同济第六版《高等数学》第2章导数与微分教案总结
同济大学高等数学《导数及其应用》word教案

同济大学高等数学《导数及其应用》w o r d教案(总35页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第 9 次课 2 学时第二章 导数与微分导数和微分是高等数学中的重要内容之一,也是今后讨论一切问题的基础。
导数数大体上变化多少,它从根本上反映了函数的变化情况。
本章主要学习和讨论导数和微分的概念以及它们的计算方法,以后将陆续的介绍它们的用途。
§2、1 导数的概念 一、 引例 1、切线问题:切线的概念在中学已见过。
从几何上看,在某点的切线就是一直线,它在该点和曲线相切。
准确地说,曲线在其上某点P 的切线是割线PQ 当Q 沿该曲线无限地接近于P 点的极限位置。
设曲线方程为)(x f y =,设P 点的坐标为),(00y x p ,动点Q 的坐标为),(y x Q ,要求出曲线在P 点的切线,只须求出P 点切线的斜率k 。
由上知,k 恰好为割线PQ 的斜率的极限。
我们不难求得PQ 的斜率为:0)()(x x x f x f --;因此,当Q P →时,其极限存在的话,其值就是k ,即00)()(limx x x f x f k x x --=→。
若设α为切线的倾角,则有αtan =k 。
2、速度问题:设在直线上运动的一质点的位置方程为)(t s s =(t 表示时刻),又设当t 为0t 时刻时,位置在)(0t s s =处,问:质点在0t t =时刻的瞬时速度是多少?为此,可取0t 近邻的时刻t ,0t t >,也可取0t t <,在由0t 到t 这一段时间内,质点的平均速度为00)()(t t t s t s --,显然当t 与0t 越近,用00)()(t t t s t s --代替0t 的瞬时速度的效果越佳,特别地,当0t t →时,00)()(t t t s t s --→某常值0v ,那么0v 必为0t 点的瞬时速度,此时,00)()(lim 0t t t s t s v t t --=→二、 导数的定义综合上两个问题,它们均归纳为这一极限00)()(limx x x f x f x x --→(其中0x x -为自变量x在0x 的增量,)()(0x f x f -为相应的因变量的增量),若该极限存在,它就是所要讲的导数。
同济大学高等数学《导数及其应用》word教案

第9次课2学时第二章导数与微分导数和微分是高等数学中的重要内容之一,也是今后讨论一切问题的基础。
导数反映出函数相对于自变量的变化快慢的程度,而微分则指明当自变量有微小变化时函数大体上变化多少,它从根本上反映了函数的变化情况。
本章主要学习和讨论导数和微分的概念以及它们的计算方法,以后将陆续的介绍它们的用途。
§2、1导数的概念一、 引例1、 切线问题:切线的概念在中学已见过。
从几何上看,在某点的切线就是一直线,它在该点和曲线相切。
准确地说,曲线在其上某点P 的切线是割线PQ 当Q 沿该曲线无限地接近于P 点的极限位置。
设曲线方程为)(x f y =,设P 点的坐标为),(00y x p ,动点Q 的坐标为),(y x Q ,要求出曲线在P 点的切线,只须求出P 点切线的斜率k 。
由上知,k 恰好为割线PQ 的斜率的极限。
我们不难求得PQ 的斜率为:0)()(x x x f x f --;因此,当Q P →时,其极限存在的话,其值就是k ,即0)()(limx x x f x f k x x --=→。
若设α为切线的倾角,则有αtan =k 。
2、速度问题:设在直线上运动的一质点的位置方程为)(t s s=(t 表示时刻),又设当t 为0t 时刻时,位置在)(0t s s =处,问:质点在0t t =时刻的瞬时速度是多少?为此,可取0t 近邻的时刻t ,0t t >,也可取0t t <,在由0t 到t 这一段时间内,质点的平均速度为00)()(t t t s t s --,显然当t 与0t 越近,用00)()(t t t s t s --代替0t 的瞬时速度的效果越佳,特别地,当0t t →时,0)()(t t t s t s --→某常值0v ,那么0v 必为0t 点的瞬时速度,此时,二、导数的定义综合上两个问题,它们均归纳为这一极限00)()(limx x x f x f x x --→(其中0x x -为自变量x 在0x 的增量,)()(0x f x f -为相应的因变量的增量),若该极限存在,它就是所要讲的导数。
同济大学高数第六版基本概念及公式总结(土木数学兴趣小组)

四川建院土木1301(数学兴趣小组)目录第一章函数与极限薚……………………………………………………………………第一节函数……………………………………………………………………………….. 第二节数列的极限………………………………………………………………………………….. 第三节函数的极限…………………………………………………………………………………第四节无穷小与无穷大…………………………………………………………………………….. 第五节极限四则运算法则……………………………………………………………………………第六节极限存在准则、两个重要极限………………………………………………………………第七节无穷小的比较…………………………………………………………………………………第八节函数的连续性与间断点………………………………………………………………………第九节连续函数的运算与初等函数的连续性…………………………………………………….. 第十节闭区间上连续函数的性质……………………………………………………………………第二章导数与微分………………………………………………………………………. 第一节导数的概念……………………………………………………………………………………. 第二节函数的求导法则………………………………………………………………………………第三节初等函数的求导问题…………………………………………………………………………. 双曲函数与反双曲函数的导数…………………………………………………………………………第四节高阶导数………………………………………………………………………………………第五节隐函数的导数、由参数方程所确定的函数的导数相关辩化率……………………………第六节函数的微分…………………………………………………………………………………….第三章中值定理与导数的应用…………………………………………………………第一节中值定理………………………………………………………………………………….. 第二节洛必达法则……………………………………………………………………………………第三节泰勒公式………………………………………………………………………………………第四节函数单调性的判定法…………………………………………………………………………第五节函数的极值与最值……………………………………………………………………………第六节曲线的凹凸与拐点……………………………………………………………………………第七节曲率……………………………………………………………………………………………第八节方程的近似解…………………………………………………………………………………第四章不定积分……………………………………………………………………….. 第一节不定积分的概念及其性质………………………………………………………………第二节不定积分的换元积分………………………………………………………………………第三节不定积分的分部积分法…………………………………………………………………….. 第四节几种特殊类型函数的积分……………………………………………………………………第五章定积分…………………………………………………………………………. 第一节定积分概念与性质…………………………………………………………………………第二节微积分基本定理………………………………………………………………………….. 第三节定积分换元积分法与分部积分法……………………………………………………..第四节广义积分……………………………………………………………………………..第六章定积分的应用……………………………………………………………….定积分的元素法……………………………………………………………………………………功水压力和引力…………………………………………………………………………………. 平均值……………………………………………………………………………………………..第七章空间解析几何与向量代数…………………………………………………. 第一节空间直角坐标系…………………………………………………………………………. 第二节向量及其加减法向量与数的乘法………………………………………………………第三节向量的坐标………………………………………………………………………………第四节数量积向量积混合积…………………………………………………………………. 第五节曲面及其方程……………………………………………………………………………第六节空间曲线及其方程………………………………………………………………………. 第七节平面及其方程…………………………………………………………………………….. 第八节空间直线及其方程………………………………………………………………………. 第九节二次曲面…………………………………………………………………………………第八章多元函数微分法及其应用…………………………………………………第一节多元函数的基本概念………………………………………………………………….第二节偏导数………………………………………………………………………………….第三节全微分………………………………………………………………………………….第四节多元复合函数的求导法则……………………………………………………………. 第五节隐函数的求导法则……………………………………………………………………第六节微分法在几何上的应用………………………………………………………………..第七节方向导数与梯度………………………………………………………………………..第八节多元函数的极值及其求法……………………………………………………………….第九章重积分………………………………………………………………………第一节二重积分的概念与性质…………………………………………………………….第二节二重积分的计算…………………………………………………………………………第三节二重积分的应用…………………………………………………………………………第四节三重积分的概念及其计算法……………………………………………………………. 第五节利用柱面坐标和球面坐标计算三重积分………………………………………………第十章曲线积分与曲面积分………………………………………………………第一节对弧长的曲线积分…………………………………………………………………….第二节对坐标的曲线积分…………………………………………………………………….第三节格林公式及其应用……………………………………………………………………. 第四节对面积的曲面积分……………………………………………………………………. 第五节对坐标的曲面积分……………………………………………………………………. 第六节高斯公式通量与散度………………………………………………………………第七节斯托克斯公式环流量与旋度………………………………………………………第十一章无穷级数………………………………………………………………第一节常数项级数的概念和性质………………………………………………………….. 第二节常数项级数的申敛法…………………………………………………………………. 第三节幂级数…………………………………………………………………………………. 第四节函数展开成幂级数……………………………………………………………………第五节函数的幂级数展开式的应用…………………………………………………………第七节傅里叶级数……………………………………………………………………………. 第八节正弦级数与余弦级数…………………………………………………………………. 第九节周期为2l的周期函数的傅里叶级数………………………………………………...第十二章微分方程……………………………………………………………….. 第一节微分方程的基本概念……………………………………………………………….. 第二节可分离变量的微分方程………………………………………………………………第三节齐次方程……………………………………………………………………………第四节一阶线性微分方程…………………………………………………………………第五节全微分方程……………………………………………………………………………第六节可降阶的高阶微分方程………………………………………………………………第七节高阶线性微分方程……………………………………………………………………第八节二阶常系数齐次线性微分方程………………………………………………….. 第九节二阶常系数非齐次线性微分方程……………………………………………………第十节欧拉方程………………………………………………………………………………第十一节微分方程的幂级数解法……………………………………………………………. 第十二节常系数线性微分方程组解法举例…………………………………………………第一章 函数与极限第一节 函 数教学目的:本节主要是复习高中阶段学过的集合以及函数的概念、性质;介绍邻域、分段函数、复合函数、初等函数的概念。
同济大学(高等数学)_第二章_导数与微分知识分享

3 x) 3x
f (x0 )
3 f ( x0 )
6.
