第二章细胞的基本功能
第二章细胞的基本功能

第二章细胞的基本功能单纯扩散:脂溶性小分子物质以物理学上的扩散原理,从浓度高的一侧向浓度低的一侧做跨膜运动,不需要细胞提供能量称为单纯扩散。
易化扩散:水溶性小分子或带电离子借助载体或通道,由细胞膜高浓度向低浓度的跨膜转运过程不消耗能量。
主动转运:某些物质在膜蛋白的帮助下,由细胞代谢功能进行逆浓度梯度或电位梯度跨膜转运称为主动转运。
静息电位:细胞静息状态时,细胞膜两侧存在的外正内负且相对平稳的电位差。
动作电位:细胞在进行电位基础上接受有效刺激产生的一个迅速的可向远处传播的膜电位波动。
阈刺激:当刺激持续的时间和刺激的变化率一定时,引起组织细胞兴奋所需要的最小刺激强度。
阈电位:能使细胞膜上的钠离子通道全部打开,触发动作电位的膜电位临界值。
局部电流:静息部位膜内负外正,兴奋部位膜极性反转,兴奋区与非兴奋区之间存在的电位差,形成局部电流。
兴奋:细胞接受刺激后产生动作电位的过程及其表现,动作电位是细胞兴奋的客观指标。
兴奋性:可兴奋细胞接受刺激后产生兴奋的能力或特性,阈刺激和阈程强度是衡量细胞兴奋性的指标。
极化:细胞安静状态下膜外带正电膜内带负电的状态。
去极化:静息电位减小表示膜的极化状态减弱,这种静息电位减小的过程或状态称为去极化。
绝对不应期:在兴奋发生后的最初一段时间内,无论是加多强的刺激,也不能使细胞再次兴奋,这段时间称为绝对不应期。
相对不应期:在绝对不应期后兴奋性逐渐恢复受刺激后可发生兴奋,但刺激强度必须大于原来的阈值,这段时间称为相对不应期。
肌节:相邻两条z线之间的区域(1/2I+A+1/2I),是肌肉收缩和舒张的最基本单位。
在体骨骼肌安静时肌节长度约为2.0~2.2微米。
静息电位的形成机制:安静情况下,未受刺激的细胞膜对钾离子的通透性大,膜内K†浓度高,K†向外扩散;由于细胞内的阴离子不能通过细胞膜,因此出现“外正内负”的跨膜电位差;随着K†向外扩散的进行,这种电位差加大;而这种电位差是K†向外扩散的阻力,当这种阻力(电位差)和K†向外扩散的动力(浓度差)相等时,K†向外净扩散为0,膜电位不再发生变化而稳定于某一数值,即K†平衡电位。
生理学第二章_细胞的基本功能

出胞(exocytosis)
胞质内的大分子物质以分泌囊泡的形式排出细胞的过程。 例如
外分泌腺细胞排放酶原颗粒和粘液 内分泌腺细胞分泌激素 神经纤维末梢神经递质的释放。 形式 持续性出胞:安静自发 Байду номын сангаас调节性出胞:诱导释放
效应器酶:催化生成第二信使 腺苷酸环化酶 (AC)、磷脂酶C (PLC)、 磷脂酶A2 (PLA2)、鸟苷酸环化酶 (GC)
离子通道 转运蛋白
第二信使 (second messenger)
环磷酸腺苷(cAMP)、三磷酸肌醇(IP3)、二酰甘油(DG)、环磷 酸鸟苷(cGMP)、Ca2+
作用:使靶蛋白(蛋白激酶、离子通道)磷酸化、构象变化
Ca2+信号系统 Ca2+
总结:G蛋白偶联受体介导的信号转导过程
第一信使
G蛋白耦联 受体
G蛋白 α α
G蛋白 GT
GDβγ
PP
细胞 功能 改变
…
…
效应器酶 第二信使
蛋白激酶 或通道
三、酶联型受体介导的信号转导
