高一数学必修2《直线、平面平行的判定及其性质》练习题
2.2_直线、平面平行的判定及其性质 单元测试1_新人教A版必修2

高一数学必修二第二章《2.2 直线、平面平行的判定及其性质》单元测试一、选择题(每题5分,总25分)1、若α//l ,α∈A ,则下列说法正确的是( )A 、过A 在平面α内可作无数条直线与l 平行B 、 过A 在平面α内仅可作一条直线与l 平行C 、 过A 在平面α内可作两条直线与l 平行D 、 与A 的位置有关2、b a //,P a =⋂α,则b 与α的关系为( )A 、 必相交B 、 必平行C 、 必在内D 、 以上均有可能3、下列结论中,正确的有( )①若a α,则a ∥α ②平面α∥平面β,a α,b β,则a ∥b③a ∥平面α,b α则a ∥b ④平面α∥β,点P ∈α,a ∥β,且P ∈a ,则aα A.1个 B.2个 C.3个 D.4个4、下列命题中正确的命题的个数为( )①直线l 平行于平面α内的无数条直线,则l ∥α;②若直线a 在平面α外,则a ∥α; ③若直线a ∥b,直线bα,则a ∥α; ④若直线a ∥b,b 平面α,那么直线a 就平行于平面α内的无数条直线.A.1B.2C.3D.45、若直线a∥直线b ,且a∥平面α,则b 与a 的位置关系是( )A 、一定平行B 、不平行C 、平行或相交D 、平行或在平面内三、解答题6、如图,ABCD 是平行四边形,S 是平面ABCD 外一点,M 为SC 的中点. 求证:SA ∥平面MDB. (10分)7、如图,已知点M 、N 是正方体ABCD -A 1B 1C 1D 1的两棱A 1A 与A 1B 1的中点,P 是正方形ABCD 的中心, 求证:MN ∥平面PB 1C.(10分)8、如图,□EFGH的四个顶点分别在空间四边形ABCD的边AB、BC、CD、DA上,求证:BD∥面EFGH,AC∥面EFGH.(10分)9、在正方体ABCD—A1B1C1D1中,AP=B1Q,N是PQ的中点,M是正方形ABB1A1的中心.求证:(1)MN∥平面B1D1;(2)MN∥A1C1.(15分)10、已知平行四边形ABCD与平行四边形ABEF共边AB,M、N分别在对角线AC、BF上,且AM∶AC=FN∶FB.求证:MN∥平面ADF.(15分)11、如图,直线AC,DF被三个平行平面α、β、γ所截.①是否一定有AD∥BE∥CF;②求证:.(15分)。
人教版高中数学必修第二册8.5.2 直线与平面平行 第1课时 直线与平面平行的判定 同步练习(含答案

人教版高中数学必修第二册8.5.2直线与平面平行第1课时直线与平面平行的判定同步练习一、选择题(本大题共8小题,每小题5分,共40分)1.下列说法中正确的是()A.若直线l平行于平面α内的无数条直线,则l∥αB.若直线a在平面α外,则a∥αC.若直线a∥b,b⊂α,则a∥αD.若直线a∥b,b⊂α,那么直线a平行于α内的无数条直线2.直线a,b为异面直线,则过直线a与直线b平行的平面()A.有且只有一个B.有无数个C.有且只有一个或不存在D.不存在3.如图L8-5-7所示,在三棱锥A-BCD中,E,F,G分别是BD,DC,CA的中点,设过这三点的平面为α,则在6条直线AB,AC,AD,BC,CD,DB中,与平面α平行的有()图L8-5-7A.0条B.1条C.2条D.3条4.如图L8-5-8,在正方体ABCD-A1B1C1D1中,与平面AB1C平行的直线是()图L8-5-8A.DD1B.A1D1C.C1D1D.A1D5.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4,H,G分别为BC,CD的中点,则()A.BD∥平面EFGH且四边形EFGH为矩形B.EF∥平面BCD且四边形EFGH为梯形C.HG∥平面ABD且四边形EFGH为菱形D.HE∥平面ADC且四边形EFGH为平行四边形6.将一个正方体纸盒沿着几条棱剪开,得到如图L8-5-9所示的展开图,则在原正方体中()图L8-5-9A.AB∥CDB.AB∥平面CDC.CD∥GHD.AB∥GH7.如图L8-5-10,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,且该平行六面体的各棱长均相等,给出下列说法:①A1M∥D1P;②A1M∥B1Q;③A1M∥平面DCC1D1;④A1M∥平面D1PQB1.其中正确说法的个数为()图L8-5-10A.1B.2C.3D.48.如图L8-5-11,在正方体ABCD-A1B1C1D1中,E,F分别是BC1,BD的中点,则至少过正方体3个顶点的平面中与EF平行的平面个数为()图L8-5-11A.2B.3C.4D.5二、填空题(本大题共4小题,每小题5分,共20分)9.已知l,m是两条直线,α是一个平面,若要得到“l∥α”,则需要在条件“m⊂α,l∥m”中另外添加的一个条件是.10.如图L8-5-12,在三棱锥S-ABC中,G为△ABC的重心,E在棱SA上,且AE=2ES,则EG与平面SBC的位置关系为.图L8-5-1211.在梯形ABCD中,AB∥CD,AB⊂平面α,CD⊄平面α,则直线CD与平面α内的直线的位置关系是.12.已知直线a,b和平面α,若a∥b,且直线b在平面α内,则a与α的位置关系是.三、解答题(本大题共2小题,共20分)13.(10分)如图L8-5-13,在三棱柱ABC-A1B1C1中,D,E分别为棱AB,BC的中点.求证:AC∥平面B1DE.图L8-5-1314.(10分)如图L8-5-14,在圆锥中,S为顶点,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=2,P为SB的中点.(1)求证:SA∥平面PCD;(2)求圆锥的表面积和体积.图L8-5-1415.(5分)如图L8-5-15,在直三棱柱ABC-A1B1C1中,D为AA1的中点,点P在侧面BCC1B1上运动,当点P满足条件时,A1P∥平面BCD.(答案不唯一,填一个满足题意的条件即可)图L8-5-1516.(15分)如图L8-5-16,在四棱锥P-ABCD中,底面ABCD为矩形,F是AB的中点,E是PD的中点.(1)证明:PB∥平面AEC;(2)在PC上求一点G,使FG∥平面AEC,并证明你的结论.图L8-5-16参考答案与解析1.D[解析]直线l⊂α时也可以满足条件,但l不平行于α,所以选项A中说法错误;直线在平面外包括直线与平面平行和直线与平面相交两种情况,所以选项B中说法错误;选项C中缺少a⊄α这一条件,故不能得到a∥α,所以选项C中说法错误;选项D中说法正确.2.A[解析]在直线a上任取一点A,则过点A与直线b平行的直线有且只有一条,设为b',∵a∩b'=A,∴直线a与直线b'确定一个平面α,平面α为过直线a与直线b平行的平面,可知它是唯一的.3.C[解析]取AD的中点H,连接EH,则EH∥AB,因为EH与平面α相交,所以AB与平面α相交.由题意知直线AC,DB,DC均与平面α相交.在△BCD中,由已知得EF∥BC,因为EF⊂α,BC⊄α,所以BC∥α.同理AD∥α.所以在题中的6条直线中,与平面α平行的有2条.4.D[解析]易知A1B1∥DC,A1B1=DC,∴四边形A1B1CD是平行四边形,∴A1D∥B1C.∵A1D⊄平面AB1C,B1C⊂平面AB1C,∴A1D∥平面AB1C.故选D.5.B[解析]因为AE∶EB=AF∶FD=1∶4,所以EF∥BD,EF=15BD,又BD⊂平面BCD,EF⊄平面BCD,所以EF∥平面BCD.因为H,G分别为BC,CD的中点,所以HG∥BD,HG=12BD.则EF∥HG,EF ≠HG,所以四边形EFGH为梯形,故选B.6.C[解析]原正方体如图所示,由图可得,AB与CD相交,A错误;AB与平面CD相交,B错误;CD∥GH,C正确;AB与GH是异面直线,D错误.7.C[解析]连接PM,因为M,P分别为AB,CD的中点,所以PM∥AD且PM=AD,由题意知AD∥A1D1且AD=A1D1,所以PM∥A1D1且PM=A1D1,所以四边形PMA1D1为平行四边形,所以A1M∥D1P,故①正确;显然A1M与B1Q为异面直线,故②错误;由①知A1M∥D1P,因为D1P ⊂平面DCC1D1,D1P⊂平面D1PQB1,A1M⊄平面DCC1D1,A1M⊄平面D1PQB1,所以A1M∥平面DCC1D1,A1M∥平面D1PQB1,故③④正确.8.D[解析]连接C1D,AB1,∵E,F分别是BC1,BD的中点,∴EF∥C1D∥AB1,则至少过正方体3个顶点的平面中与EF平行的有平面CC1D1D,平面ABB1A1,平面A1C1D,平面ADC1B1,平面AB1D1,共5个,故选D.9.l⊄α[解析]∵l,m是两条直线,α是一个平面,m⊂α,l∥m,∴l⊂α或l∥α.若要得到“l∥α”,则需要在条件“m⊂α,l∥m”中另外添加的一个条件是“l⊄α”.10.平行[解析]连接AG并延长,交BC于点M,连接SM,则AG=2GM,又AE=2ES,所以EG∥SM.因为EG⊄平面SBC,SM⊂平面SBC,所以EG∥平面SBC.11.