( 2) lim f ( x0 h) f ( x0 h) lim f ( x0 h) f ( x0 ) f ( x0 ) f ( x0 h)
h0
h
h0
h
lim f (x0 h)
h0
h
f (x0)
lim f (x0
h0
h) f (x0) h
2 f ( x0 )
内可导;
( 2)若函数 y f ( x) 在区间 (a, b) 内可导,在区间左端点 a 的右导数 f (a) 和区间右
端点 b 的左导数 f (b) 均存在,则称 y f (x) 在闭区间 [ a,b] 上可导. 定义 4 若函数 y f ( x) 在区间 I (可以是开区间、闭区间或半开半闭区间)上可导,
x
x x0
x x0
值为 y f ( x) 在点 x0 的 左导数 ,记为 f ( x0 ) ,即
f ( x0 ) lim f ( x0 x0
x)
f (x0)
f (x) lim
f ( x0 ) .
x
x x0
x x0
( 2)设函数 y f ( x) 在点 x0 的某右邻域内有定义,当自变量 x 在点 x0 右侧取得增量
v(t0 ) lim v t0
1.1.2 平面曲线的切线斜率问题
s lim t0 t
lim s(t0
t0
t) s(t0) . t
已知曲线 C : y f ( x) ,求曲线 C 上点 M 0 ( x0 , y0 ) 处的切线斜率.
欲求曲线 C 上点 M 0( x0 , y0) 的切线斜率,由切线为割线的极限位置,容易想到切线的
《高等数学》第2章导数与微分2-4隐函数

• 一、隐函数的导数 • 二、对数求导法 • 三、由参数方程所确定的函数的导数 • 四、相关变化率 • 五、小结 思考题
一、隐函数的导数
定义:由方程所确定的函数 y y( x)称为隐函数 .
y f ( x) 形式称为显函数 .
F(x, y) 0
发射炮弹, 其运动方程为
x v0t cos ,
y
v0t
sin
1 2
gt 2 ,
求
(1)炮弹在时刻
t
的运动方向
0
;
(2)炮弹在时刻
t
的速度大小
0
.
解
(1)
在
t
时刻的运动方向即
0
y v0
vy
v vx
轨迹在 t0时刻的切线方向,
可由切线的斜率来反映 . o
x
dy dx
(v0t sin (v0t cos
4 x3 y xy 4 y3 y 0
(1)
代入 x 0, y 1得
y
x0 y1
1; 4
将方程 (1)两边再对x求导得
12 x2 2 y xy 12 y2 ( y)2 4 y3 y 0
代入 x 0,
y 1,
y
x0 y1
1 4
得
y
x0 y1
1. 16
二、对数求导法
观察函数
y
(
ln y ln( x 1) 1 ln( x 1) 2 ln( x 4) x 3
上式两边对 x求导得
y y
1 x1
1 3( x 1)
x
2
4
1
y
( x 1)3 x ( x 4)2 e x
《高等数学》第2章导数与微分

2.2.2 反函数的求导法则
定理 如果函数x = f ( y )在区间I y内单调、可导且 f ′( y ) ≠ 0,
内可导, 且有 : 1 dy 1 ( x)] = [f 或 = . f ′( y ) dx dx dy
−1
则它的反函数 y = f −1 ( x)在区间I x = {x | x = f ( x), y ∈ I y } ′
0
引例2 求平面曲线切线的斜率. 导数的几何意义 引例 解析: 解析:
曲线C = f ( x)上一点M ( x0 , y0 ), 其中y0 = f ( x0 ).求曲线C 在点M处的切线斜率. , y ), MN的斜率为 在曲线C上另取一点N ( x 则割线MN的斜率为 : y = f (x ) ∆y f ( x) − f ( x0 ) k MN = tan ϕ = = y ∆x x − x0 N 则上 当点N沿曲线C趋向于点M即x → x0 , M 式极限即为切线斜率 : ∆y f ( x 0 + ∆x ) − f ( x 0 ) α ϕ k = tan α = lim = lim . ∆x →0 ∆x → 0 o x ∆x ∆x
f −′( x0 ) = ∆x → 0 lim
−
+
在闭区间 [a , b ]上可导 .
若函数 f ( x )在开区间 (a , b )内可导 , 且 f +′(a )及 f −′(b )都存在 , 则 f ( x )
求导步骤
(1)
求增量 ∆y = f ( x + ∆x) − f ( x);
(2)
作比值
能力目标
通过导数与微分的学习,进一步培养学生 通过导数与微分的学习, 对比分析的思考能力. 对比分析的思考能力.
同济大学高等数学第六版上第二章第二节 函数的求导法则

(sin x ) cos x sin x (cos x ) cos
2
x
cos
2
x sin cos
2
2
x
x
1 cos
2
sec x
2
x
即
2 (tan x ) sec x .
同理可得
2 (cot x ) csc x .
一、和、差、积、商的求导法则
定理
如果函数 u( x ), v ( x )在点 x处可导, 则它 们的和、差、积、商 (分母不为零 )在点 x处也 可导, 并且
(1) [ u( x ) v ( x )] u( x ) v ( x ); ( 2) [ u( x ) v ( x )] u( x )v ( x ) u( x )v ( x ); ( 3) [ u( x ) v( x ) ] u( x )v ( x ) u( x )v ( x ) v ( x)
f i( x ) f k ( x );
i 1 k 1 k i
n
n
④
作为(2)的特殊情况
若 v c ,则 ( cu ) c u
或
[Cf ( x )] Cf ( x );
即常数因子可以提到导数符号的外面
[ k i f i ( x ) ]
i 1 n
k i f i( x )
u( x h) u( x ) v( x h) v( x ) h v ( x h )v ( x )
h 0
v ( x ) u( x )
lim
h
h 0
《高等数学》(同济六版)教学课件★第2章.导数与微分

( C ) 0 ( sin x ) cos x 证明中利用了 1 两个重要极限 ( ln x ) x
初等函数求导问题
求导法则 其他基本初等 函数求导公式
目录
上页
下页
返回
结束
一、四则运算求导法则
定理1. 函数 u u ( x) 及 v v( x) 都在点 x 可导
第二章 导数与微分
微积分学的创始人:
导数思想最早由法国 数学家 Ferma 在研究 极值问题中提出.
