原子物理与量子力学六-八章习题解答

合集下载

量子力学导论第6章答案

量子力学导论第6章答案

第六章 中心力场6.1) 利用6.1.3节中式(17)、(18),证明下列关系式相对动量 ()21121p m p m Mr p-==∙μ (1) 总动量1p p R M P+==∙ (2)总轨迹角动量p r P R p r p r L L L⨯+⨯=⨯+⨯=+=221121 (3)总动能 μ222222222121pMP m p m p T +=+= (4)反之,有 ,11r m R rμ+= r m R r22μ-= (5) p P m p +=21μ,p P m p -=12μ(6)以上各式中,()212121 ,m m m m m m M +=+=μ证: 212211m m r m r m R ++=, (17) 21r r r -=, (18)相对动量 ()21122121211p m p m M r r m m m m r p-=⎪⎪⎭⎫ ⎝⎛-+==∙∙∙μ (1’)总动量 ()2121221121p p m m r m r m m m R M P+=+++==∙∙∙ (2’)总轨迹角动量 221121p r p r L L L⨯+⨯=+=)5(2211p r m u R p r m u R ⨯⎪⎪⎭⎫⎝⎛-+⨯⎪⎪⎭⎫ ⎝⎛+= ()()2112211p m p mMr p p R -⨯++⨯=)2)(1(p r P R ⨯+⨯=由(17)、(18)可解出21,r r,即(5)式;由(1’)(2’)可解出(6)。

总动能()22112262221212222m p P m m p P m m p m p T ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫⎝⎛+=+=μμ2122222122112222122222m m p P u m pPm m um m p P u m pPm m u⋅-++⋅++=()()⎪⎪⎭⎫⎝⎛+++++=2122221222211112122m m p Pm m m Pm m m μ2222pMP +=(4’)[从(17),(18)式可解出(5)式;从(1),(2)式可解出(6)式].6.2) 同上题,求坐标表象中p 、P 和L 的算术表示式r i p ∇-= R i P ∇-= ,p r P R L⨯+⨯=解: ()()211221121r r m mMi p m p mMp ∇-∇-=-=(1)其中 1111z k y j x ir ∂∂+∂∂+∂∂=∇,而x X M m x x x X x X x ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂1111,同理,y YM m y ∂∂+∂∂=∂∂11zZM m z ∂∂+∂∂=∂∂11;(利用上题(17)(18)式。

量子力学课后习题答案

量子力学课后习题答案

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

原子物理学课后习题答案

原子物理学课后习题答案

第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。

散射物质是原子序数79Z =的金箔。

试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为220121()(1)4sinmZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

《原子物理与量子力学》四,五章习题解答

《原子物理与量子力学》四,五章习题解答
3p
3s
2p
8.精细结构应用 (P144) . )
2s
HUST
APPLIED PHYSICS
2
第五章 多电子原子
2.角动量合成法则(P168) .角动量合成法则( )
2p3d 电子组态, 电子组态,原子态为 3
v pS
D ,则
v ps2
v pl2
v pL
v ps1
v pl1
HUST
APPLIED PHYSICS
4s4s 4s6s 4s5s
3
S S10 1 S0
1 3
S1
4s4p
1
1
1 3 3 2 3 1 0
P P P P
S0
HUST
APPLIED PHYSICS
5Hale Waihona Puke 第四章 碱金属原子和电子自旋
2.Na原子光谱公式(P143) . 原子光谱公式 原子光谱公式( )
主线系 漫线系 基线系
HUST
APPLIED PHYSICS
1
4.Li原子的能级跃迁(P143) . 原子的能级跃迁 原子的能级跃迁( )
可能跃迁有4种 可能跃迁有 种。 2p→2s、3p→2s为主线系;(3p→3s ) 主线系; 3 锐线系。 3s→2p为锐线系。
3
3.LS耦合(P168) . 耦合 耦合( )
基态为4 基态为4s4s,原子态为 (1)4s5s ) (2)4s4p ) (3)能级及跃迁情况 ) 跃迁满足选择定则: 跃迁满足选择定则: 可能跃迁有(如图) 可能跃迁有(如图): 主线系: 主线系: 二辅系: 二辅系:
HUST
原子态为 原子态为
偶 ↔ 奇
1
4s5s