平行或异面[解析]∵AB∥CD,AB⊂平面α,CD⊄平面α,∴CD∥平面α,∴直线CD与平面α内的直线没有公共点,则直线CD与平面α内的直线的位置关系是平行或异面.12.a∥α或a⊂α[解析]若a∥b,且直线b在平面α内,则a与α的位置关系是a∥α或a⊂α.13.证明:在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,又DE⊂平面B1DE,AC⊄平面B1DE,所以AC∥平面B1DE.14.解:(1)证明:连接PO.∵P,O分别为SB,AB的中点,∴PO∥SA,又PO⊂平面PCD,SA⊄平面PCD,∴SA∥平面PCD.(2)∵SO=2,OB=2,SO为圆锥的高,OB为圆锥底面圆的半径,∴圆锥的体积V=13π×22×2=8π3.∵SB= 2+ 2=22,∴圆锥的表面积S=π×2×(2+22)=(4+42)π.15.P是CC1的中点[解析]当P是CC1的中点时,易得A1D∥PC,A1D=PC,所以四边形A1DCP 为平行四边形,所以A1P∥DC.因为A1P⊄平面BCD,DC⊂平面BCD,所以A1P∥平面BCD. 16.解:(1)证明:连接BD,设BD与AC的交点为O,连接EO.因为四边形ABCD为矩形,所以O为BD的中点,又E为PD的中点,所以EO∥PB.因为EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(2)当G为PC的中点时,FG∥平面AEC.证明如下:连接GE,因为E为PD的中点,G为PC的中点,所以GE∥CD且GE=12CD.因为F为AB的中点,且四边形ABCD为矩形,所以FA=12CD且FA∥CD,所以FA∥GE且FA=GE,所以四边形AFGE为平行四边形,所以FG∥AE.因为FG⊄平面AEC,AE⊂平面AEC,所以FG∥平面AEC.。
高一数学必修2《直线、平面平行的判定及其性质》练习题-(1)

高一数学必修2《直线、平面平行的判定与其性质》练习题 第1题. 已知:b αβ=,a α//,a β//,则a 与b 的位置关系是〔 〕A.a b //B.a b ⊥C.a ,b 相交但不垂直D.a ,b 异面答案:A.第2题. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC .答案:证明:连结AF 并延长交BC 于M .连结PM ,AD BC ∵//,BF MF FD FA =∴,又由已知PE BF EA FD =,PE MF EA FA=∴. 由平面几何知识可得EF //PM ,又EF PBC ⊄,PM ⊂平面PBC ,∴EF //平面PBC .第6题. 如图,正方形ABCD 的边长为13,平面ABCD 外一点P 到正方形各顶点的距离都是13,M ,N 分别是PA ,DB 上的点,且58PM MA BN ND ==∶∶∶.(1) 求证:直线MN //平面PBC ;(2) 求线段MN 的长.(1) 答案:证明:连接AN 并延长交BC 于E ,连接PE ,则由AD BC //,得BN NE ND AN=. BN PM ND MA =∵,NE PM AN MA=∴. MN PE ∴//,又PE ⊂平面PBC ,MN ⊄平面PBC ,∴MN //平面PBC .(2) 解:由13PB BC PC ===,得60PBC ∠=; 由58BE BN AD ND ==,知5651388BE =⨯=, 由余弦定理可得918PE =,8713MN PE ==∴. 第7题. 如图,已知P 为平行四边形ABCD 所在平面外一点,M 为PB 的中点,求证:PD //平面MAC .答案:证明:连接AC 、BD 交点为O ,连接MO ,则MO 为BDP △的中位线,∴PD MO //. PD ⊄∵平面MAC ,MO ⊂平面MAC ,∴PD //平面MAC . 第8题. 如图,在正方体1111ABCD A B C D -中,E ,F 分别是棱BC ,11C D 的中点,求证:EF //平面11BB D D .答案:证明:如图,取11D B 的中点O ,连接OF ,OB ,OF ∵平行且等于1112B C ,BE 平行且等于1112B C , OF ∴平行且等于BE ,则OFEB 为平行四边形,EF ∴//BO .EF ⊄∵平面11BB D D ,BO ⊂平面11BB D D ,∴EF //平面11BB D D .第9题. 如图,在正方体1111ABCD A B C D -中,试作出过AC 且与直线1D B 平行的截面,并说明理由.答案:解:如图,连接DB 交AC 于点O ,取1D D 的中点M ,连接MA ,MC ,则截面MAC 即为所求作的截面.MO ∵为1D DB △的中位线,1D B MO ∴//.1D B ⊄∵平面MAC ,MO ⊂平面MAC ,1D B ∴//平面MAC ,则截面MAC 为过AC 且与直线1D B 平行的截面.第10题. 设a ,b 是异面直线,a ⊂平面α,则过b 与α平行的平面〔 〕A.不存在B.有1个C.可能不存在也可能有1个D.有2个以上答案:C.第11题. 如图,在正方体1111ABCD A B C D -中,求证:平面1A BD //平面11CD B . 答案:证明:111111B B A A B B D D A A D D ⎧⎪⇒⎨⎪⎩∥ ∥ ∥ ⇒四边形11BB D D 是平行四边形⇒111B CD A BD 平面平面//.第12题. 如图,M 、N 、P 分别为空间四边形ABCD 的边AB ,BC ,CD 上的点,且AM MB CN NB CP PD ==∶∶∶.求证:〔1〕AC //平面MNP ,BD //平面MNP ;〔2〕平面MNP 与平面ACD 的交线AC //.答案:证明:〔1〕AM CN MN AC MB NB AC MNP AC MNP MN MNP ⎫=⇒⎪⎪⊄⇒⎬⎪⊂⎪⎭//平面//平面平面.CN CP PN BD NB PD BD MNP BD MNP PN MNP ⎫=⇒⎪⎪⊄⎬⎪⊂⎪⎭//平面//平面平面.〔2〕第16题. 若空间四边形ABCD 的两条对角线AC ,BD 的长分别是8,12,过AB 的中点E 且平行于BD 、AC 的截面四边形的周长为.答案:20.第17题. 在空间四边形ABCD 中,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 上的一点,且EFGH 为菱形,若AC //平面EFGH ,BD //平面EFGH ,AC m =,BD n =,则AE BE =:.答案:m n ∶.第19题.P 为ABC △所在平面外一点,平面α//平面ABC ,α交线段PA ,PB ,PC 于ABC ''',23PA AA =∶∶'',则AB C ABC S S =△△∶'''.答案:425∶第20题. 如图,在四棱锥P ABCD -中,ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点.求证:MN //平面PAD .答案:证明:如图,取CD 的中点E ,连接NE ,ME∵M ,N 分别是AB ,PC 的中点,NE PD ∴//,ME AD //,可证明NE //平面PAD ,ME //平面PAD .又NE ME E =,∴平面MNE //平面PAD ,又MN ⊂平面MNE ,∴MN //平面PAD .第21题. 已知平面α//平面β,AB ,CD 是夹在两平行平面间的两条线段,A ,C 在α内,B ,C 在β内,点E ,F 分别在AB ,CD 上,且AE EB CF FD m n ==∶∶∶.求证:EF //平面α.答案:证明:分AB ,CD 是异面、共面两种情况讨论.(1) 当AB ,CD 共面时,如图〔a 〕αβ∵//,AC BD ∴//,连接E ,F .AE EB CF FD =∶∶∵,EF AC BD ∴////且EF α⊄,AC α⊂,∴EF //平面α.(2) 当AB ,交β于点H .在H 上取点AG GH AE EB =∶∶得EG BH //.∴平面EFG //平面β//平面α. 又EF ⊂面EFG ,∴EF //平面α 第27题. 已知正方体1111ABCD A B C D -, 求证:平面11AB D //平面1C BD .答案:证明:因为1111ABCD A B C D -所以1111D C A B //,1111D C A B =. 又11AB A B //,11AB A B =, 所以11D C AB //,11D C AB =, 所以11D C BA 为平行四边形. 所以11D A C B //.由直线与平面平行的判定定理得 1D A //平面1C BD .同理11D B //平面1C BD ,又1111D A D B D =,所以,平面11AB D //平面1C BD .。
第二节《直线、平面平行的判定及其性质》课后练习-高中数学必修二第二章