英国数学家 Newton
德国数学家 Leibniz 微分学
导数
微分
描述函数变化快慢
描述函数变化程度
都是描述物质运动的工具 (从微观上研究函数)
第一节 导数的概念
一、引例 二、导数的定义
第二章
三、导数的几何意义
例6. 设
f ( x0 h) f ( x0 h) . 存在, 求极限 lim h 0 2h
是否可按下述方法作: f ( x ) f ( x0 ) hf)( x0f h (x ) 0 0) 0 解: 原式 lim
令 t x0 0h , 则 h
原式 1 f ( x ) 1 f ( x ) f ( x0 ) 0 0 2 2
返回 结束
线密度 是质量增量与长度增量之比的极限
电流强度 是电量增量与时间增量之比的极限
目录
上页
下页
二、导数的定义
定义1 . 设函数 若
在点
的某邻域内有定义 ,
y f ( x ) f ( x0 ) x x x0
y f ( x ) f ( x0 ) lim lim x x0 x 0 x x x0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 导数与微分教学目的:1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。
2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3、 了解高阶导数的概念,会求某些简单函数的n 阶导数。
4、 会求分段函数的导数。
5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。
教学重点:1、导数和微分的概念与微分的关系;2、导数的四则运算法则和复合函数的求导法则;3、基本初等函数的导数公式;4、高阶导数;6、 隐函数和由参数方程确定的函数的导数。
教学难点:1、复合函数的求导法则;2、分段函数的导数;3、反函数的导数4、隐函数和由参数方程确定的导数。
§2. 1 导数概念一、引例1.直线运动的速度设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数:s =f (t ),求动点在时刻t 0的速度.考虑比值000)()(t t t f t f t t s s --=--, 这个比值可认为是动点在时间间隔t -t 0内的平均速度. 如果时间间隔选较短, 这个比值在实践中也可用来说明动点在时刻t 0的速度. 但这样做是不精确的, 更确地应当这样: 令t -t 0→0, 取比值00)()(t t t f t f --的极限, 如果这个极限存在, 设为v , 即 00)()(lim 0t t t f t f v t t --=→, 这时就把这个极限值v 称为动点在时刻t 0的速度.2.切线问题设有曲线C 及C 上的一点M , 在点M 外另取C 上一点N , 作割线MN . 当点N 沿曲线C 趋于点M 时, 如果割线MN绕点M旋转而趋于极限位置MT , 直线MT就称为曲线C有点M处的切线.设曲线C 就是函数y =f (x )的图形. 现在要确定曲线在点M (x 0, y 0)(y 0=f (x 0))处的切线, 只要定出切线的斜率就行了. 为此, 在点M 外另取C 上一点N (x , y ), 于是割线MN 的斜率为 0000)()(tan x x x f x f x x y y --=--=ϕ, 其中ϕ为割线MN 的倾角. 当点N 沿曲线C 趋于点M 时, x →x 0. 如果当x → 0时, 上式的极限存在, 设为k , 即0)()(lim 0x x x f x f k x x --=→ 存在, 则此极限k 是割线斜率的极限, 也就是切线的斜率. 这里k =tan α, 其中α是切线MT 的倾角. 于是, 通过点M (x 0, f (x 0))且以k 为斜率的直线MT 便是曲线C 在点M 处的切线.二、导数的定义1. 函数在一点处的导数与导函数从上面所讨论的两个问题看出, 非匀速直线运动的速度和切线的斜率都归结为如下的极限:0)()(lim 0x x x f x f x x --→. 令∆x =x -x 0, 则∆y =f (x 0+∆x )-f (x 0)= f (x )-f (x 0), x →x 0相当于∆x →0, 于是00)()(lim0x x x f x f x x --→ 成为x y x ∆∆→∆0lim 或x x f x x f x ∆-∆+→∆)()(lim 000. 定义 设函数y =f (x )在点x 0的某个邻域内有定义, 当自变量x 在x 0处取得增量∆x (点x 0+∆x 仍在该邻域内)时, 相应地函数y 取得增量∆y =f (x 0+∆x )-f (x 0); 如果∆y 与∆x 之比当∆x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为0|x x y =', 即xx f x x f x y x f x x ∆-∆+=∆∆='→∆→∆)()(lim lim )(00000,也可记为0|x x y =', 0 x x dx dy =或0)(x x dx x df =. 函数f (x )在点x 0处可导有时也说成f (x )在点x 0具有导数或导数存在.导数的定义式也可取不同的形式, 常见的有hx f h x f x f h )()(lim )(0000-+='→, 000)()(lim )(0x x x f x f x f x x --='→. 在实际中, 需要讨论各种具有不同意义的变量的变化“快慢”问题, 在数学上就是所谓函数的变化率问题. 导数概念就是函数变化率这一概念的精确描述.如果极限xx f x x f x ∆-∆+→∆)()(lim 000不存在, 就说函数y =f (x )在点x 0处不可导. 如果不可导的原因是由于∞=∆-∆+→∆xx f x x f x )()(lim 000, 也往往说函数y =f (x )在点x 0处的导数为无穷大.如果函数y =f (x )在开区间I 内的每点处都可导, 就称函数f (x )在开区间I 内可导, 这时, 对于任一x ∈I , 都对应着f (x )的一个确定的导数值. 这样就构成了一个新的函数, 这个函数叫做原来函数y =f (x )的导函数, 记作 y ',)(x f ',dx dy , 或dxx df )(.导函数的定义式:x x f x x f y x ∆-∆+='→∆)()(lim 0=h x f h x f h )()(lim 0-+→. f '(x 0)与f '(x )之间的关系:函数f (x )在点x 0处的导数f '(x )就是导函数f '(x )在点x =x 0处的函数值, 即0)()(0x x x f x f ='='.导函数f '(x )简称导数, 而f '(x 0)是f (x )在x 0处的导数或导数f '(x )在x 0处的值.左右导数: 所列极限存在, 则定义f (x )在0x 的左导数:hx f h x f x f h )()(lim )(0000-+='-→-; f (x )在0x 的右导数:h x f h x f x f h )()(lim )(0000-+='+→+. 如果极限h x f h x f h )()(lim000-+-→存在, 则称此极限值为函数在x 0的左导数. 如果极限h x f h x f h )()(lim 000-++→存在, 则称此极限值为函数在x 0的右导数.导数与左右导数的关系2.求导数举例例1.求函数f (x )=C (C 为常数)的导数.解: hx f h x f x f h )()(lim)(0-+='→0lim 0=-=→h C C h . 即 (C ) '=0.例2. 求x x f 1)(=的导数. 解: h x h x h x f h x f x f h h 11lim )()(lim )(00-+=-+='→→ 2001)(1lim )(lim x xh x x h x h h h h -=+-=+-=→→. 例3. 求x x f =)(的导数.解: h x h x h x f h x f x f h h -+=-+='→→00lim )()(lim )( xx h x x h x h h h h 211lim )(lim 00=++=++=→→. 例2.求函数f (x )=x n (n 为正整数)在x =a 处的导数. 解: f '(a )a x a f x f ax --=→)()(lim a x a x n n a x --=→lim a x →=lim (x n -1+ax n -2+ ⋅ ⋅ ⋅ +a n -1)=na n -1. 把以上结果中的a 换成x 得 f '(x )=nx n -1, 即 (x n )'=nx n -1.(C )'=0, 21)1(x x -=', xx 21)(=', 1)(-⋅='μμμx x . 更一般地, 有(x μ)'=μx μ-1 , 其中μ为常数.例3.求函数f (x )=sin x 的导数.解: f '(x )h x f h x f h )()(lim0-+=→h x h x h sin )sin(lim 0-+=→ 2sin )2cos(21lim 0h h x h h +⋅=→ x h hh x h cos 22sin )2cos(lim 0=⋅+=→. 