原子物理学习题

原子物理学习题

原子物理学习题第一章 原子的核式结构1.选择题:(1)原子半径的数量级是:A .10-10cm; B.10-8m C. 10-10m D.10-13m(2)原子核式结构模型的提出是根据α粒子散射实验中A. 绝大多数α粒子散射角接近180︒B.α粒子只偏2︒~3︒C. 以小角散射为主也存在大角散射D. 以大角散射为主也存在小角散射(3)进行卢瑟福理论实验验证时发现小角散射与实验不符这说明:A. 原子不一定存在核式结构B. 散射物太厚C. 卢瑟福理论是错误的D. 小角散射时一次散射理论不成立(4)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍?A. 1/4 B . 1/2 C . 1 D. 2(5)动能E K =40keV 的α粒子对心接近Pb(z=82)核而产生散射,则最小距离为(m ):A.5.91010-⨯B.3.01210-⨯C.5.9⨯10-12D.5.9⨯10-14(6)如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍?A.2B.1/2C.1 D .4(7)在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于5°的范围内.若金箔的厚度增加到4倍,那么被散射的α粒子会有多少?A. 16B..8C.4D.2(8)在同一α粒子源和散射靶的条件下观察到α粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为:A .4:1 B.2:2 C.1:4 D.1:8(9)在α粒子散射实验中,若把α粒子换成质子,要想得到α粒子相同的角分布,在散射物不变条件下则必须使:A.质子的速度与α粒子的相同; B .质子的能量与α粒子的相同;C .质子的速度是α粒子的一半;D .质子的能量是α粒子的一半(a)不辐射可见光的物体;(b)不辐射任何光线的物体;(c)不能反射可见光的物体;(d)不能反射任何光线的物体;(e)开有小孔空腔.3.计算题:(1)当一束能量为4.8Mev 的α粒子垂直入射到厚度为4.0×10-5cm 的金箔上时探测器沿20°方向上每秒记录到2.0×104个α粒子试求:①仅改变探测器安置方位,沿60°方向每秒可记录到多少个α粒子?②若α粒子能量减少一半,则沿20°方向每秒可测得多少个α粒子?③α粒子能量仍为4.8MeV,而将金箔换成厚度的铝箔,则沿20°方向每秒可记录到多少个α粒子?(ρ金=19.3g/cm 3 ρ铅=27g /cm 3;A 金=179 ,A 铝=27,Z 金=79 Z 铝=13)(2)试证明:α粒子散射中α粒子与原子核对心碰撞时两者之间的最小距离是散射角为900时相对应的瞄准距离的两倍.(3)10Mev 的质子射到铜箔片上,已知铜的Z=29, 试求质子散射角为900时的瞄准距离b 和最接近于核的距离r m .(4)动能为5.0MeV 的α粒子被金核散射,试问当瞄准距离分别为1fm 和10fm 时,散射角各为多大?(5)假设金核半径为7.0fm ,试问:入设质子需要多大能量,才能在对头碰撞时刚好到达金核表面?(6)在α粒子散射实验中,如果用银箔代替金箔,二者厚度相同,那么在同样的偏转方向,同样的角度间隔内,散射的α粒子数将减小为原来的几分之几?银的密度为10.6公斤/分米3,原子量为108;金的密度为19.3公斤/分米3,原子量197。

原子物理学 课后答案

原子物理学  课后答案

目录第一章原子的位形 (2)第二章原子的量子态:波尔模型 (8)第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋....................... 错误!未定义书签。

第五章多电子原理:泡利原理 (23)第六章X射线 (28)第七章原子核物理概论.......................................... 错误!未定义书签。

1.本课程各章的重点难点重点:α粒子散射实验公式推导、原子能量级、氢原子的玻尔理论、原子的空间取向量子化、物质的波粒二象性、不确定原则、波函数及其物理意义和薛定谔方程、电子自旋轨道的相互作用、两个价电子的原子组态、能级分裂、泡利原理、电子组态的原子态的确定等。

难点:原子能级、电子组态、不确定原则、薛定谔方程、能级分裂、电子组态的原子态及基态的确定等。

2.本课程和其他课程的联系本课程需在高等数学、力学、电磁学、光学之后开设,同时又是理论物理课程中量子力学部分的前导课程,拟在第三学年第一学期开出。

3.本课程的基本要求及特点第一章原子的位形:卢瑟福模型了解原子的质量和大小、原子核式模型的提出;掌握粒子散射公式及其推导,理解α粒子散射实验对认识原子结构的作用;理解原子核式模型的实验验证及其物理意义。