高中数学-必修二-第二章点、直线、平面之间的位置关系-第二节直线、平面平行的判定及其性质-课后练习单选题(选择一个正确的选项)1 、已知点是两条异面直线,外一点,则过点且与,都平行的平面的个数是()A、0B、1C、0或1D、22 、已知是不同的两个平面,直线,命题无公共点;命题. 则的()A、充分而不必要的条件B、必要而不充分的条件C、充要条件D、既不充分也不必要的条件3 、已知长方体,则下列四对截面中,彼此平行的一对截面是().A、与B、和C、与D、与4 、已知直线和平面,则的一个必要但不充分条件是().A 、B 、,C 、,D、及与成等角.5 、为平面,为直线,如果,那么“”是“”的( )A、.必要非充分条件B、充分非必要条件C、充要条件D、既不充分又不必要条件6 、空间四边形的边、、、的中点分别是、、、,若两条对角线、的长分别为2和4,则的值().A、5B、10C、20D、407 、在空间四边形中,、、分别为三角形、、的重心,则的面积与的面积之比为().A、B、C、D、8 、分别是四面体的棱的中点,则此四面体中与过的截面平行的棱的条数是( )A、0B、1C、2D、39 、已知点是两条异面直线,外一点,则过点且与,都平行的平面的个数是()A、0B、1C、0或1D、210 、若直线与平面的一条平行线平行,则和的位置关系是( )A、B、C、D、11 、一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( )A、异面B、相交C、平行D、不能确定12 、已知直线和平面,那么的一个必要但非充分条件是( )A、B、C、且D、与成等角13 、、、为三条不重合的直线,、、为三个不重合平面,现给出六个命题①②③④⑤⑥其中正确的命题是().A、①②③B、①④⑤C、①④D、①④⑤⑥14 、已知直线和平面,则的一个必要但不充分的条件是()A、,且B、,且C、与成等角D、,且15 、已知,,则与的关系为().A、,且与相交B、,且与不相交C、D、与不一定垂直16 、给出下列四个命题:①经过平面外一点有且只有一个平面与已知平面平行;②过平面外一点且平行于这个平面的所有直线,都在过该点且平行于这人平面的一个平面内;③平面内有不共线的三点到平面的距离相等,则与平行或相交;④夹在两平行平面之间的平行线段的长相等.其中正确命题的个数是().A、4B、3C、2D、117 、若、表示互不重合的直线,、表示不重合的平面,则的一个充分条件是()A、,B、,C 、,D 、,,18 、已知命题甲为“一个平面内两条直线分别平行于另一个平面”;乙为“这两个平面平行”,则有().A、甲是乙的充分但不必要条件B、乙是甲的充分但不必要条件C、甲是乙的充分条件D、乙是甲的必要但不充分条件19 、对于两条直线和平面,若,则是的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分又不必要条件20 、设是三条不同的直线,是三个不同的平面,则下列命题中的真命题是( )A 、若与所成的角相等,则B、若与所成的角相等,则C、若与所成的角相等,则D、若,, 则参考答案单选题答案1. C2. B3. A4. D5. A6. B7. A8. C9. C10. C11. C12. D13. C14. C15. C16. A17. D18. B19. D20. D点击查看更多试题详细解析:/index/list/1/36#list。
人教版高中数学必修第二册8.5.2 直线与平面平行 第2课时 直线与平面平行的性质 同步练习(含答案

人教版高中数学必修第二册8.5.2直线与平面平行第2课时直线与平面平行的性质同步练习一、选择题(本大题共8小题,每小题5分,共40分)1.过平面α外的直线l作一组平面与α相交,若所得的交线分别为a,b,c,…,则这些交线的位置关系为()A.都平行B.都相交但不一定交于同一点C.都相交且一定交于同一点D.都平行或都交于同一点2.给出以下说法(其中a,b表示直线,α表示平面):①若a∥b,b⊂α,则a∥α;②若a∥α,b∥α,则a∥b;③若a∥b,b∥α,则a∥α;④若a∥α,b⊂α,则a∥b.其中正确说法的个数是()A.0B.1C.2D.33.若直线a平行于平面α,则下列说法中错误的是()A.直线a与平面α无公共点B.直线a平行于平面α内的所有直线C.平面α内有无数条直线与直线a平行D.设过直线a的平面为β,则平面α内存在直线l,满足l∥β4.如图L8-5-17,在四棱锥P-ABCD中,底面ABCD为平行四边形,E为AD的中点,F为PC上一点,则当PA∥平面BEF时, =()图L8-5-17A.23B.14C.13D.125.如图L8-5-18,在长方体ABCD-A1B1C1D1中,E,F分别是棱AA1和BB1的中点,过EF的平面EFGH分别交BC,AD于点G,H,则GH与AB的位置关系是()图L8-5-18A.平行B.相交C.异面D.不确定6.若一条直线同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是()A.异面B.相交C.平行D.重合7.如图L8-5-19,E是正方体ABCD-A1B1C1D1的棱C1D1上的点(不与端点重合),BD1∥平面B1CE,则()图L8-5-19A.BD1∥CEB.AC1⊥BD1C.D1E=2EC1D.D1E=EC18.如图L8-5-20,在三棱柱ABC-A1B1C1中,E是BC的中点,D是棱AA1上的动点,且 1=m,若AE ∥平面DB1C,则m的值为()图L8-5-20A.12B.1C.32D.2二、填空题(本大题共4小题,每小题5分,共20分)9.若一条直线与一个平面平行,则该直线与平面内的任意一条直线的位置关系是.10.如图L8-5-21所示,a∥α,A是α另一侧的点,B,C,D∈a,线段AB,AC,AD分别交α于E,F,G,若BD=4,CF=4,AF=5,则EG=.图L8-5-2111.已知正方体ABCD-A1B1C1D1的棱长为1,过AC作平行于对角线BD1的截面,则截面的面积为.12.如图L8-5-22,在四棱锥S-ABCD中,底面ABCD为平行四边形,点E是SA上一点,则当SE∶SA=时,SC∥平面EBD.图L8-5-22三、解答题(本大题共2小题,共20分)13.(10分)如图L8-5-23,在四棱锥P-ABCD中,底面ABCD是菱形,点E是棱PC上的点(不与端点重合),平面ABE与棱PD交于点F.求证:(1)AB∥平面PCD;(2)AB∥EF.图L8-5-2314.(10分)如图L8-5-24所示,在正三棱柱ABC-A'B'C'中,D是AA'上的点,E是B'C'的中点,且A'E ∥平面DBC'.试判断点D在AA'上的位置,并给出证明.图L8-5-2415.(5分)如图L8-5-25所示,正方体ABCD-A1B1C1D1的棱长为4,E,F分别为A1D1,AA1的中点,则过C1,E,F的截面的周长为.图L8-5-2516.(15分)如图L8-5-26,在四棱锥P-ABCD中,底面ABCD是菱形,N,M,Q分别为PB,PD,PC的中点.(1)求证:QN∥平面PAD;(2)记平面CMN与底面ABCD的交线为l,试判断直线l与平面PBD的位置关系,并证明.图L8-5-26参考答案与解析1.D[解析]当l与α相交时,记交点为A,则易知这些交线都相交,且交点为A.当l∥α时,由直线与平面平行的性质定理知a∥l,b∥l,c∥l,…,则由基本事实4可知这些交线都平行.2.A[解析]若a∥b,b⊂α,则a∥α或a⊂α,故①错误;若a∥α,b∥α,则a,b平行、相交或异面,故②错误;若a∥b,b∥α,则a∥α或a⊂α,故③错误;若a∥α,b⊂α,则a∥b或a,b异面,故④错误.故选A.3.B[解析]由直线a平行于平面α,得直线a与平面α内的所有直线平行或异面,故B中说法错误.易知选项A,C,D中说法正确.故选B.4.D[解析]连接AC,交BE于点G,连接FG.因为PA∥平面BEF,PA⊂平面PAC,平面PAC∩平面EBF=FG,所以PA∥FG,所以 = .因为AD∥BC,E为AD的中点,所以 = =12,即 =12.故选D.5.A[解析]在长方体ABCD-A1B1C1D1中,AA1BB1,∵E,F分别为AA1,BB1的中点,∴AE BF,∴四边形ABFE为平行四边形,∴EF∥AB.∵EF⊄平面ABCD,AB⊂平面ABCD,∴EF ∥平面ABCD,又EF⊂平面EFGH,平面EFGH∩平面ABCD=GH,∴EF∥GH,∴GH∥AB.故选A.6.C[解析]如图所示,设α∩β=l,a∥α,a∥β,过直线a作与α,β都相交的平面γ,记α∩γ=b,β∩γ=c,则a∥b且a∥c,∴b∥c.∵b⊂α,c⊄α,∴c∥α,又c⊂β,α∩β=l,∴c∥l,∴a∥l.故选C.7.D[解析]连接BC1,设B1C∩BC1=O,则O为BC1的中点,连接OE.∵BD1∥平面B1CE,BD1⊂平面BC1D1,平面BC1D1∩平面B1CE=OE,∴BD1∥OE.∵O为BC1的中点,∴E为C1D1的中点,故C错误,D正确.由异面直线的定义知BD1与CE是异面直线,故A错误.连接AD1,则在矩形ABC1D1中,AC1与BD1不垂直,故B错误.故选D.8.B[解析]取B1C的中点F,连接DF,EF.