酶联型受体: 自身具有酶的活性或能与酶结合的膜受体 结构特征:
仅一个跨膜区段 胞外结构域含有可结合配体的部位 胞内结构域则具有酶的活性或含能与酶结合的位点
本质:载体或转运体(transporter):贯穿脂质双层整合蛋白 对象:水溶性小分子(如葡萄糖、氨基酸、核苷酸等) 特点:
(1)结构特异性 (2)饱和现象 (3)竞争性抑制 (4)顺浓差或电位差 机制: 载体蛋白分子内部的变构
(三)主动转运 (active transport)
第二章 细胞的基本功能

D. 通道没有饱和性
电压门控通道( channel) 电压门控通道(voltage gated channel) 接受电信号的受体,并通过通道的开放、 接受电信号的受体,并通过通道的开放、闭合和离子跨 膜流动的变化把信号传递到细胞内部。 膜流动的变化把信号传递到细胞内部。 机械门控通道(mechanically 机械门控通道(mechanically gated channel) 接受机械信号的受体,通过通道把信号传递到细胞内部, 接受机械信号的受体,通过通道把信号传递到细胞内部,引 起细胞功能的改变。 起细胞功能的改变。
动转运
以通道为中介 动转运
动转运
(一)简单扩散
1 概念:如CO2 、O2 、尿素、乙醇、脂肪酸等 概念: 2 影响因素: ① 膜两侧分子的浓度差 影响因素: ② 膜对物质的通透性 3 特点: ① 脂溶性物质 特点: 顺浓度梯度: ② 顺浓度梯度:高→低 低 ③ 不耗能
(二)易化扩散 易化扩散
1 概念:如葡萄糖、氨基酸,Na+、K+、Ca2+等无机离子) 概念:如葡萄糖、氨基酸, 等无机离子) 2 特点: ① 顺浓度差; 特点: 顺浓度差; ② 不耗能; 不耗能; ③ 需膜蛋白参与 3 分类:(根据膜蛋白的不同) 分类:(根据膜蛋白的不同) :(根据膜蛋白的不同 ① 以载体为中介的易化扩散 ② 以通道为中介的易化扩散
(二)肌醇信号转导系统
配体 G蛋白偶联受体 配体配体-受体复合物 G蛋白 PLC PIP2 激活的G 激活的G蛋白 激活的PLC 激活的PLC IP3 Ca2+
+
DG PKC
激活酶蛋白 蛋白磷酸化 生理效应 生理效应
专升本生理学第2章细胞的基本功能

第二章细胞的基本功能一、名词解释1.单纯扩散2.易化扩散3.经载体的易化扩散4.经通道的易化扩散5.被动转运6.主动转运7.受体8.静息电位9.极化10.去极化11.超级化12.复极化13.动作电位14.阈电位15.局部兴奋16.绝对不应期17.终板电位18.兴奋--收缩耦联19.前负荷20.后负荷21.等长收缩22.等张收缩23.单收缩24.强直收缩答案: 1.单纯扩散是指脂溶性小分子物质从高浓度一侧向低浓度一侧跨细胞膜转运的过程。
2.易化扩散是指某些非脂溶性或脂溶性很小的物质,在膜蛋白的帮助下顺浓度差的跨膜转运。
3.经载体的易化扩散是指一些亲水性小分子物质经载体蛋白的介导,顺浓度梯度的跨膜转运。
4.经通道的易化扩散是指各种带电离子经通道蛋白的介导,顺浓度梯度或电位梯度的跨膜转运。
5.被动转运是指物质顺浓度梯度和(或)电位梯度进行的跨膜转运,不需消耗能量。
包括单纯扩散和易化扩散。
6.主动转运是指某些物质在膜蛋白的帮助下由细胞代谢提供能量而实现的逆电-化学梯度的跨膜转运。