即 (sin x )'=cos x .用类似的方法, 可求得 (cos x )'=-sin x .例4.求函数f (x )= a x (a >0, a ≠1) 的导数.解: f '(x )h x f h x f h )()(lim 0-+=→ha a x h x h -=+→0limh a a h h x 1lim0-=→t a h =-1令)1(log lim 0t t a a t x +→ a a ea x a x ln log 1==. 特别地有(e x )=e x .例5.求函数f (x )=log a x (a >0, a ≠1) 的导数.解: hx h x h x f h x f x f a a h h log )(log lim )()(lim )(00-+=-+='→→ h x a h a h a h xh x x h h x x x h x h )1(log lim 1)1(log lim 1)(log 1lim 000+=+=+=→→→ ax e x a ln 1log 1==. 解:h x h x x f a a h log )(log lim )(0-+='→)1(log 1lim 0xh h a h +=→ h x a h x h x )1(log lim 10+=→ax e x a ln 1log 1==.即 ax x a ln 1)(log =' . : 特殊地 xx 1)(ln ='. a x x a ln 1)(log =', xx 1)(ln ='. 3.单侧导数:极限h x f h x f h )()(lim0-+→存在的充分必要条件是 hx f h x f h )()(lim 0-+-→及h x f h x f h )()(lim 0-++→ 都存在且相等. f (x )在0x 处的左导数:hx f h x f x f h )()(lim )(00-+='-→-, f (x )在0x 处的右导数:h x f h x f x f h )()(lim )(00-+='+→+.如果函数f (x )在开区间(a , b )内可导, 且右导数f '+(a ) 和左导数f '-(b )都存在, 就说f (x )有闭区间[a , b ]上可导.例6.求函数f (x )=|x |在x =0处的导数.解: 1||lim )0()0(lim )0(00-==-+='--→→-h h hf h f f h h , 1||lim )0()0(lim )0(00==-+='++→→+h h h f h f f h h , 因为f '-(0)≠ f '+(0), 所以函数f (x )=|x |在x =0处不可导.四、导数的几何意义函数y =f (x )在点x 0处的导数f '(x 0)在几何上表示曲线y =f (x )在点M (x 0, f (x 0))处的切线的斜率, 即其中α是切线的倾角.如果y =f (x )在点x 0处的导数为无穷大, 这时曲线y =f (x )的割线以垂直于x 轴的直线x =x 0为极限位置, 即曲线y =f (x )在点M (x 0, f (x 0))处具有垂直于x 轴的切线x =x 0. :由直线的点斜式方程, 可知曲线y =f (x )在点M (x 0, y 0)处的切线方程为过切点M (x 0, y 0)且与切线垂直的直线叫做曲线y =f (x )在点M 处的法线如果f '(x 0)≠0, 法线的斜率为)(10x f '-, 从而法线方程为 )()(1000x x x f y y -'-=-. 例8. 求等边双曲线x y 1=在点)2 ,21(处的切线的斜率, 并写出在该点处的切线方程和法线方程. 解: 21xy -=', 所求切线及法线的斜率分别为 4)1(2121-=-==x x k , 41112=-=k k . 所求切线方程为)21(42--=-x y , 即4x +y -4=0. 所求法线方程为)21(412-=-x y , 即2x -8y +15=0. 例9 求曲线x x y =的通过点(0, -4)的切线方程.解 设切点的横坐标为x 0, 则切线的斜率为0212302323)()(0x x x x f x x =='='=.于是所求切线的方程可设为)(230000x x x x x y -=-. 根据题目要求, 点(0, -4)在切线上, 因此)0(2340000x x x x -=--, 解之得x 0=4. 于是所求切线的方程为)4(42344-=-x y , 即3x -y -4=0. 四、函数的可导性与连续性的关系设函数y =f (x )在点x 0 处可导, 即)(lim00x f x y x '=∆∆→∆存在. 则 00)(lim lim lim lim 00000=⋅'=∆⋅∆∆=∆⋅∆∆=∆→∆→∆→∆→∆x f x x y x x y y x x x x . 这就是说, 函数y =f (x )在点x 0 处是连续的. 所以, 如果函数y =f (x )在点x 处可导, 则函数在该点必连续.另一方面, 一个函数在某点连续却不一定在该点处可导.例7. 函数3)(x x f =在区间(-∞, +∞)内连续, 但在点x =0处不可导. 这是因为函数在点x =0处导数为无穷大hf h f h )0()0(lim 0-+→+∞=-=→h h h 0lim 30.§2. 2 函数的求导法则一、函数的和、差、积、商的求导法则定理1 如果函数u =u (x )及v =v (x )在点x 具有导数, 那么它们的和、差、积、商(除分母为零的点外)都在点x 具有导数, 并且[u (x ) ±v (x )]'=u '(x ) ±v '(x ) ;[u (x )⋅v (x )]'=u '(x )v (x )+u (x )v '(x );)()()()()()()(2x v x v x u x v x u x v x u '-'='⎥⎦⎤⎢⎣⎡. 证明 (1)hx v x u h x v h x u x v x u h )]()([)]()([lim ])()([0±-+±+='±→⎥⎦⎤⎢⎣⎡-+±-+=→h x v h x v h x u h x u h )()()()(lim 0=u '(x )±v '(x ). 法则(1)可简单地表示为(u ±v )'=u '±v ' .(2)hx v x u h x v h x u x v x u h )()()()(lim ])()([0-++='⋅→ )]()()()()()()()([1lim 0x v x u h x v x u h x v x u h x v h x u hh -+++-++=→ ⎥⎦⎤-+++⎢⎣⎡-+=→h x v h x v x u h x v h x u h x u h )()()()()()(lim 0 hx v h x v x u h x v h x u h x u h h h )()(lim )()(lim )()(lim 000-+⋅++⋅-+=→→→ =u '(x )v (x )+u (x )v '(x ),其中0lim →h v (x +h )=v (x )是由于v '(x )存在, 故v (x )在点x 连续. 法则(2)可简单地表示为(uv )'=u 'v +uv '.(3) h x v h x v h x v x u x v h x u h x v x u h x v h x u x v x u h h )()()()()()(lim )()()()(lim )()(00++-+=-++='⎥⎦⎤⎢⎣⎡→→ hx v h x v x v h x v x u x v x u h x u h )()()]()()[()()]()([lim 0+-+--+=→ )()()()()()()()(lim 0x v h x v h x v h x v x u x v h x u h x u h +-+--+=→ )()()()()(2x v x v x u x v x u '-'=. 法则(3)可简单地表示为2)(v v u v u v u '-'='. (u ±v )'=u '±v ', (uv )'=u 'v +uv ', 2)(v v u v u v u '-'='. 定理1中的法则(1)、(2)可推广到任意有限个可导函数的情形. 例如, 设u =u (x )、v =v (x )、w =w (x )均可导, 则有(u +v -w )'=u '+v '-w '.(uvw )'=[(uv )w]'=(uv )'w +(uv )w '=(u 'v +uv ')w +uvw '=u 'vw +uv 'w +uvw '.即 (uvw )' =u 'vw +uv 'w +uvw '.在法则(2)中, 如果v =C (C 为常数), 则有(Cu )'=Cu '.例1.y =2x 3-5x 2+3x -7, 求y '解: y '=(2x 3-5x 2+3x -7)'= (2x 3)'-(5x 2)'+(3x )'-(7)'= 2 (x 3)'- 5( x 2)'+ 3( x )'=2⋅3x 2-5⋅2x +3=6x 2-10x +3.例2. 2 sin cos 4)(3π-+=x x x f , 求f '(x )及)2(πf '. 解: x x x x x f sin 43)2(sin )cos 4()()(23-='-'+'='π, 443)2 (2-='ππf . 