第二章原子的量子态:玻尔模型掌握氢原子光谱规律及巴尔末公式;理解玻尔原子模型的基本假设、经典轨道、量子化条件、能量公式、主量子数、氢能级图;掌握用玻尔理论来解释氢原子及其光谱规律;了解伏兰克---赫兹实验的实验事实并掌握实验如何验证原子能级的量子化;理解索菲末量子化条件;了解碱金属光谱规律。

第三章量子力学导论掌握波粒二象性、德布罗意波的假设、波函数的统计诠释、不确定关系等概念、原理和关系式;理解定态薛定谔方程和氢原子薛定谔方程的解及n,l,m 三个量子数的意义及其重要性。

第四章 原子的精细结构:电子的自旋理解原子中电子轨道运动的磁矩、电子自旋的假设和电子自旋、电子量子态的 确定;了解史特恩—盖拉赫实验的实验事实并掌握实验如何验证角动量取向的量子化;理解碱金属原子光谱的精细结构;掌握电子自旋与轨道运动的相互作用;了解外磁场对原子的作用,理解史特恩—盖拉赫实验的结果、塞曼效应。

量子力学习题及答案

量子力学习题及答案
?2k ( 7 )
(7)代入(6)
csin2kk22a?dcos2k2a??kccos2k2a?
k21
kdsin2k2a
1
利用(4)、(5),得
k1k2kasin2k2a?acos2k2a??acos2k2a?2kdsin2k2a
1
a[(
k1k2k?2k)sin2k2a?2cos2k2a]?0
1?a?0
?
2
2?
??4
??0?e?4(b?x)对于区域Ⅰ,u(x)??,粒子不可能到达此区域,故?1(x)?0
而. ????2? (u0?e)
2
0?
2
?2?①
??2? (u1?e)
3
???
2
?3?0 ②
??2?e4
???
2
?
4
?0
对于束缚态来说,有?u?e?0
∴ ????k21?2?0 k22? (u0?e)
因此k1x
??1?ae ?
3
?fe
?k
1x
由波函数的连续性,有
?1(0)??2(0),?a?d(4)
?1?(0)???2
(0),?k1a?k2c (5)??(2a)??1a
3?(2a),?k2ccos2k2a?k2dsin2k2a??k?2k2
1fe(6)
?1a
2(2a)??3(2a),?csin2k2a?dcos2k2a?fe
1???k1?1?1?2?(u0?e)?????2??k22?2?0 (2) k22?2?e?2
束缚态0<e<u0 ??
??3??k2
1?3?0 (3)?1x
1?ae
?k?be
?k1x

完整版)原子物理学练习题及答案

完整版)原子物理学练习题及答案

完整版)原子物理学练习题及答案1、在电子偶素中,正电子与负电子绕共同质心运动。

在n=2状态下,电子绕质心的轨道半径等于2m。

2、氢原子的质量约为938.8 MeV/c2.3、一原子质量单位定义为原子质量的1/12.4、电子与室温下氢原子相碰撞,要想激发氢原子,电子的动能至少为13.6 eV。

5、电子电荷的精确测定首先是由XXX完成的。

特别重要的是他还发现了电荷是量子化的。

6、氢原子n=2.l=1与氦离子He+ n=3.l=2的轨道的半长轴之比为aH/aHe+=1/2,半短轴之比为bH/bHe+=1/3.7、XXX第一轨道半径是0.529×10-10 m,则氢原子n=3时电子轨道的半长轴a=2.12×10-10 m,半短轴b有两个值,分别是1.42×10-10 m,2.83×10-10 m。

8、由估算得原子核大小的数量级是10-15 m,将此结果与原子大小数量级10-10 m相比,可以说明原子核比原子小很多。

9、提出电子自旋概念的主要实验事实是XXX-盖拉赫实验和朗茨-XXX。

10、钾原子的电离电势是4.34 eV,其主线系最短波长为766.5 nm。

11、锂原子(Z=3)基线系(柏格曼系)的第一条谱线的光子能量约为1.19 eV。

12、考虑精细结构,形成锂原子第二辅线系谱线的跃迁过程用原子态符号表示应为2P1/2 -。

2S1/2.13、如果考虑自旋,但不考虑轨道-自旋耦合,碱金属原子状态应该用量子数n。

l。

XXX表示,轨道角动量确定后,能级的简并度为2j+1.14、32P3/2 -。

22S1/2与32P1/2 -。

22S1/2跃迁,产生了锂原子的红线系的第一条谱线的双线。

15、三次电离铍(Z=4)的第一玻尔轨道半径为0.529×10-10 m,在该轨道上电子的线速度为2.19×106 m/s。

16、对于氢原子的32D3/2态,其轨道角动量量子数j=3/2,总角动量量子数J=2或1,能级简并度为4或2.20、早期的元素周期表按照原子量大小排列,但是钾K(A=39.1)排在氩Ar(A=39.9)前面,镍Ni(A=58.7)排在钴Co(A=58.9)前面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