7.受体是指存在于细胞膜上或细胞内,能识别并结合特异性化学信息,进而引起细胞产生特定生物学效应的特殊蛋白质。
8.静息电位是指静息时细胞膜两侧存在的电位差。
9.极化是指静息电位存在时细胞膜所处的“外正内负”的稳定状态。
10.去极化是指静息电位的减小即细胞内负值的减小。
11.超极化是指静息电位的增大即细胞内负值的增大。
12.复极化是指细胞膜去极化后再向静息电位方向的恢复。
13.动作电位是指在静息电位基础上,给细胞一个有效的刺激,可触发其产生可传播的膜电位波动。
它是细胞产生兴奋的标志。
14.阈电位是指能触发动作电位的膜电位临界值。
15.局部兴奋是指细胞受到阈下刺激时产生的较小的、只限于膜局部的去极化。
16.绝对不应期是指组织细胞在兴奋后最初的一段时间,无论给予多大的刺激也不能使它再次兴奋。
17.终板电位是指神经-骨骼肌接头处的终板膜产生的去极化电位。
第二章 细胞的基本功能

主动转运与被动转运的区别
主动转运 需由细胞提供能量
逆电-化学势差 使膜两侧浓度差更大
被动转运
不需外部能量 顺电-化学势差 使膜两侧浓度差更小
(三)出胞和入胞
出胞作用
入胞作用
第二节 细胞的跨膜信号传导功能
细胞外信号分子通称为配体。 受体是指存在于细胞膜或细胞内能特异性识别生 物活性分子(配体)并与之结合进而诱发生物效 应的特殊蛋白质,即细胞接受信息的装置。 细胞外环境变化的信息以新的信号形式传递到膜 内,引发靶细胞相应的功能改变,包括细胞出现 电反应或其他功能改变。这一过程称为跨膜信号 转导,是细胞的基本功能之一。
3.DG-PKC途径
DG留在膜的内表面,和膜磷脂中的磷脂 酰丝氨酸共同激活蛋白激酶C(PKC)。 PKC有多种亚型,它们广泛分布于不同类 型的组织细胞,激活后可使底物蛋白磷 酸化,产生多种生物效应。
第二章 细胞的基本功能
第一节 细胞膜的基本结构和 物质转运功能
一、细胞膜的结构和化学组成
(一)脂质双分子层
构成:由双嗜性脂质分子两两相对 排列成双分子层
(二)嵌在细胞膜上蛋白质
以两种 形式存在: 外周蛋白 整合蛋白
(三) 糖类
形式: 糖蛋白或糖脂
二、细胞膜的跨膜物质转运功能
小分子: 被动转运、主动转运 大分子、物质团块:胞纳、胞吐
“钠-钾泵”,简称钠泵:分解ATP,逆浓度差 主动地把细胞内的Na+移出膜外,同时把细 胞外的K+移入膜内。
钠泵的意义:
①细胞内高钾是许多代谢反应的必要条件 ②维持正常细胞体积(防止细胞水肿)
③建立势能贮备(生电性)
继发性主动转运: 钠泵形成的势能贮备是某些非离子物质 进行跨膜主动转运的能量来源,因而把这种 类型的转运称为继发性主动转运或称为协同 转运。 小肠上皮、肾小管上皮等对葡萄糖、氨 基酸等营养物质的吸收就是继发性主动转运 过程。
生理学 第二章 细胞的基本功能PPT课件

精选ppt
11
以载体为中介的易化扩散
转运的物质:葡萄糖(GL)、氨基酸(AA)等小分子亲水物质
精选ppt
12
精选ppt
13
(3)特点:
①顺浓度差 ②不消耗能量
③需依靠特殊膜蛋白质的“帮助”
④特异性或选择性(∵特殊膜蛋白质本身有结构特异性) ⑤饱和性(∵结合位点是有限的) ⑥竞争性抑制(∵经同一特殊膜蛋白质转运) ⑦