因为E,F分别是BC,B1C的中点,所以EF∥BB1,且EF=12BB1.因为AA1∥BB1,所以AA1∥EF,即AD∥EF,所以AD,EF确定平面ADFE.因为AE⊂平面ADFE,AE∥平面DB1C,平面DB1C∩平面ADFE=DF,所以AE∥DF,又AD∥EF,所以四边形AEFD 是平行四边形,所以AD=EF=12BB1,所以AD=12AA1,即D为AA1的中点,因此m=1.故选B.9.平行或异面10.209[解析]∵BD∥α,BD⊂平面ABD,平面α∩平面ABD=EG,∴BD∥EG,∴ = = ,∴ + = = ,∴EG= ·=5×45+4=209.11[解析]如图,连接BD,与AC交于O.设截面与DD1的交点为E,连接OE,则由BD1∥平面AEC,BD1⊂平面BD1D,平面AEC∩平面BD1D=OE,可得OE∥BD1.因为O为BD的中点,所以E为DD1的中点,所以OE=12BD1AC=2,所以截面的面积为12×2×12.1∶2[解析]连接AC,设AC与BD的交点为O,连接EO.因为四边形ABCD是平行四边形,所以点O是AC的中点.因为SC∥平面EBD,平面EBD∩平面SAC=EO,SC⊂平面SAC,所以SC ∥EO,所以点E是SA的中点,此时SE∶SA=1∶2.13.证明:(1)因为底面ABCD是菱形,所以AB∥CD,又AB⊄平面PCD,CD⊂平面PCD,所以AB∥平面PCD.(2)由(1)可知AB∥平面PCD,因为AB⊂平面ABEF,平面ABEF∩平面PCD=EF,所以AB∥EF.14.解:点D为AA'的中点.证明如下:取BC的中点F,连接AF,EF.设EF与BC'交于点O,连接DO.易知点O为EF的中点,且AA'∥EF,AA'=EF,则四边形A'EFA为平行四边形.因为A'E∥平面DBC',A'E⊂平面A'EFA,平面DBC'∩平面A'EFA=DO,所以A'E∥DO.因为点O是EF的中点,所以点D为AA'的中点.15.45+62[解析]连接BF,BC1.由题意可知EF∥平面BCC1B1,进而可知平面BCC1B1与平面EFC1的交线为BC1,则平面EFC1与平面ABB1A1的交线为BF,所以截面的周长为EF+FB+BC1+C1E=45+62.16.解:(1)证明:因为Q,N分别为PC,PB的中点,所以QN∥BC.因为底面ABCD是菱形,所以BC∥AD,所以QN∥AD.因为QN⊄平面PAD,AD⊂平面PAD,所以QN∥平面PAD.(2)直线l与平面PBD平行.证明如下.因为N,M分别为PB,PD的中点,所以MN∥BD,又BD⊂平面ABCD,MN⊄平面ABCD,所以MN∥平面ABCD.因为平面CMN与底面ABCD的交线为l,MN⊂平面CMN,所以MN∥l,所以BD∥l.因为BD⊂平面PBD,l⊄平面PBD,所以直线l∥平面PBD.。
(word完整版)高一数学必修2《直线、平面平行的判定及其性质》练习题

高一数学必修2《直线、平面平行的判定及其性质》练习题b , all , all ,贝U a 与b 的位置关系是(答案:A .第3题.如图,已知点P 是平行四边形 ABCD 所在平面外的一点, E , F 分别是PA , BD 上的点且PE : EA BF : FD ,求证:EFll 平面PBC .a , I m , Ib ,且 m// ,求证:all b • 答案:证明:Imllm mll a a b I a 同理 mll bA . all bc. a , b 相交但不垂直 B . a bD . a , b 异面第1题.已知ICB答案:证明:连结 AF 并延长交BC 于M .连结PM ,••• ADll BC ,二雯 ,又由已知 FD FA 由平面几何知识可得 EFll PM ,又EF PE BF . PE MF EA FD ,…EA FA 'PBC , PM 平面 PBC ,••• EFll 平面 PBC .第4题.如图,长方体ABCD A1B1C1D1中,E j F,是平面A,G上的线段,求证:ER//平D F i 面AC答案:证明:如图,分别在AB和CD上截取AE AE i , DF,连接EE i, FF i , EF ••••长方体AC i的各个面为矩形,••• AiEi平行且等于AE , D i F i平行且等于DF ,故四边形AEE1A1, DFF1D1为平行四边形.••• EE i平行且等于AA i , FF i平行且等于DD i •T AA|平行且等于DD i,二EE i平行且等于FF i ,四边形EFF i E i为平行四边形,E i F i// EF •T EF 平面ABCD , E i F i平面ABCD ,••• E i F i// 平面ABCD •第5题.如图,在正方形ABCD中,B D的圆心是A,半径为AB , BD是正方形ABCD的(1) 答案:证明:连接 BN 则由AD// BC ,得竺 ND NE • AN ..BN • ND ••• MN// ••• MN// PM MA PE , 平面 (2) 解:由 AN 并延长交BC 于E ,连接PE ,NEAN ' PM MA 'PE 平面PBC , MN 平面PBC ,又 PBC .PB BC PC 13,得 PBC 60 ;对角线,正方形以 AB 所在直线为轴旋转一周•则图中I ,n ,川三部分旋转所得几何体的 体积之比为 ______________________ .答案:1:1:1第6题.如图,正方形 ABCD 的边长为13,平面ABCD 外一点P 到正方形各顶点的距离 都是13, M , N 分别是PA , DB 上的点,且PM : MA BN : ND 5: 8 .(1) 求证:直线MN//平面PBC ;(2) 求线段MN 的长.亠BE BN5565由知BE-13AD ND8,88,由余弦定理可得PE91••• MN—PE813答案:证明:连接 AC 、 BD 交点为 0 ,连接M0,贝U MO 为△ BDP 的中位线 ••• PD 〃 M0 •■/ PD 平面 MAC , M0 平面 MAC ,二 PD 〃 平面 MAC .7• 求PD// 平面 MAC .ABCD 所在平面外一点, M 为PB 的中点, 第7题.如图,已知P 为平行四边形PMA第8题.如图,在正方体ABCD AiBGD i中,E , F分别是棱BC , CQ i的中点,求证: EF// 平面BB1D1D .答案:证明:如图,取D I B I的中点0,连接OF , OB,1 1v OF平行且等于—EG , BE平行且等于一BG ,2 2二OF平行且等于BE,则OFEB为平行四边形,••• EF// BO .v EF 平面BB1D1D , BO 平面BB-i D1D ,••• EF// 平面BB1D1D .第9题.如图,在正方体ABCD ABQ1D1中,试作出过AC且与直线QB平行的截面,并说明理由.答案:解:如图,连接DB 交AC 于点0,取D i D 的中点M ,连接MA , MC ,则截面MAC 即为所求作的截面.v M0 D 1DB 的中位线,二 D 1B// MO . ••• DiB 平面 MAC , MO 平面 MAC ,••• D i B//平面MAC ,则截面MAC 为过AC 且与直线D “B 平行的截面.平面,则过b 与平行的平面( )E.有1个 D.有2个以上 第10题.设a , b 是异面直线,aA.不存在答案:C.第11题•如图,在正方体ABCD ABCQ,中,求证:平面ABD//平面CDQ .nB i B A AA答案:证明:〃B,B丄D,DA,A A D,D 1 1四边形BB1D1D是平行四边形D1B1// DBDB 平面ABDD1B1平面A1BDD1B1// 平面A,BD同理B1C//平面ABDD1B11 B1平面B1CD1//平面A,BD .第12题.如图,M、N、P分别为空间四边形ABCD的边AB , BC , CD上的点,且AM : MB CN:NB CP:PD .求证:(1) AC// 平面MNP , BD// 平面MNP ;(2)平面MNP与平面ACD的交线// AC .ACAM CNMB NB MN〃AC答案:证明:(1)AC 平面MNP AC// 平面MNP •MN 平面MNPCN CPNB PDPN// BDBD 平面MNP BD// 平面MNP •PN 平面MNP(2)设平面MNP I平面ACD PEAC 平面ACD PE// AC,AC// 平面MNP即平面MNP与平面ACD的交线// AC .第13题.如图,线段AB , CD所在直线是异面直线,E,F,G,H分别是线段AC,CB,BD,DA的中点.(1)求证:EFGH共面且AB //面EFGH ,CD // 面EFGH ;(2)设P , Q分别是AB和CD上任意一点,求证:PQ被平面EFGH平分.••• E , F , G , H 分别是AC , CB ,BD , DA的中点.,答案:证明: (1)••• EH// CD , FG// CD ,二EH// FG .因此,E , F , G , H 共面.••• CD// EH , CD 平面EFGH , EH 平面EFGH ,••• CD// 平面EFGH •同理AB// 平面EFGH .