HUST
APPLIED PHYSICS
5
第七章 原子的壳层结构
3.原子结构(P218)
R(Z )2
n2
R
(n l )2
RZ *2 n2
Z
n
n l
Z
1
l n l
S
11 (1
1.35 ) 3 1.35
9.18
P
11 (1
0.86 ) 3 0.86
9.60
D
11 (1
3
无磁场
32D3
2
有磁场
M Mg
3
6
2
5
1
2
2
5
1 2
2 5
3 2
6 5
22P1
2
光谱线
2
2
2
15
15
15
10
10
15
15
1
1
2
3
1 2
1 3
HUST
APPLIED PHYSICS
3
7.磁场中的原子能级(P197)
附加能量 E MgB B
已知 1 5895.93A 2 5889.96A
g1 2 / 3, g2 4 / 3
M
3 2
1 2
1 2
3 2
M2 g2
6 5
2 5
2 5
6 5
M1 g1
1 3
1 3
M2 g2 M1g1
13 15
11 15
1 15
1 15
11 13 15 15
HUST
APPLIED PHYSICS
2
~
(
1
)
(
13 15
,
11 15
,
1 15
)L
原来的一条光谱线分裂成六条光谱线。
能级跃迁图如下:
0.01 ) 0.01
9.997
σ代表原子实中的有效(负)电荷数。
HUST
APPLIED PHYSICS
6
第八章 X射线
2.反射式光栅衍射(P249)
光程差为 极大条件 2d sin( / 2)sin( / 2) n
d cos d cos( ) 2d sin( / 2)sin( / 2)
第六章 磁场中的原子
2.磁场中的跃迁(P197)
能级如图,附加能量为
1 P1
E MgBB
1S0
hcvˆ E1 E0 E0 E1
gBB
BM 1 0 -1
0
v
而 g 1 J (J 1) L(L 1) S(S 1) 1
2J (J 1) B hcvˆ 1T g B
HUST
3.光栅衍射(P249) d
d 1 mm 10-5m, 20 20 rad 5.82mrad
100 1
60 180
对于第一级衍射2,有 5.82103 rad
n d( 2 / 2) 5.081010 m
HUST
APPLIED PHYSICS
7
BB
而对于K原子,有 s 1/ 2,J L 1/ 2或LJ
1)
L(L 1) 2J(J 1)
S
(
S
1)
1 1
2( L
1
1 1
/
,J 2)
,J
L L
1
2 1
2(L 1/ 2)
2
L 1(舍去) g 2 L 0
L 0, J 1 / 2, 原 子 态 为2 S1/ 2
P 2 3/2
E2
P 2 1/ 2
E1
1 2
S2 1/ 2
E0
BB
|E|2max |E|1max
E2
E1
E
2max
E 1max
1 hc (
2
1 )
1
M 2max
g2BB
M 1max
g1 B B
(34 23
1 2
2 3
)
B
B
B 15.78T
HUST
APPLIED PHYSICS
4
8.Stern-Gerlach实验与原子状态(P197)
APPLIED PHYSICS
1
3.Zeeman效应(P197)
Li原子 32D3/ 2 22P1/ 2 跃迁的Zeeman效应。
g1
1
1 3
22
1 2
2
1 2
3 2
1 3
22
2 3
M1
1 2
,
1 2
M , , , g2
1
3 5
22
23
2
3 2
5 2
1 3
22
4 5
31 1 3 2 22 2 2
(1) 2J 1 9 J 4 原 子 态 为5 D4
(2)
g 1 45 23 23 3
245
2
J
g
e 2m
PJ
3
5B
(3)
d 2
1 2m
L1
2
dB dy
MgB
1 m
dB dy
MgB
L1
L2
d 4.14mm
10.顺磁共振(P198)
根据顺磁共振的条件 gBB hv
可得
g hv 2
相关文档
最新文档