精选ppt
8
二、易化扩散(facilitated diffusion)
(1)概念: 一些非脂溶性或脂溶解度甚小的物质,由
膜的高浓度一侧向低浓度一侧转运的过程。
(2)分类:
①以通道为中介的易化扩散
②一载体为中介的易化扩散
精选ppt
9
以通道为中介的易化扩散
[Na+]o > [Na+]i
[K+]i >[K+]o
融合处出现裂口
分泌物一次性排出
囊泡的膜成为细胞膜的组成部分
精选ppt
25
入胞:
细胞膜上的受体对物质的“辨认” 发生特异性结合形成复合物 结合处C膜凹陷 凹陷膜与细胞膜断离 整个进入细胞质内
精选ppt
26
精选ppt
27
作业:
1、比较单纯扩散和异化扩散的异同。 2、比较被动转运与主动转运的异同。
精选ppt
第二节 细胞膜的受体功能
受体:是指镶嵌在C膜脂质双分子层中的各种 特异性蛋白质分子,它能选择性地和C膜外 的活性物质结合,实现跨膜信号传递或跨 膜信号转换,引起C膜的电位变化或C内生 理效应的变化。如C膜上的糖蛋白、脂蛋白、 糖脂蛋白等。
配体:凡能与受体特异性结合并产生效应的 物质,统称为配体或化学信号。如激素、 神经递质、抗原、药物等。
第二章 细胞的基本功能

一、G蛋白耦联受体介导的信号转导 (一)信号分子
1. G蛋白
2. G蛋白耦联受体
3. G蛋白效应器
4. 第二信使
5. 蛋白激酶
1. G蛋白
即鸟苷酸结合蛋白,是 耦联细胞膜受体和蛋白效 应器的膜蛋白。
结构特征: ① 由α、β和γ三个亚单位组成,α亚单位 起催化作用; ② 有鸟苷酸结合位点;与受体及效应蛋白的 作用位点; ③ 有GTP酶活性; ④ 两种存在形式:与GDP结合的非活性形 式;与 GTP结合活性形式。
2. G蛋白耦联受体
受体:细胞膜上或细胞内能特异识别生物活性分子(配体) 并与之结合,进而引起生物学效应的特殊蛋白质 。 其中一类受体需在G蛋白介导作用下才能完成其信号 转导功能,称为G蛋白耦联受体。 结构:一条多肽链,7个跨膜α-螺旋,膜外N末端,膜内C末端 作用:与配体结合后能结合并激活G蛋白
5. 蛋白激酶
能催化蛋白质磷酸化的一类酶。按作用底物分为:
①丝/苏氨酸蛋白激酶;(主要)②酪氨酸蛋白激酶。
蛋白质磷酸化的作用:
① 使酶活性改变→代谢改变; ② 通道开放→膜电位改变→兴奋性改变;
生理学课件 第二章 细胞的基本功能

原发性主动转运
主动转运
继发性主动转运
扩展
扩展
四、入胞和出胞
概念:一些大分子物质或团块通过细胞膜变形活动进出细胞的过程,需细 胞消耗能量 入胞 吞噬 吞饮 出胞
二、易化扩散
概念:水溶性或脂溶性很小的物质,在特殊膜蛋白的帮助下,由高浓度一 侧通过细胞膜向低浓度一侧扩散的现象。 特点:①顺浓度差:不需细胞消耗能量 ②需要特殊膜蛋白的帮助 载体转运 分类: 通道转运
1.载体转运
物质:葡萄糖、氨基酸等
特点:① 高度的特异性:一种载体一般只能第二章 细胞的基本功能
第一节 细胞膜的物质转运功能
细胞膜的结构:脂质双分子层液态镶嵌结构
一、单纯扩散
概念:是指脂溶性的小分子物质从细胞膜的高浓度一侧向低浓度一侧转 运的过程。 特点:顺浓度差;不需细胞消耗能量 物质:CO2、O2、NH3、乙醇等 注:某种物质能否通过单纯扩散方式过膜,除了取决于膜两侧浓度差, 还取决于细胞膜的通透性。