(2)设PQI 平面EFGH = N,连接PC,设PCI EF M .△ PCQ所在平面I平面EFGH = MN ,••• CQ〃平面EFGH , CQ 平面PCQ ,二CQ〃MN .••• EF是厶ABC是的中位线,••• M是PC的中点,贝U N是PQ的中点,即PQ被平面EFGH平分.第14题.过平面外的直线I,作一组平面与相交,如果所得的交线为a , b , c ,则这些交线的位置关系为()A.都平行E.都相交且一定交于同一点C.都相交但不一定交于同一点D.都平行或都交于同一点答案:D.第15题.a , b是两条异面直线,A是不在a , b上的点,则下列结论成立的是()A.过A且平行于a和b的平面可能不存在E.过A有且只有一个平面平行于a和bc.过A至少有一个平面平行于a和b D.过A有无数个平面平行于a和b答案:A.第16题.若空间四边形ABCD的两条对角线AC , BD的长分别是8, 12,过AB的中点E且平行于BD、AC的截面四边形的周长为 ________________ .答案:20.第17题.在空间四边形ABCD中,E , F , G , H分别为AB , BC , CD , DA上的一点,且EFGH 为菱形,若AC// 平面EFGH , BD// 平面EFGH , AC m , BD n , 则AE: BE .答案:m: n .88—a 2( x 2 2 x) 、3 a 2 1斗 gx 2时,S 最大值 '•3 2 a ,即当E 为AB 的中点时,截面的面积最大, 最大面积为 第18题.如图,空间四边形 ABCD 的对棱AD 、BC 成60的角,且AD BC a ,平行 于AD 与BC 的截面分别交 AB 、AC 、CD 、BD 于E 、F 、G 、H . (1) 求证:四边形 EGFH 为平行四边形; (2) E 在AB 的何处时截面 EGFH 的面积最大?最大面积是多少? 得 EH a(1 x). ax a(1 x) 答案:(1)证明:T BC// 平面ABC I 平面EFGH 平面EFGH EF , • BC// EF •同理 BC// GH , • EF// GH ,同理 EH// FG , •四边形EGFH 为平行四边形. (2)解: BC 平面ABC , HGF BC a , ••• AD 与 BC 成 60 角, 60 或 120 ••• EF ax , ,设 AE:AB ..EF ■ BC AE AB x , 由 ED BE …S 四边形EFGH EF EH sin 6Q D第19题.P 为△ ABC 所在平面外一点,平面/平面ABC , 交线段PA , PB , PC 答案:4: 25第20题.如图,在四棱锥P ABCD 中,ABCD 是平行四边形,M , N 分别是AB ,的中点. 求证:MN//平面PAD .答案:证明:如图,取 CD 的中点E ,连接NE , ME••• M , N 分别是AB , PC 的中点,••• NE// PD , ME// AD ,可证明NE 〃平面PAD , ME//平面PAD .又 NEI ME E ,•••平面MNE 〃平面PAD ,又MN 平面MNE , • MN//平面PAD .第21题.已知平面 /平面 ,AB , CD 是夹在两平行平面间的两条线段,A , C 在 于 ABC' , PA : AA 2 ■ 3,则 S A ABC : S A ABC PC P M B内,B , C 在内,点E , F 分别在AB , CD 上,且AE : EB CF : FD m:n • 求证:EF//平面答案:证明:分AB , CD是异面、共面两种情况讨论.(1)当AB , CD共面时,如图(a )•••// ,二AC// BD,连接E , F .••• AE:EB CF : FD,二EF// AC// BD 且EF , AC ,二EF// 平面(2)当AB , CD异面时,如图(b),过点A作AH// CD交于点H •在H上取点G,使AG:GH m:n,连接EF,由(1)证明可得GF// HD,又AG:GH AE:EB得EG// BH .二平面EFG// 平面//平面 .又EF 面EFG,二EF//平面b ,且 m/ ,求证:a// b • 答案:证明: I m// m m// a a//b I a同理 m// b MNPQ 的周长是( )•A. 4a E . 2a一 3a. ............ C. D.周长与截面的位置有关 2答案:E.第24题. .已知: 1 b , a//,a// ,则a 与b 的位置关系是( ) A. a// b B.a b C. a 、 b 相交但不垂直D. a 、b 异面答案:A.第22题.已知 I 第23题.三棱锥A BCD 中,AB CDa ,截面MNPQ 与AB 、CD 都平行,则截面第25题.如图,已知点P 是平行四边形 ABCD 所在平面外的一点,E 、F 分别是PA 、BD 上的点且PE : EA BF : FD ,求证:EF//平面PBC .答案:证明:如图,分别在 AB 和CD 上截得AE AE , , DF D .F ,,连接EE ,, FF ,,EF ••••长方体AC ,的各个面为矩形,答案:证明:连结 AF 并延长交连结PM , ••• AD// BC , PE 又由已知— EA .BF MF • FD FA 'BF .PE M F FD , • • EA FA 由平面几何知识可得 EF// PM ,又 EF PBC , PM 平面 PBC ,••• EF// 平面 PBC •第26题.如图,长方体ABCDABQD ,中,EF 是平面AQ 上的线段,求证: E .F ,//平面ABCD •••• EE,平行且等于AA, , FF,平行且等于DD, •••• AA,平行且等于DD,,二EE,平行且等于FF,, 四边形EFF,E,为平行四边形,E1F1// EF .t EF 平面ABCD , E1 F-i 平面ABCD ,二E1F1// 平面ABCD .第27题.已知正方体ABCD A1B1C1D1,求证:平面AB-D i〃平面C-BD •答案:证明:因为ABCD AEGD j为正方体, 所以D1C1// A1B1, DQ A1B1•又AB// AB , AB A-B i,所以DQ〃AB, D1C1 AB ,所以D-C-BA为平行四边形.所以D-A// C-B •由直线与平面平行的判定定理得D i A// 平面GBD .同理D i B i〃平面C i BD,又D i AI D i B i D i , 所以,平面AB i D i//平面C i BD .第28题.已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面. 如图,已知直线a , b平面,且a// b , a// , a , b都在夕卜.求证:b// .答案:证明:过a作平面,使它与平面相交,交线为c因为a// , a,I c ,所以a// c. 因为a// b, 所以b// c.又因为cb ,,第29题.如图,直线AA', BB', CC'相交于0 , AO AO , BO BO , CO C'O .求ABC// 平面A'BC '.答案:提示:容易证明AB// AB' , AC// AC' • 进而可证平面ABC//平面ABC '.第30题.直线a与平面平行的充要条件是()A.直线a与平面内的一条直线平行E.直线a与平面内两条直线不相交C.直线a与平面内的任一条直线都不相交D.直线a与平面内的无数条直线平行答案:C.。
高一数学必修2《直线、平面平行的判定及其性质》练习题-(1)

高一数学必修2《直线、平面平行的判定及其性质》练习题第1题. 已知:b αβ=,a α//,a β//,则a 与b 的位置关系是( )A.a b // B.a b ⊥ C.a ,b 相交但不垂直 D.a ,b 异面答案:A. 第2题. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC .答案:证明:连结AF 并延长交BC 于M .连结PM ,AD BC ∵//,BF MF FD FA =∴,又由已知PE BF EA FD =,PE MFEA FA=∴. 由平面几何知识可得EF //PM ,又EF PBC ⊄,PM ⊂平面PBC , ∴EF //平面PBC .第6题. 如图,正方形ABCD 的边长为13,平面ABCD 外一点P 到正方形各顶点的距离都是13,M ,N 分别是PA ,DB 上的点,且58PM MA BN ND ==∶∶∶. (1) 求证:直线MN //平面PBC ; (2) 求线段MN 的长.(1) 答案:证明:连接AN 并延长交BC 于E ,连接PE ,则由AD BC //,得BN NEND AN=. BN PM ND MA =∵,NE PMAN MA=∴. MN PE ∴//,又PE ⊂平面PBC ,MN ⊄平面PBC , ∴MN //平面PBC .(2) 解:由13PB BC PC ===,得60PBC ∠=; 由58BE BN AD ND ==,知5651388BE =⨯=, 由余弦定理可得918PE =,8713MN PE ==∴.