例3.y =e x (sin x +cos x ), 求y '.解: y '=(e x )'(sin x +cos x )+ e x (sin x +cos x )'= e x (sin x +cos x )+ e x (cos x -sin x )=2e x cos x .例4.y =tan x , 求y '.解: xx x x x x x x y 2cos )(cos sin cos )(sin )cos sin ()(tan '-'='='=' x x x x x 22222sec cos 1cos sin cos ==+=. 即 (tan x )'=sec 2x .例5.y =sec x , 求y '.解: x x x x x y 2cos )(cos 1cos )1()cos 1()(sec '⋅-'='='='xx 2cos sin ==sec x tan x . 即 (sec x )'=sec x tan x .用类似方法, 还可求得余切函数及余割函数的导数公式:(cot x )'=-csc 2x ,(csc x )'=-csc x cot x .二、反函数的求导法则定理2 如果函数x =f (y )在某区间I y 内单调、可导且f '(y )≠0, 那么它的反函数y =f -1(x )在对应区间I x ={x |x =f (y ), y ∈I y }内也可导, 并且)(1])([1y f x f '='-. 或dydx dx dy 1=. 简要证明: 由于x =f (y )在I y 内单调、可导(从而连续), 所以x =f (y )的反函数y =f -1(x )存在, 且f -1(x )在I x 内也单调、连续.任取x ∈I x , 给x 以增量∆x (∆x ≠0, x +∆x ∈I x ), 由y =f -1(x )的单调性可知∆y =f -1(x +∆x )-f -1(x )≠0,于是yxx y ∆∆=∆∆1. 因为y =f -1(x )连续, 故0lim 0=∆→y x 从而)(11lim lim ])([001y f yx x y x f y x '=∆∆=∆∆='→∆→∆-. 上述结论可简单地说成: 反函数的导数等于直接函数导数的倒数.例6.设x =sin y , ]2,2 [ππ-∈y 为直接函数, 则y =arcsin x 是它的反函数. 函数x =sin y 在开区间)2,2 (ππ-内单调、可导, 且 (sin y )'=cos y >0.因此, 由反函数的求导法则, 在对应区间I x =(-1, 1)内有2211sin 11cos 1)(sin 1)(arcsin x y y y x -=-=='='. 类似地有: 211)(arccos x x --='. 例7.设x =tan y , )2,2 (ππ-∈y 为直接函数, 则y =arctan x 是它的反函数. 函数x =tan y 在区间)2,2 (ππ-内单调、可导, 且 (tan y )'=sec 2 y ≠0.因此, 由反函数的求导法则, 在对应区间I x =(-∞, +∞)内有22211tan 11sec 1)(tan 1)(arctan xy y y x +=+=='='. 类似地有: 211)cot arc (x x +-='. 例8设x =a y (a >0, a ≠1)为直接函数, 则y =log a x 是它的反函数. 函数x =a y 在区间I y =(-∞, +∞)内单调、可导, 且(a y )'=a y ln a ≠0.因此, 由反函数的求导法则, 在对应区间I x =(0, +∞)内有ax a a a x y y a ln 1ln 1)(1)(log =='='. 到目前为止, 所基本初等函数的导数我们都求出来了, 那么由基本初等函数构成的较复杂的初等函数的导数如可求呢?如函数lntan x 、3x e 、的导数怎样求?三、复合函数的求导法则定理3 如果u =g (x )在点x 可导, 函数y =f (u )在点u =g (x )可导, 则复合函数y =f [g (x )]在点x 可导, 且其导数为)()(x g u f dxdy '⋅'=或dx du du dy dx dy ⋅=. 证明: 当u =g (x )在x 的某邻域内为常数时, y =f [ϕ(x )]也是常数, 此时导数为零, 结论自然成立.当u =g (x )在x 的某邻域内不等于常数时, ∆u ≠0, 此时有xx g x x g x g x x g x g f x x g f x x g f x x g f x y ∆-∆+⋅-∆+-∆+=∆-∆+=∆∆)()()()()]([)]([)]([)]([ x x g x x g u u f u u f ∆-∆+⋅∆-∆+=)()()()(, xx g x x g u u f u u f x y dx dy x u x ∆-∆+⋅∆-∆+=∆∆=→∆→∆→∆)()(lim )()(lim lim 000= f '(u )⋅g '(x ). 简要证明:x u u y x y dx dy x x ∆∆⋅∆∆=∆∆=→∆→∆00lim lim )()(lim lim 00x g u f xu u y x u ''=∆∆⋅∆∆=→∆→∆. 例9 3x e y =, 求dxdy . 解 函数3x e y =可看作是由y =e u , u =x 3复合而成的, 因此32233x u e x x e dxdu du dy dx dy =⋅=⋅=. 例10 212sin xxy +=, 求dx dy . 解 函数212sin x xy +=是由y =sin u , 212xxu +=复合而成的, 因此 2222222212cos )1()1(2)1()2()1(2cos x x x x x x x u dx du du dy dx dy +⋅+-=+-+⋅=⋅=. 对复合函数的导数比较熟练后, 就不必再写出中间变量, 例11.lnsin x , 求dx dy . 解: )(sin sin 1)sin (ln '⋅='=x x x dx dy x x xcot cos sin 1=⋅=. 例12.3221x y -=, 求dxdy .解: )21()21(31])21[(2322312'-⋅-='-=-x x x dx dy 322)21(34x x --=. 复合函数的求导法则可以推广到多个中间变量的情形. 例如, 设y =f (u ), u =ϕ(v ), v =ψ(x ), 则dxdv dv du du dy dx du du dy dx dy ⋅⋅=⋅=. 例13.y =lncos(e x ), 求dx dy . 解: ])[cos()cos(1])cos([ln '⋅='=x x x e e e dx dy )tan()()]sin([)cos(1x x x x x e e e e e -='⋅-⋅=. 例14.x ey 1sin =, 求dx dy . 解: )1(1cos )1(sin )(1sin 1sin 1sin '⋅⋅='⋅='=xx e x e e dx dy x x x xe x x 1cos 11sin 2⋅⋅-=. 例15设x >0, 证明幂函数的导数公式(x μ)'=μ x μ-1.解 因为x μ=(e ln x )μ=e μ ln x , 所以(x μ)'=(e μ ln x )'= e μ ln x ⋅(μ ln x )'= e μ ln x ⋅μ x -1=μ x μ-1.四、基本求导法则与导数公式1.基本初等函数的导数:(1)(C )'=0,(2)(x μ)'=μ x μ-1,(3)(sin x )'=cos x ,(4)(cos x )'=-sin x ,(5)(tan x )'=sec 2x ,(6)(cot x )'=-csc 2x ,(7)(sec x )'=sec x ⋅tan x ,(8)(csc x )'=-csc x ⋅cot x ,(9)(a x )'=a x ln a ,(10)(e x )'=e x , (11) ax x a ln 1)(log =', (12) xx 1)(ln =',(13) 211)(arcsin x x -=', (14) 211)(arccos x x --='. (15) 211)(arctan xx +=', (16) 211)cot arc (xx +-='. 2.函数的和、差、积、商的求导法则设u =u (x ), v =v (x )都可导, 则(1)(u ±v )'=u '±v ',(2)(C u )'=C u ',(3)(u v )'=u '⋅v +u ⋅v ', (4)2)(v v u v u v u '-'='. 3.反函数的求导法则设x =f (y )在区间I y 内单调、可导且f '(y )≠0, 则它的反函数y =f -1(x )在I x =f (I y )内也可导, 并且)(1])([1y f x f '='-. 或dydx dx dy 1=. 4.复合函数的求导法则设y =f (x ), 而u =g (x )且f (u )及g (x )都可导, 则复合函数y =f [g (x )]的导数为dxdu du dy dx dy ⋅=或y '(x )=f '(u )⋅g '(x ). 例16. 求双曲正弦sh x 的导数.