③ 竞争性抑制:一种载体同时转运两种或两种以上结构相似的物质 时,一种物质的增加,将减弱对另一物质的转运。
CONTENTS
2.通道转运
物质:无机离子、水 特点:通道的开或关 受化学因素的调控——化学门控通道 受电压因素的调控——电压门控通道
三、主动转运
概念:借助细胞膜泵蛋白的作用,将物质由低浓度一侧转运到高浓度一侧
一、骨骼肌的收缩原理
滑行学说——肌肉的缩短是通过肌小节中细肌丝与粗肌丝相互滑行的结 果(其间肌丝本身的长度不变)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章细胞的基本功能第一节细胞的跨膜物质转运功能屏障。
膜蛋白。
糖链。
一、单纯扩散顺浓度差转运没有膜蛋白参与、不需要细胞代谢供能影响因素:①浓度差。
动力。
差↑→扩散通量↑②通透性。
难易。
通透性↑→通量↑二、易化扩散非脂溶性、脂溶性小的分子通过膜蛋白从高浓度到低浓度、从高电位到低电位转运。
不直接耗能。
(一)通道转运:通道蛋白。
贯通胞膜,带有闸门。
钠、钾、钙通道。
激活:开放时:物质顺浓度差转运。
“门控通道”。
失活:关闭时:物质不能转运。
门控通道:化学门控、电压门控、机械门控。
通道蛋白构象改变。
(二)载体转运:高浓度侧结合转运物→构象变化→低浓度侧分离释放转运物特点:①特异性。
结合位点只能与有特定化学结构的物质结合。
②饱和现象。
载体和载体结合位点数量有限。
浓度差增大到一定程度时,通量不再增加。
③竞争性抑制。
转运物浓度优先。
占据位点。
三、主动转运逆浓度差、电位差从低浓度侧到高浓度侧;从低电位侧到高电位侧。
膜蛋白:泵。
耗能(一)原发性主动转运:直接利用代谢产生的能量。
生物泵。
利用生物能。
钠钾泵:有α和β两个亚单位组成的二聚体蛋白质。
有ATP酶活性。
分解ATP 释放能量。
受胞升高K+、胞内高钠激活。
3Na+:2K+。
Na+-K+依赖式ATP酶。
可被硅巴因抑制。
(二)继发性主动转运:Na+主动转运入胞→势能+转运体→其他转运物:低→高间接利用ATP能量主动转运物质的过程。
联合转运。
被转运物与Na+转运方向不同分为两种形式:①同向转运:与Na+转运方向一致。
②逆向转运:与Na+转运方向相反。
G,AA小肠吸收过程。
四、入胞和出胞细胞自身的活动,团块、大分子物质的过程。
耗能(一)入胞:胞外大分子或团块物质进入细胞的过程。
大分子团块物与胞膜识别、融合、断裂→吞噬小泡+溶酶体,蛋白水解酶消化。
吞噬:固态物质吞饮:液态物质(二)出胞:大分子物质被排出细胞的过程。
分泌过程。
合成→被膜→融合→断裂→一次性释放三、细胞的信号转导功能细胞间通过信息联系成为有机整体。
信号转导:细胞间的信息联系。
信号分子:神经递质、激素、细胞因子等。
几百种。
受体:与信号分子特异性结合而发挥信号转导作用的蛋白质。
膜受体、胞内受体、核内受体。
一、离子通道耦联受体的信号转导化学门控离子通道。
信号分子+受体结合位点→通道开放。
N-M接头:Ach+N2-R→Na+通道开放:Na+内流。