第7题. 如图,已知P 为平行四边形ABCD 所在平面外一点,M 为PB 的中点, 求证:PD //平面MAC .答案:证明:连接AC 、BD 交点为O ,连接MO ,则MO 为BDP △的中位线,∴PD MO //.PD ⊄∵平面MAC ,MO ⊂平面MAC ,∴PD //平面MAC .第8题. 如图,在正方体1111ABCD A B C D -中,E ,F 分别是棱BC ,11C D 的中点,求证:EF //平面11BB D D .答案:证明:如图,取11D B 的中点O ,连接OF ,OB ,OF ∵ 平行且等于1112B C ,BE 平行且等于1112B C ,OF ∴ 平行且等于BE ,则OFEB 为平行四边形, EF ∴//BO .EF ⊄∵平面11BB D D ,BO ⊂平面11BB D D ,∴EF //平面11BB D D .第9题. 如图,在正方体1111ABCD A B C D -中,试作出过AC 且与直线1D B 平行的截面,并说明理由.答案:解:如图,连接DB 交AC 于点O ,取1D D 的中点M ,连接MA ,MC ,则截面MAC 即为所求作的截面.MO ∵为1D DB △的中位线,1D B MO ∴//.1D B ⊄∵平面MAC ,MO ⊂平面MAC ,1D B ∴//平面MAC ,则截面MAC 为过AC 且与直线1D B 平行的截面.第10题. 设a ,b 是异面直线,a ⊂平面α,则过b 与α平行的平面( ) A.不存在 B.有1个 C.可能不存在也可能有1个 D.有2个以上答案:C.第11题. 如图,在正方体1111ABCD A B C D -中,求证:平面1A BD //平面11CD B .答案:证明:111111B B A A B B D D A A D D ⎧⎪⇒⎨⎪⎩ ∥ ∥ ∥ ⇒ 四边形11BB D D 是平行四边形⇒ 111111D B DBDB A BD D B A BD⎧⎪⊂⎨⎪⊄⎩平面平面//⇒111111111D B A BDB C A BD D B B C B⎧⎪⎨⎪=⎩平面同理平面//// ⇒111B CD A BD 平面平面//.第12题. 如图,M 、N 、P 分别为空间四边形ABCD 的边AB ,BC ,CD 上的点,且AM MB CN NB CP PD ==∶∶∶.求证:(1)AC //平面MNP ,BD //平面MNP ; (2)平面MNP 与平面ACD 的交线AC //.答案:证明:(1)AM CN MN AC MB NBAC MNP AC MNP MN MNP⎫=⇒⎪⎪⊄⇒⎬⎪⊂⎪⎭//平面//平面平面.CN CP PN BD NB PDBD MNP BD MNP PN MNP⎫=⇒⎪⎪⊄⎬⎪⊂⎪⎭//平面//平面平面.(2)MNP ACD PE AC ACD PE AC AC MNP =⎫⎪⊂⇒⎬⎪⎭设平面平面平面//,//平面 MNP ACD AC 即平面与平面的交线//第16题. 若空间四边形ABCD 的两条对角线AC ,BD 的长分别是8,12,过AB 的中点E 且平行于BD 、AC 的截面四边形的周长为 . 答案:20.第17题. 在空间四边形ABCD 中,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 上的一点,且EFGH 为菱形,若AC //平面EFGH ,BD //平面EFGH ,AC m =,BD n =,则AE BE =: .答案:m n ∶.第19题. P 为ABC △所在平面外一点,平面α//平面ABC ,α交线段PA ,PB ,PC 于ABC ''',23PA AA =∶∶'',则AB C ABC S S =△△∶''' .答案:425∶第20题. 如图,在四棱锥P ABCD -中,ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点.求证:MN //平面PAD .答案:证明:如图,取CD 的中点E ,连接NE ,ME∵M ,N 分别是AB ,PC 的中点, NE PD ∴//,ME AD //,可证明NE //平面PAD ,ME //平面PAD . 又NE ME E =,∴平面MNE //平面PAD ,又MN ⊂平面MNE ,∴MN //平面PAD .第21题. 已知平面α//平面β,AB ,CD 是夹在两平行平面间的两条线段,A ,C 在α,B ,C 在β,点E ,F 分别在AB ,CD 上,且AE EB CF FD m n ==∶∶∶.求证:EF //平面α.答案:证明:分AB ,CD 是异面、共面两种情况讨论. (1) 当AB ,CD 共面时,如图(a )αβ∵//,AC BD ∴//,连接E ,F .AE EB CF FD =∶∶∵,EF AC BD ∴////且EF α⊄,AC α⊂,∴EF //平面α.(2) 当AB ,CD 异面时,如图(b ),过点A 作AH CD // 交β于点H .在H 上取点G ,使AG GH m n =∶∶,连接EF ,由(1)证明可得GF HD //,又AG GH AE EB =∶∶得EG BH //.∴平面EFG //平面β//平面α.又EF ⊂面EFG ,∴EF //平面α第27题. 已知正方体1111ABCD A B C D -, 求证:平面11AB D //平面1C BD .答案:证明:因为1111ABCD A B C D -为正方体, 所以1111D C A B //,1111D C A B =. 又11AB A B //,11AB A B =, 所以11D C AB //,11D C AB =, 所以11D C BA 为平行四边形.所以11D A C B //.由直线与平面平行的判定定理得1D A //平面1C BD .同理11D B //平面1C BD ,又1111D A D B D ,所以,平面11AB D //平面1C BD .。
人教版数学高一-A版必修2练习 2.2 直线、平面平行的判定及其性质(3-4课时)

[A 基础达标]1.有一正方体木块如图所示,点P 在平面A ′C ′内,棱BC 平行于平面A ′C ′,要经过P 和棱BC 将木料锯开,锯开的面必须平整,有N 种锯法,则N 为( )A .0B .1C .2D .无数 答案:B2.如图,P 是△ABC 所在平面外一点,E ,F ,G 分别在AB ,BC ,PC 上,且PG =2GC ,AC ∥平面EFG ,PB ∥平面EFG ,则AEEB=( )A.12 B .1 C.32 D .2 答案:A3.如图是长方体被一平面所截得到的几何体,四边形EFGH 为截面,长方形ABCD 为底面,则四边形EFGH 的形状为( )A .梯形B .平行四边形C .可能是梯形也可能是平行四边形D .不确定 答案:B4.已知直线a ⊂α,给出以下三个命题: ①平面α∥平面β,则直线a ∥平面β; ②直线a ∥平面β,则平面α∥平面β;③若直线a 不平行于平面β,则平面α不平行于平面β. 其中正确的命题是( )A .②B .③C .①②D .①③ 答案:D5.在空间四边形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 上的点,当BD ∥平面EFGH 时,下面选项正确的是( )A .E 、F 、G 、H 必是各边中点B .G 、H 必是CD 、DA 的中点C .BE ∶EA =BF ∶FC ,且DH ∶HA =DG ∶GCD .AE ∶EB =AH ∶HD ,且BF ∶FC =DG ∶GC 解析:选D.因为BD ∥平面EFGH .所以BD ∥EH ,BD ∥FG ,所以AE EB =AH HD ,BF FC =DG GC.6.如果一条直线与一个平面平行,夹在直线和平面间的两线段相等,那么这两条线段所在直线的位置关系是________.解析:在正方体ABCD -A 1B 1C 1D 1中,A 1B 1∥平面ABCD ,AB 1与A 1B 相交,AA 1∥BB 1,A 1B 与B 1C 异面.答案:相交、平行或异面 7. 正方体ABCD -A 1B 1C 1D 1的棱长为3,点E 在A 1B 1上,且B 1E =1,平面α∥平面BC 1E ,若平面α∩平面AA 1B 1B =A 1F ,则AF 的长为________.解析:因为平面α∥平面BC 1E , 所以A 1FBE ,所以Rt △A 1AF ≌Rt △BB 1E , 所以FA =B 1E =1.答案:18. 如图所示,直线a ∥平面α,A ∉α,并且a 和A 位于平面α两侧,点B ,C ∈a ,AB 、AC 分别交平面α于点E 、F ,若BC =4,CF =5,AF =3,则EF =________.解析:EF 可看作直线a 与点A 确定的平面与平面α的交线,因为a ∥α,由线面平行的性质定理知,BC ∥EF ,由条件知AC =AF +CF =3+5=8.又EF BC =AFAC ,所以EF =AF ×BC AC =3×48=32. 答案:329.