解: 因为)(21sh x x e e x --=, 所以 x e e e e x x x x x ch )(21)(21)sh (=+='-='--, 即 (sh x )'=ch x .类似地, 有(ch x )'=sh x .例17. 求双曲正切th x 的导数.解: 因为xx x ch sh th =, 所以 xx x x 222ch sh ch )(th -='x 2ch 1=. 例18. 求反双曲正弦arsh x 的导数.解: 因为)1ln(arsh 2x x x ++=, 所以22211)11(11)arsh (x x x x x x +=++⋅++='. 由)1ln(arch 2-+=x x x , 可得11)arch (2-='x x . 由x x x -+=11ln 21arth , 可得211)arth (xx -='. 类似地可得11)arch (2-='x x , 211)arth (x x -='. 例19.y =sin nx ⋅sin n x (n 为常数), 求y '.解: y '=(sin nx )' sin n x + sin nx ⋅ (sin n x )'= n cos nx ⋅sin n x +sin nx ⋅ n ⋅ sin n -1 x ⋅(sin x )'= n cos nx ⋅sin n x +n sin n -1 x ⋅ cos x =n sin n -1 x ⋅ sin(n +1)x .§2. 3 高阶导数一般地, 函数y =f (x )的导数y '=f '(x )仍然是x 的函数. 我们把y '=f '(x )的导数叫做函数y =f (x )的二阶导数, 记作 y ''、f ''(x )或22dx y d , 即 y ''=(y ')', f ''(x )=[f '(x )]' , )(22dxdy dx d dx y d =. 相应地, 把y =f (x )的导数f '(x )叫做函数y =f (x )的一阶导数.类似地, 二阶导数的导数, 叫做三阶导数, 三阶导数的导数叫做四阶导数, ⋅ ⋅ ⋅, 一般地, (n -1)阶导数的导数叫做n 阶导数, 分别记作y ''', y (4), ⋅ ⋅ ⋅ , y (n ) 或33dx y d , 44dx y d , ⋅ ⋅ ⋅ , nn dx y d . 函数f (x )具有n 阶导数, 也常说成函数f (x )为n 阶可导. 如果函数f (x )在点x 处具有n 阶导数, 那么函数f (x )在点x 的某一邻域内必定具有一切低于n 阶的导数. 二阶及二阶以上的导数统称高阶导数.y '称为一阶导数, y '', y ''', y (4), ⋅ ⋅ ⋅, y (n )都称为高阶导数.例1.y =ax +b , 求y ''.解: y '=a , y ''=0.例2.s =sin ω t , 求s ''.解: s '=ω cos ω t , s ''=-ω 2sin ω t .例3.证明: 函数22x x y -=满足关系式y 3y ''+1=0.证明: 因为22212222x x x x x x y --=--=',22222222)1(2x x x x x x x x y -------='')2()2()1(22222x x x x x x x ----+-=32321)2(1y x x -=--=, 所以y 3y ''+1=0.例4.求函数y =e x 的n 阶导数.解; y '=e x , y ''=e x , y '''=e x , y ( 4)=e x ,一般地, 可得y ( n )=e x ,即 (e x )(n )=e x .例5.求正弦函数与余弦函数的n 阶导数.解: y =sin x ,)2sin(cos π+=='x x y , )22sin()2 2 sin()2 cos(ππππ⋅+=++=+=''x x x y , )23sin()2 2 2sin()2 2cos(ππππ⋅+=+⋅+=⋅+='''x x x y , )24sin()2 3cos()4(ππ⋅+=⋅+=x x y , 一般地, 可得)2 sin()(π⋅+=n x y n , 即)2sin()(sin )(π⋅+=n x x n . 用类似方法, 可得)2cos()(cos )(π⋅+=n x x n . 例6.求对函数ln(1+x )的n 阶导数解: y =ln(1+x ), y '=(1+x )-1, y ''=-(1+x )-2,y '''=(-1)(-2)(1+x )-3, y (4)=(-1)(-2)(-3)(1+x )-4,一般地, 可得y (n )=(-1)(-2)⋅ ⋅ ⋅(-n +1)(1+x )-n n n x n )1()!1()1(1+--=-, 即 nn n x n x )1()!1()1()]1[ln(1)(+--=+-. 例6.求幂函数y =x μ (μ是任意常数)的n 阶导数公式.解: y '=μx μ-1,y ''=μ(μ-1)x μ-2,y '''=μ(μ-1)(μ-2)x μ-3,y ( 4)=μ(μ-1)(μ-2)(μ-3)x μ-4,一般地, 可得y (n )=μ(μ-1)(μ-2) ⋅ ⋅ ⋅ (μ-n +1)x μ-n ,即 (x μ )(n ) =μ(μ-1)(μ-2) ⋅ ⋅ ⋅ (μ-n +1)x μ-n .当μ=n 时, 得到(x n )(n ) = μ(μ-1)(μ-2) ⋅ ⋅ ⋅ 3 ⋅ 2 ⋅ 1=n ! .而 (x n )( n +1)=0 .如果函数u =u (x )及v =v (x )都在点x 处具有n 阶导数, 那么显然函数u (x )±v (x )也在点x 处具有n 阶导数, 且(u ±v )(n )=u (n )+v (n ) .(uv )'=u 'v +uv '(uv )''=u ''v +2u 'v '+uv '',(uv )'''=u '''v +3u ''v '+3u 'v ''+uv ''' ,用数学归纳法可以证明∑=-=nk k k n k nn v u C uv 0)()()()(, 这一公式称为莱布尼茨公式.例8.y =x 2e 2x , 求y (20).解: 设u =e 2x , v =x 2, 则(u )(k )=2k e 2x (k =1, 2, ⋅ ⋅ ⋅ , 20),v '=2x , v ''=2, (v )(k ) =0 (k =3, 4, ⋅ ⋅ ⋅ , 20),代入莱布尼茨公式, 得y (20)=(u v )(20)=u (20)⋅v +C 201u (19)⋅v '+C 202u (18)⋅v ''=220e 2x ⋅ x 2+20 ⋅ 219e 2x ⋅ 2x !21920⋅+218e 2x ⋅ 2 =220e 2x (x 2+20x +95).§2. 4 隐函数的导数 由参数方程所确定的函数的导数 相关变化率一、隐函数的导数显函数: 形如y =f (x )的函数称为显函数. 例如y =sin x , y =ln x ++e x .隐函数: 由方程F (x , y )=0所确定的函数称为隐函数.例如, 方程x +y 3 -1=0确定的隐函数为y 31x y -=.如果在方程F (x , y )=0中, 当x 取某区间内的任一值时, 相应地总有满足这方程的唯一的y 值存在, 那么就说方程F (x , y )=0在该区间内确定了一个隐函数.把一个隐函数化成显函数, 叫做隐函数的显化. 隐函数的显化有时是有困难的, 甚至是不可能的. 但在实际问题中, 有时需要计算隐函数的导数, 因此, 我们希望有一种方法, 不管隐函数能否显化, 都能直接由方程算出它所确定的隐函数的导数来.例1.求由方程e y +xy -e =0 所确定的隐函数y 的导数.解: 把方程两边的每一项对x 求导数得(e y )'+(xy )'-(e )'=(0)',即 e y ⋅ y '+y +xy '=0,从而 y ex y y +-='(x +e y ≠0). 例2.求由方程y 5+2y -x -3x 7=0 所确定的隐函数y =f (x )在x =0处的导数y '|x =0.解: 把方程两边分别对x 求导数得5y ⋅y '+2y '-1-21x 6=0,由此得 2521146++='y x y . 因为当x =0时, 从原方程得y =0, 所以 21|25211|0460=++='==x x y x y . 例3. 求椭圆191622=+y x 在)323 ,2(处的切线方程. 解: 把椭圆方程的两边分别对x 求导, 得 0928='⋅+y y x . 从而 yx y 169-='. 当x =2时, 323=y , 代入上式得所求切线的斜率 43|2-='==x y k . 所求的切线方程为 )2(43323--=-x y , 即03843=-+y x . 解: 把椭圆方程的两边分别对x 求导, 得 0928='⋅+y y x . 将x =2, 323=y , 代入上式得 03141='⋅+y , 于是 k =y '|x =243-=. 所求的切线方程为)2(43323--=-x y , 即03843=-+y x . 例4.求由方程0sin 21=+-y y x 所确定的隐函数y 的二阶导数.解: 方程两边对x 求导, 得 0cos 211=⋅+-dx dy y dx dy , 于是 ydx dy cos 22-=. 