二、G蛋白(鸟苷酸调节蛋白)耦联受体介导的信号转导信号分子+受体→G蛋白→G蛋白效应器酶→第二信使物质:效应。
含氮类激素作用机制。
三、酶耦联受体介导的信号转导酶耦联受体:细胞膜上的蛋白质分子,既是受体又具酶的作用。
受体酪氨酸激酶:结合位点,酶催化作用。
双重作用。
生长因子、肽类激素(胰岛素)。
四、细胞内受体介导的信号转导脂溶性信号分子(类固醇激素)+胞质受体+核受体→调节基因表达→诱导蛋白:信号转导。
第二节细胞的生物电现象一、静息电位(RP)RP:细胞处于静息状态时,细胞膜两侧存在的电位差。
极化:细胞在安静状态下所保持的膜外带正电、膜内带负电的状态。
“外正内负”。
去极化:极化状态的减弱。
跨膜电位差减小。
超极化:极化状态的增强。
跨膜电位差增大。
静息状态下:①细胞内外各种离子分布不均,存在浓度差。
胞内[K+]高、胞外[Na+]高。
②不同状态下细胞膜对离子的通透性不同。
静息时K+通透性高。
RP是K+的电化学平衡电位:K+向外扩散的力与之形成的电场力达到平衡时膜两侧的电位差。
RP与极化状态都是细胞处于静息状态的标志,是一种现象的两种表现形式。
RP的大小主要受细胞内外K+浓度的影响。
胞外[K+]↑→细胞内外[K+]差↓→扩散通量↓→RP↓[K+]↓→↑→↑→RP↑缺血、缺O2、酸中毒→细胞代谢障碍:Na+泵功能受影响→胞内[K+]↓→RP↓至甚消失。
二、动作电位AP(一)AP的概念和过程:AP:可兴奋细胞受刺激时在RP基础上产生的可传布的电位变化。
AP是一个连续变化过程:一旦在细胞某一部位产生,就会迅速向四周传播;AP是细胞处于兴奋状态的标志,RP是细胞处于静息状态的标志。
AP是一次在RP基础上爆发的电位快速上升又快速下降以及随后缓慢波动的电位变化过程。
包括峰电位和后电位。
去极化:上升支和复极化:下降支。
上升支即去极化,是AP的主要成分。
(二)AP与兴奋性的时间对应关系。
锋电位相当于绝对不应期后电位的前段:相对不应期+超常期后电位的后段:低常期(三)AP的特点:①“全或无”(all-or-none)现象。
AP的幅度不因S的加强而增大。
要么不产生,一旦产生即达幅度的最大值。
②不衰减性传导:一产生立即向其他部位传导,而且幅度不衰减。
不因传导距离的增大而减小。
③脉冲式产生。
由于绝对不应期的存在,AP不能重合,AP间总有一定间隔,呈脉冲样图形。
(四)AP的产生机制1、RP:K+电化学平衡电位。
2、局部电位:少量Na+通道开放,Na+少量内流。
3、上升支(除极):Na+通道突然大量开放,Na+迅速大量内流。
达+35mv时失活。
4、下降支(复极):K+通透性增大,K+外流。
5、后电位:Na+泵活动。
Na+泵出,K+泵入。
(五)AP的产生条件与阈电位阈电位(TP):能触发动作电位的膜电位临界值称为TP。
RP去极化达到TP是产生AP的必要条件。
超极化:膜内负电荷增加,静息电位增大。
RP—TP距离增大,兴奋性降低。
RP↑,兴奋性↓,阈强度、阈刺激↑,AP幅度↑。
阈强度:使细胞膜去极化达到阈电位的刺激强度。
S引起膜去极化,只是使膜电位从静息电位升达到阈电位水平,而AP的爆发则是膜电位达到阈电位后其本身进一步去极化的结果,与施加给细胞刺激的强度无关。