如图所示,已知三棱柱ABC-A1B1C1中,D是BC的中点,D1是B1C1的中点,设平面A1D1B∩平面ABC=l1,平面ADC1∩平面A1B1C1=l2,求证:l1∥l2.证明:连接D1D(图略),因为D与D1分别是BC与B1C1的中点,所以DD1BB1,又BB1AA1,所以DD1AA1,所以四边形A1D1DA为平行四边形,所以AD∥A1D1,又平面A1B1C1∥平面ABC,且平面A1B1C1∩平面A1D1B=A1D1,平面A1D1B∩平面ABC =l1,所以A1D1∥l1,同理可证AD∥l2,因为A1D1∥AD,所以l1∥l2.10.已知E,F分别是正方体ABCD-A1B1C1D1的棱AA1,CC1上的点,且AE=C1F.求证:四边形EBFD1是平行四边形.证明:如图,在棱BB1上取一点G,使得B1G=C1F=AE,连接A1G,GF,则GF∥B1C1∥A1D1,且GF=B1C1=A1D1,所以四边形GFD1A1为平行四边形,所以A1G∥D1F,且A1G=D1F.因为A1E=AA1-AE,BG=B1B-B1G,所以A1E∥BG,且A1E=BG,所以四边形EBGA1为平行四边形,所以A1G∥EB,且A1G=EB,所以D1F∥EB,且D1F=EB,所以四边形EBFD1是平行四边形.[B能力提升]1.设α∥β,A∈α,B∈β,C是AB的中点,当A、B分别在平面α、β内运动时,那么所有的动点C()A.不共面B.当且仅当A、B分别在两条直线上移动时才共面C.当且仅当A、B分别在两条给定的异面直线上移动时才共面D.不论A、B如何移动,都共面解析:选D.如图,A′、B′分别是A、B两点在α、β上运动后的两点,此时AB的中点C变成A′B′的中点C′,连接A′B,取A′B的中点E,连接CE、C′E、AA′、BB′.则CE∥AA′,所以CE∥α,C′E∥BB′,所以C′E∥β.又因为α∥β,所以C′E∥α.因为C′E∩CE=E,所以平面CC′E∥平面α.所以CC′∥α.所以不论A、B如何移动,所有的动点C都在过C点且与α、β平行的平面上.2. 如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于()A.1B.2 2C. 2 D.2解析:选C.由于在正方体ABCD-A1B1C1D1中,AB=2,所以AC=2 2.又E为AD中点,EF∥平面AB1C,EF⊂平面ADC,平面ADC∩平面AB1C=AC,所以EF∥AC,所以F为DC的中点,所以EF=12AC= 2.3. 用一个截面去截正三棱柱ABC-A1B1C1,交A1C1,B1C1,BC,AC分别于E,F,G,H,已知A1A>A1C1,则截面的形状可以为________(把你认为可能的结果的序号填在横线上).①一般的平行四边形;②矩形;③菱形;④正方形;⑤梯形解析:由题意知,当截面平行于侧棱时,所得截面为矩形,当截面与侧棱不平行时,所得截面是梯形,即EF∥HG且EH不平行于FG.答案:②⑤4. (选做题)如图,三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,点E,F分别是棱CC1,BB1上的点,点M是线段AC上的动点,EC=2FB=2,当点M在何位置时,BM ∥平面AEF.解:如图,取EC的中点P,AC的中点Q,连接PQ,PB,BQ,则PQ∥AE.因为EC=2FB=2,所以PE=BF.又PE∥BF,所以四边形BFEP为平行四边形,所以PB∥EF.又AE,EF⊂平面AEF,PQ,PB⊄平面AEF,所以PQ∥平面AEF,PB∥平面AEF.又PQ∩PB=P,所以平面PBQ∥平面AEF.又BQ⊂平面PBQ,所以BQ∥平面AEF.故点Q即为所求的点M,即点M为AC的中点时,BM∥平面AEF.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修2《直线、平面平行的判定及其性质》练习题第1题. 已知a αβ=,m βγ=,b γα=,且m α//,求证:a b //.答案:证明:m m m a a b a m b βγααβ=⎫⎫⎪⎪⇒⇒⎬⎬⎪⎪=⇒⎭⎭同理////////.第2题. 已知:b αβ=,a α//,a β//,则a 与b 的位置关系是( )A.a b // B.a b ⊥C.a ,b 相交但不垂直 D.a ,b 异面答案:A.第3题. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC .答案:证明:连结AF 并延长交BC 于M .连结PM ,AD BC ∵//,BF MF FD FA =∴,又由已知PE BF EA FD=,PE MFEA FA =∴. 由平面几何知识可得EF //PM ,又EF PBC ⊄,PM ⊂平面PBC , ∴EF //平面PBC .第4题. 如图,长方体1111ABCD A B C D -中,11E F 是平面11A C 上的线段,求证:E F //平面AC .答案:证明:如图,分别在AB 和CD 上截取11AE A E =,11DF D F =,连接1EE ,1FF ,EF .∵长方体1AC 的各个面为矩形,11A E ∴平行且等于AE ,11D F 平行且等于DF ,故四边形11AEE A ,11DFF D 为平行四边形.1EE ∴平行且等于1AA ,1FF 平行且等于1DD . 1AA ∵平行且等于1DD ,1EE ∴平行且等于1FF ,四边形11EFF E 为平行四边形,11E F EF //.EF ⊂∵平面ABCD ,11E F ⊄平面ABCD , ∴11E F //平面ABCD .第5题. 如图,在正方形ABCD 中,BD 的圆心是A ,半径为AB ,BD 是正方形ABCD 的对角线,正方形以AB 所在直线为轴旋转一周.则图中Ⅰ,Ⅱ,Ⅲ三部分旋转所得几何体的体积之比为 .答案:111∶∶第6题. 如图,正方形ABCD 的边长为13,平面ABCD 外一点P 到正方形各顶点的距离都是13,M ,N 分别是PA ,DB 上的点,且58PM MA BN ND ==∶∶∶. (1) 求证:直线MN //平面PBC ; (2) 求线段MN 的长.(1) 答案:证明:连接AN 并延长交BC 于E ,连接PE ,则由AD BC //,得BN NEND AN=. BN PM ND MA =∵,NE PM AN MA=∴. MN PE ∴//,又PE ⊂平面PBC ,MN ⊄平面PBC , ∴MN //平面PBC .(2) 解:由13PB BC PC ===,得60PBC ∠=;由58BE BNAD ND==,知5651388BE=⨯=,由余弦定理可得918PE=,8713MN PE==∴.第7题. 如图,已知P为平行四边形ABCD所在平面外一点,M为PB的中点,求证:PD//平面MAC.答案:证明:连接AC、BD交点为O,连接MO,则MO为BDP△的中位线,∴PD MO//.PD⊄∵平面MAC,MO⊂平面MAC,∴PD//平面MAC.第8题. 如图,在正方体1111ABCD A B C D -中,E ,F 分别是棱BC ,11C D 的中点,求证:EF //平面11BB D D .答案:证明:如图,取11D B 的中点O ,连接OF ,OB ,OF ∵ 平行且等于1112B C ,BE 平行且等于1112B C ,OF ∴ 平行且等于BE ,则OFEB 为平行四边形, EF ∴//BO .EF ⊄∵平面11BB D D ,BO ⊂平面11BB D D ,∴EF //平面11BB D D .第9题. 如图,在正方体1111ABCD A B C D -中,试作出过AC 且与直线1D B 平行的截面,并说明理由.答案:解:如图,连接DB 交AC 于点O ,取1D D 的中点M ,连接MA ,MC ,则截面MAC 即为所求作的截面.MO ∵为1D DB △的中位线,1D B MO ∴//.1D B ⊄∵平面MAC ,MO ⊂平面MAC ,1D B ∴//平面MAC ,则截面MAC 为过AC 且与直线1D B 平行的截面.第10题. 设a ,b 是异面直线,a ⊂平面α,则过b 与α平行的平面( ) A.不存在 B.有1个 C.可能不存在也可能有1个 D.有2个以上答案:C.第11题. 如图,在正方体1111ABCD A B C D-中,求证:平面1A BD//平面11CD B.答案:证明:111111B B A AB B D DA A D D⎧⎪⇒⎨⎪⎩∥∥∥⇒四边形11BB D D是平行四边形⇒111111D B DBDB A BDD B A BD⎧⎪⊂⎨⎪⊄⎩平面平面//⇒111111111D B A BDB C A BDD B B C B⎧⎪⎨⎪=⎩平面同理平面////⇒111B CD A BD平面平面//.第12题. 如图,M、N、P分别为空间四边形ABCD的边AB,BC,CD上的点,且AM MB CN NB CP PD==∶∶∶.求证:(1)AC//平面MNP,BD//平面MNP;(2)平面MNP与平面ACD的交线AC//.