上式两边再对x 求导, 得 3222)cos 2(sin 4)cos 2(sin 2y y y dx dyy dx y d --=-⋅-=. 对数求导法: 这种方法是先在y =f (x )的两边取对数, 然后再求出y 的导数.设y =f (x ), 两边取对数, 得ln y = ln f (x ),两边对x 求导, 得 ])([ln 1'='x f y y, y '= f (x )⋅[ln f (x )]'.对数求导法适用于求幂指函数y =[u (x )]v (x )的导数及多因子之积和商的导数.例5.求y =x sin x (x >0)的导数.解法一: 两边取对数, 得ln y =sin x ⋅ ln x ,上式两边对x 求导, 得 xx x x y y 1sin ln cos 1⋅+⋅=', 于是 )1sin ln (cos xx x x y y ⋅+⋅=' )sin ln (cos sin xx x x x x +⋅=. 解法二: 这种幂指函数的导数也可按下面的方法求:y =x sin x =e sin x ·ln x , )sin ln (cos )ln (sin sin ln sin xx x x x x x e y x x x +⋅='⋅='⋅.例6. 求函数)4)(3()2)(1(----=x x x x y 的导数. 解: 先在两边取对数(假定x >4), 得ln y 21=[ln(x -1)+ln(x -2)-ln(x -3)-ln(x -4)], 上式两边对x 求导, 得 )41312111(211-----+-='x x x x y y , 于是 )41312111(2-----+-='x x x x y y . 当x <1时, )4)(3()2)(1(x x x x y ----=; 当2<x <3时, )4)(3()2)(1(x x x x y ----=; 用同样方法可得与上面相同的结果.注: 严格来说, 本题应分x >4, x <1, 2<x <3三种情况讨论, 但结果都是一样的.二、由参数方程所确定的函数的导数设y 与x 的函数关系是由参数方程⎩⎨⎧==)()(t y t x ψϕ确定的. 则称此函数关系所表达的函数为由参数方程所确定的函数.在实际问题中, 需要计算由参数方程所确定的函数的导数. 但从参数方程中消去参数t 有时会有困难. 因此, 我们希望有一种方法能直接由参数方程算出它所确定的函数的导数. 设x =ϕ(t )具有单调连续反函数t =ϕ-1(x ), 且此反函数能与函数y =ψ(t )构成复合函数y =ψ[ϕ-1(x ) ], 若x =ϕ(t )和y =ψ(t )都可导, 则 )()(1t t dtdx dt dy dx dt dt dy dx dy ϕψ''=⋅=⋅=, 即 )()(t t dx dy ϕψ''=或dtdx dt dy dx dy =. 若x =ϕ(t )和y =ψ(t )都可导, 则)()(t t dx dy ϕψ''=. 例7. 求椭圆⎩⎨⎧==t b y t a x sin cos 在相应于4 π=t 点处的切线方程. 解: t ab t a t b t a t b dx dy cot sin cos )cos ()sin (-=-=''=. 所求切线的斜率为ab dx dyt -==4π.切点的坐标为224 cos 0a a x ==π, 224sin 0b b y ==π. 切线方程为)22(22a x a b b y --=-, 即 bx +ay 2-ab =0.例8.抛射体运动轨迹的参数方程为⎪⎩⎪⎨⎧-==22121gt t v y t v x , 求抛射体在时刻t 的运动速度的大小和方向. y =v 2t -g t 2 解: 先求速度的大小.速度的水平分量与铅直分量分别为x '(t )=v 1, y '(t )=v 2-gt ,所以抛射体在时刻t 的运动速度的大小为 22)]([)]([t y t x v '+'=2221)(gt v v -+=. 再求速度的方向,设α是切线的倾角, 则轨道的切线方向为 12)()(tan v gt v t x t y dx dy -=''==α. 已知x =ϕ(t ), y =ψ(t ), 如何求二阶导数y ''?由x =ϕ(t ), )()(t t dx dy ϕψ''=, dxdt t t dt d dx dy dx d dx y d ))()(()(22ϕψ''== )(1)()()()()(2t t t t t t ϕϕϕψϕψ'⋅''''-'''=)()()()()(3t t t t t ϕϕψϕψ''''-'''=. 例9.计算由摆线的参数方程⎩⎨⎧-=-=)cos 1()sin (t a y t t a x 所确定 的函数y =f (x )的二阶导数.解: )()(t x t y dx dy ''=)cos 1(sin ])sin ([])cos 1([t a t a t t a t a -='-'-= 2cot cos 1sin t t t =-=(t ≠2n π, n 为整数). dxdt t dt d dx dy dx d dx y d ⋅==)2(cot )(2222)cos 1(1)cos 1(12sin 21t a t a t --=-⋅-= (t ≠2n π, n 为整数).三、相关变化率设x =x (t )及y =y (t )都是可导函数, 而变量x 与y 间存在某种关系, 从而变化率dtdx 与dt dy 间也存在一定关系. 这两个相互依赖的变化率称为相关变化率. 相关变化率问题就是研究这两个变化率之间的关系, 以便从其中一个变化率求出另一个变化率.例10一气球从离开观察员500f 处离地面铅直上升, 其速度为140m/min(分). 当气球高度为500m 时, 观察员视线的仰角增加率是多少?解 设气球上升t (秒)后, 其高度为h , 观察员视线的仰角为α, 则500tan h =α. 其中α及h 都是时间t 的函数. 上式两边对t 求导, 得dtdh dt d ⋅=⋅5001sec 2αα. 已知140=dtdh (米/秒). 又当h =500(米)时, tan α=1, sec 2 α=2. 代入上式得 14050012⋅=dt d α, 所以 14.050070==dt d α(弧度/秒). 即观察员视线的仰角增加率是每秒0. 14弧度.§2. 5 函数的微分一、微分的定义引例 函数增量的计算及增量的构成.一块正方形金属薄片受温度变化的影响, 其边长由x 0变到x 0+∆x , 问此薄片的面积改变了多少?设此正方形的边长为x , 面积为A , 则A 是x 的函数: A =x 2. 金属薄片的面积改变量为 ∆A =(x 0+∆x )2-(x 0)2 =2x 0∆x +(∆x )2.几何意义: 2x 0∆x 表示两个长为x 0宽为∆x 的长方形面积; (∆x )2表示边长为∆x 的正方形的面积.数学意义: 当∆x →0时, (∆x )2是比∆x 高阶的无穷小, 即(∆x )2=o (∆x ); 2x 0∆x 是∆x 的线性函数, 是∆A 的主要部分, 可以近似地代替∆A .定义 设函数y =f (x )在某区间内有定义, x 0及x 0+∆x 在这区间内, 如果函数的增量 ∆y =f (x 0+∆x )-f (x 0)可表示为∆y =A ∆x +o (∆x ),其中A 是不依赖于∆x 的常数, 那么称函数y =f (x )在点x 0是可微的, 而A ∆x 叫做函数y =f (x )在点x 0相应于自变量增量∆x 的微分, 记作 dy , 即dy =A ∆x .函数可微的条件: 函数f (x )在点x 0可微的充分必要条件是函数f (x )在点x 0可导, 且当函数f (x )在点x 0可微时, 其微分一定是dy =f '(x 0)∆x .证明: 设函数f (x )在点x 0可微, 则按定义有∆y =A ∆x +o (∆x ),上式两边除以∆x , 得xx o A x y ∆∆+=∆∆)(. 于是, 当∆x →0时, 由上式就得到 )(lim00x f x y A x '=∆∆=→∆. 因此, 如果函数f (x )在点x 0可微, 则f (x )在点x 0也一定可导, 且A =f '(x 0).反之, 如果f (x )在点x 0可导, 即)(lim 00x f xy x '=∆∆→∆ 存在, 根据极限与无穷小的关系, 上式可写成α+'=∆∆)(0x f x y , 其中α→0(当∆x →0), 且A =f (x 0)是常数, α∆x =o (∆x ). 由此又有∆y =f '(x 0)∆x +α∆x .因且f '(x 0)不依赖于∆x , 故上式相当于∆y =A ∆x +o (∆x ),所以f (x )在点x 0 也是可导的.简要证明: 一方面A x f x y xx o A x y x o x A y x ='=∆∆⇒∆∆+=∆∆⇒∆+∆=∆→∆)(lim )()(00. 别一方面x x x f y x f x y x f x y x ∆+∆'=∆⇒+'=∆∆⇒'=∆∆→∆αα)()()(lim 0000. 以微分dy 近似代替函数增量 ∆y 的合理性:当f '(x 0)≠0时, 有1lim )(1)(lim lim00000=∆'=∆'∆=∆→∆→∆→∆dx y x f x x f y dy y x x x . ∆y =dy +o (d y ).