:线线垂直 线面垂直
线面位置关系的八大定理
一、直线与平面平行的判定定理:
文字语言:如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行
图形语言:
符号语言:
作用:线线平行 线面平行
典例:在正方体 中, 分别是 的中点,
求证:
二、直线与平面平行的性质定理:
文字语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
相关文档
最新文档