答案:证明:(1)AM CN MN AC MB NBAC MNP AC MNP MN MNP⎫=⇒⎪⎪⊄⇒⎬⎪⊂⎪⎭//平面//平面平面.CN CP PN BD NB PDBD MNP BD MNP PN MNP⎫=⇒⎪⎪⊄⎬⎪⊂⎪⎭//平面//平面平面.(2)MNP ACD PE AC ACD PE AC AC MNP =⎫⎪⊂⇒⎬⎪⎭设平面平面平面//,//平面 MNP ACD AC 即平面与平面的交线//.第13题. 如图,线段AB ,CD 所在直线是异面直线,E ,F ,G ,H 分别是线段AC ,CB ,BD ,DA 的中点.(1) 求证:EFGH 共面且AB ∥面EFGH ,CD ∥面EFGH ; (2) 设P ,Q 分别是AB 和CD 上任意一点,求证:PQ 被平面EFGH 平分.答案:证明:(1)∵E ,F ,G ,H 分别是AC ,CB ,BD ,DA 的中点.,EH CD ∴//,FG CD //,EH FG ∴//.因此,E ,F ,G ,H 共面. CD EH ∵//,CD ⊄平面EFGH ,EH ⊂平面EFGH , CD ∴//平面EFGH .同理AB //平面EFGH .(2)设PQ平面EFGH =N ,连接PC ,设PCEF M =.PCQ △所在平面平面EFGH =MN ,CQ ∵//平面EFGH ,CQ ⊂平面PCQ ,CQ MN ∴//.EF ∵ 是ABC △是的中位线,M ∴是PC 的中点,则N 是PQ 的中点,即PQ 被平面EFGH 平分.第14题. 过平面α外的直线l ,作一组平面与α相交,如果所得的交线为a ,b ,c ,…,则这些交线的位置关系为( ) A.都平行B.都相交且一定交于同一点 C.都相交但不一定交于同一点 D.都平行或都交于同一点答案:D.第15题. a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是( ) A.过A 且平行于a 和b 的平面可能不存在 B.过A 有且只有一个平面平行于a 和b C.过A 至少有一个平面平行于a 和b D.过A 有无数个平面平行于a 和b答案:A.第16题. 若空间四边形ABCD 的两条对角线AC ,BD 的长分别是8,12,过AB 的中点E 且平行于BD 、AC 的截面四边形的周长为 . 答案:20.第17题. 在空间四边形ABCD 中,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 上的一点,且EFGH 为菱形,若AC //平面EFGH ,BD //平面EFGH ,AC m =,BD n =,则AE BE =: .答案:m n ∶.第18题. 如图,空间四边形ABCD 的对棱AD 、BC 成60的角,且AD BC a ==,平行于AD 与BC 的截面分别交AB 、AC 、CD 、BD 于E 、F 、G 、H . (1)求证:四边形EGFH 为平行四边形;(2)E 在AB 的何处时截面EGFH 的面积最大?最大面积是多少?答案:(1)证明:BC ∵//平面EFGH ,BC ⊂平面ABC , 平面ABC 平面EFGH EF =,BC EF ∴//.同理BC GH //, EF GH ∴//,同理EH FG //, ∴四边形EGFH 为平行四边形. (2)解:∵AD 与BC 成60角,∴60HGF ∠=或120,设:AE AB x =,∵EF AEx BC AB==, BC a =,∴EF ax =,由1EH BEx AD AB==-, 得(1)EH a x =-.∴sin 60EFGH S EF EH =⨯⨯四边形(1)ax a x =⨯-22()2a x x =-+2211()24x ⎡⎤=--+⎢⎥⎣⎦. 当12x =时,28S a =最大值, 即当E 为AB的中点时,截面的面积最大,最大面积为28a .第19题. P 为ABC △所在平面外一点,平面α//平面ABC ,α交线段PA ,PB ,PC 于ABC ''',23PA AA =∶∶'',则AB C ABC S S =△△∶''' .答案:425∶第20题. 如图,在四棱锥P ABCD -中,ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点.求证:MN //平面PAD .答案:证明:如图,取CD 的中点E ,连接NE ,ME ∵M ,N 分别是AB ,PC 的中点,NE PD ∴//,ME AD //,可证明NE //平面PAD ,ME //平面PAD . 又NE ME E =,∴平面MNE //平面PAD ,又MN ⊂平面MNE ,∴MN //平面PAD .第21题. 已知平面α//平面β,AB ,CD 是夹在两平行平面间的两条线段,A ,C 在α内,B ,C 在β内,点E ,F 分别在AB ,CD 上,且AE EB CF FD m n ==∶∶∶. 求证:EF //平面α.答案:证明:分AB ,CD 是异面、共面两种情况讨论. (1) 当AB ,CD 共面时,如图(a )αβ∵//,AC BD ∴//,连接E ,F .AE EB CF FD =∶∶∵,EF AC BD ∴////且EF α⊄,AC α⊂,∴EF //平面α.(2) 当AB ,CD 异面时,如图(b ),过点A 作AH CD //交β于点H .在H 上取点G ,使AG GH m n =∶∶,连接EF ,由(1)证明可得GF HD //,又AG GH AE EB =∶∶得EG BH //.∴平面EFG //平面β//平面α.又EF ⊂面EFG ,∴EF //平面α.第22题. 已知a αβ=,m βγ=,b γα=,且m α//,求证:a b //.答案:证明:m m m a a b a m b βαααβ=⎫⎫⎪⎪⇒⇒⎬⎬⎪⎪=⇒⎭⎭同理////////.第23题. 三棱锥A BCD -中,AB CD a ==,截面MNPQ 与AB 、CD 都平行,则截面MNPQ 的周长是( ). A.4a B.2aC.32aD.周长与截面的位置有关答案:B.第24题. 已知:b αβ=,a α//,a β//,则a 与b 的位置关系是( ).A.a b // B.a b ⊥C.a 、b 相交但不垂直 D.a 、b 异面答案:A.第25题. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E 、F 分别是PA 、BD 上的点且:PE EA BF =答案:证明:连结AF 并延长交BC 于M . 连结PM ,AD BC ∵//,BF MFFD FA=∴, 又由已知PE BFEA FD=,PE MFEA FA =∴. 由平面几何知识可得EF //PM , 又EF PBC ⊄,PM ⊂平面PBC , ∴EF //平面PBC .第26题. 如图,长方体1111ABCD A B C D -中,E F 是平面A C 上的线段,求证:E F //平面ABCD .答案:证明:如图,分别在AB 和CD 上截得11AE A E =,11DF D F =,连接1EE ,1FF ,EF .∵长方体1AC 的各个面为矩形,1EE ∴平行且等于1AA ,1FF 平行且等于1DD . 1AA ∵平行且等于1DD ,1EE ∴平行且等于1FF ,四边形11EFF E 为平行四边形,11E F EF //.EF ⊂∵平面ABCD ,11E F ⊄平面ABCD , ∴11E F //平面ABCD .第27题. 已知正方体1111ABCD A B C D -, 求证:平面11AB D //平面1C BD .答案:证明:因为1111ABCD A B C D -为正方体, 所以1111D C A B //,1111D C A B =. 又11AB A B //,11AB A B =, 所以11D C AB //,11D C AB =, 所以11D C BA 为平行四边形.所以11D A C B //.由直线与平面平行的判定定理得1D A //平面1C BD .同理11D B //平面1C BD ,又1111D A D B D =,所以,平面11AB D //平面1C BD .第28题. 已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面.如图,已知直线a ,b 平面α,且a b //,a α//,a ,b 都在α外. 求证:b α//.答案:证明:过a 作平面β,使它与平面α相交,交线为c . 因为a α//,a β⊂,c αβ=,所以a c //. 因为a b //, 所以b c //.又因为c α⊂,b α⊄, 所以b α//.第29题. 如图,直线AA ',BB ',CC '相交于O ,AO AO =',BO BO =',CO C O ='. 求证:ABC //平面ABC '''.答案:提示:容易证明AB AB //'',AC AC //''. 进而可证平面ABC //平面ABC '''.第30题. 直线a 与平面α平行的充要条件是( ) A.直线a 与平面α内的一条直线平行 B.直线a 与平面α内两条直线不相交C.直线a 与平面α内的任一条直线都不相交 D.直线a 与平面α内的无数条直线平行答案:C.。