结论: 在f '(x 0)≠0的条件下, 以微分dy =f '(x 0)∆x 近似代替增量∆y =f (x 0+∆x )-f (x 0)时, 其误差为o (dy ). 因此, 在|∆x |很小时, 有近似等式∆y ≈dy .函数y =f (x )在任意点x 的微分, 称为函数的微分, 记作dy 或 d f (x ), 即dy =f '(x )∆x ,例如 d cos x =(cos x )'∆x =-sin x ∆x ; de x =(e x )'∆x =e x ∆x .例1 求函数y =x 2在x =1和x =3处的微分.解 函数y =x 2在x =1处的微分为dy =(x 2)'|x =1∆x =2∆x ;函数y =x 2在x =3处的微分为dy =(x 2)'|x =3∆x =6∆x .例2.求函数 y =x 3当x =2, ∆x =0. 02时的微分.解: 先求函数在任意点x 的微分dy =(x 3)'∆x =3x 2∆x .再求函数当x =2, ∆x =0. 02时的微分dy |x =2, ∆x =0.02 =3x 2| x =2, ∆x =0.02 =3⨯22⨯0.02=0.24.自变量的微分:因为当y =x 时, dy =dx =(x )'∆x =∆x , 所以通常把自变量x 的增量∆x 称为自变量的微分, 记作dx , 即dx =∆x . 于是函数y =f (x )的微分又可记作dy =f '(x )dx .从而有 )(x f dxdy '=. 这就是说, 函数的微分dy 与自变量的微分dx 之商等于该函数的导数. 因此, 导数也叫做“微商”.二、微分的几何意义当∆y 是曲线y =f (x )上的点的纵坐标的增量时, dy 就是曲线的切线上点纵坐标的相应增量. 当|∆x |很小时, |∆y -dy |比|∆x |小得多. 因此在点M 的邻近, 我们可以用切线段来近似代替曲线段.三、基本初等函数的微分公式与微分运算法则从函数的微分的表达式dy =f '(x )dx可以看出, 要计算函数的微分, 只要计算函数的导数, 再乘以自变量的微分. 因此, 可得如果下的微分公式和微分运算法则.1. 基本初等函数的微分公式导数公式: 微分公式:(x μ)'=μ x μ-1 d (x μ)=μ x μ-1d x(sin x )'=cos x d (sin x )=cos x d x(cos x )'=-sin x d (cos x )=-sin x d x(tan x )'=sec 2 x d (tan x )=sec 2x d x(cot x )'=-csc 2x d (cot x )=-csc 2x d x(sec x )'=sec x tan x d (sec x )=sec x tan x d x(csc x )'=-csc x cot x d (csc x )=-csc x cot x d x(a x )'=a x ln a d (a x )=a x ln a d x(e x )=e x d (e x )=e x d xax x a ln 1)(log =' dx a x x d a ln 1)(log = x x 1)(ln =' dx xx d 1)(ln = 211)(arcsin x x -=' dx x x d 211)(arcsin -= 211)(arccos x x --=' dx x x d 211)(arccos --= 211)(arctan x x +=' dx xx d 211)(arctan += 211)cot arc (x x +-=' dx xx d 211)cot arc (+-=2. 函数和、差、积、商的微分法则求导法则: 微分法则:(u ±v )'=u '± v ' d (u ±v )=du ±dv(Cu )'=Cu ' d (Cu )=Cdu(u ⋅v )'= u 'v +uv ' d (u ⋅v )=vdu +udv)0()(2≠'-'='v v v u v u v u )0()(2≠-=v dx v udv vdu v u d 证明乘积的微分法则:根据函数微分的表达式, 有d (uv )=(uv )'dx .再根据乘积的求导法则, 有(uv )'=u 'v +uv '.于是 d (uv )=(u 'v +uv ')dx =u 'vdx +uv 'dx .由于u 'dx =du , v 'dx =dv ,所以d (uv )=vdu +udv .3. 复合函数的微分法则设y =f (u )及u =ϕ(x )都可导, 则复合函数y =f [ϕ(x )]的微分为dy =y 'x dx =f '(u )ϕ'(x )dx .于由ϕ'(x )dx =du , 所以, 复合函数y =f [ϕ(x )]的微分公式也可以写成dy =f '(u )du 或 dy =y 'u du .由此可见, 无论u 是自变量还是另一个变量的可微函数, 微分形式dy =f '(u )du 保持不变. 这一性质称为微分形式不变性. 这性质表示, 当变换自变量时, 微分形式dy =f '(u )du 并不改变. 例3.y =sin(2x +1), 求dy .解: 把2x +1看成中间变量u , 则dy =d (sin u )=cos udu =cos(2x +1)d (2x +1)=cos(2x +1)⋅2dx =2cos(2x +1)dx .在求复合函数的导数时, 可以不写出中间变量.例4.)1ln(2x e y +=, 求dy .解:)1(11)1ln(222x x x e d e e d dy ++=+= xdx e e x d e e x x x x 211)(1122222⋅⋅+=⋅+=dx e xe x x 2212+=. 例5.y =e 1-3x cos x , 求dy .解: 应用积的微分法则, 得dy =d (e 1-3x cos x )=cos xd (e 1-3x )+e 1-3x d (cos x )=(cos x )e 1-3x (-3dx )+e 1-3x (-sin xdx )=-e 1-3x (3cos x +sin x )dx .例6.在括号中填入适当的函数, 使等式成立.(1) d ( )=xdx ;(2) d ( )=cos ω t dt .解: (1)因为d (x 2)=2xdx , 所以 )21()(2122x d x d xdx ==, 即xdx x d =)21(2. 一般地, 有xdx C x d =+)21(2(C 为任意常数). (2)因为d (sin ω t )=ω cos ω tdt , 所以 ) sin 1() (sin 1 cos t d t d tdt ωωωωω==. 因此 tdt C t d cos ) sin 1(ωωω=+(C 为任意常数). 四、微分在近似计算中的应用1.函数的近似计算在工程问题中, 经常会遇到一些复杂的计算公式. 如果直接用这些公式进行计算, 那是很费力的. 利用微分往往可以把一些复杂的计算公式改用简单的近似公式来代替.如果函数y =f (x )在点x 0处的导数f '(x )≠0, 且|∆x |很小时, 我们有∆y ≈dy =f '(x 0)∆x ,∆y =f (x 0+∆x )-f (x 0)≈dy =f '(x 0)∆x ,f (x 0+∆x )≈f (x 0)+f '(x 0)∆x .若令x =x 0+∆x , 即∆x =x -x 0, 那么又有f (x )≈ f (x 0)+f '(x 0)(x -x 0).特别当x 0=0时, 有f (x )≈ f (0)+f '(0)x .这些都是近似计算公式.例1.有一批半径为1cm 的球, 为了提高球面的光洁度, 要镀上一层铜, 厚度定为0. 01cm . 估计一了每只球需用铜多少g (铜的密度是8. 9g/cm 3)?解: 已知球体体积为334R V π=, R 0=1cm , ∆R =0. 01cm . 镀层的体积为∆V =V (R 0+∆R )-V (R 0)≈V '(R 0)∆R =4πR 02∆R =4⨯3. 14⨯12 ⨯0. 01=0. 13(cm 3).于是镀每只球需用的铜约为0. 13 ⨯8. 9 =1. 16(g ).例2.利用微分计算sin 30︒30'的近似值.解: 已知30︒30'3606 ππ+=, 6 0π=x , 360π=∆x . sin 30︒30'=sin(x 0+∆x )≈sin x 0+∆x cos x 03606 cos 6 sin πππ⋅+= 5076.03602321=⋅+=π. 即 sin 30︒30'≈0. 5076.常用的近似公式(假定|x |是较小的数值): (1)x nx n 111+≈+; (2)sin x ≈x ( x 用弧度作单位来表达);(3)tan x ≈x ( x 用弧度作单位来表达);(4)e x ≈1+x ;(5)ln(1+x )≈x .证明 (1)取n x x f +=1)(, 那么f (0)=1, nx nf x n 1)1(1)0(011=+='=-, 代入f (x )≈f (0)+f '(0) x 便得 x nx n 111+≈+. 证明(2)取f (x )=sin x , 那么f (0)=0, f '(0)=cos x |x =0=1, 代入f (x )≈f (0)+f '(0) x 便得。