(六)AP的传导与局部电流局部反应的特点:①幅度小;衰减。
②不是“全”或“无”式。
③总和效应:时间总和,空间总和。
局部电流:兴奋膜刺激未兴奋膜;慢。
跳跃式:跨越一段有髓鞘的神经纤维;快。
第三节肌细胞的收缩功能肌细胞:骨骼肌、心肌、平滑机。
收缩。
收缩的机制:肌丝滑行学说。
一、N—M接头处兴奋的传递(一)N—M接头的结构接头前膜、接头间隙、接头后膜(即运动终板膜)(二)N—M接头处兴奋传递的过程动作电位传至神经末梢→Ca2+内流入轴突末梢→乙酰胆碱释放入接头间隙→ACh 与终板膜受体通道蛋白质结合→化学依从性通道开放→终板膜对Na+、K+通透性增加→Na+内流大于K+外流→终板膜去极化产生终板电位→总和→邻近肌膜去极化达阈电位→肌细胞产生动作电位→ACh被胆碱酯酶破坏(三)N—M接头处兴奋传递的特点①单向性传递。
②时间延搁。
0.5~1.0ms③易受环境变化影响。
二、骨骼肌细胞的微细结构(一)肌原纤维粗肌丝:肌凝蛋白:杆部、头部(横桥)。
细肌丝:肌动蛋白、原肌凝蛋白、肌钙蛋白横桥与肌动蛋白称为收缩蛋白;原肌凝蛋白与肌钙蛋白称为调节蛋白(二)肌管系统。
三联管。
终池—横管—终池。
终池和释放贮存Ca2+。
三、骨骼肌细胞的收缩机制-肌丝滑行学说钙离子在肌丝滑行中的作用:[Ca2+]↑达≥10-5mol/L时与肌钙蛋白结合,使原肌凝蛋白分子变构,从肌动蛋白上横桥作用点移开,解除横桥与肌动蛋白的隔离。
此结合:①激活横桥ATP 酶,分解ATP供能;②激发横桥作同方向连续摆动,拉动细肌丝向M线方向滑行,肌小节缩短,肌细胞收缩。
[Ca2+]<10-5mol/L时分离。
舒张。
四、骨骼肌细胞的兴奋-收缩耦联①肌膜AP经过横管到达三联体②三联体的信号传递③终池对Ca2+的释放和回收。
Ca2+:耦联因子。
肌浆缺少Ca2+:只产生兴奋而不发生收缩。
兴奋—收缩耦联。
[Ca2+]在肌浆中的浓度在一定范围内与肌肉收缩力呈正变关系。
神经细胞电活动(电)→神经肌肉接头处的化学传递(化学)→骨骼肌细胞电活动(电)→肌浆中Ca2+转移(化学)→骨骼肌细胞收缩(机械)。
电—化学—电—化学—机械五、骨骼肌的收缩形式(一)等长收缩与等张收缩等长收缩:长度不变,肌张力增大。
等张收缩:张力不变,长度缩短。
(二)单收缩与强直收缩S→M:收缩—舒张。
潜伏期、缩短期、舒张期连续S→M:单收缩、不完全强直收缩、完全强直收缩六、影响骨骼肌收缩的主要因素前负荷—初长度。
前负荷↑→初长度↑→收缩力↑前负荷↑↑→最适初长度→收缩力最大。
前负荷↑↑↑→超过最适初长度→收缩力↓(二)后负荷:肌肉开始收缩时承受的负荷张力增加在前、长度缩短在后。
后负荷↑→肌肉缩短前产生最大张力和达到最大张力所需时间↑,肌肉开始收缩的初速度和缩短的最大长度均减小。
后负荷与肌肉的缩短速度呈反变关系。
七、平滑肌细胞的结构和功能特点(一)结构特点2~5μm;长度可变性大。
8~800μm。
细胞内肌丝排列不规则,肌小节不明显,无横纹。
肌浆网不发达。
(二)功能特点1、肌浆网不发达,胞内Ca2+有限,依靠胞外Ca2+。
2、收缩缓慢持久,不易疲劳。
3、对牵拉刺激敏感。
4、具有自律性。
5、受自主N支配。