多相流模型数值模拟(中文)

FLUENT UDF代码_颗粒(煤或生物质)床层多相流燃烧过程数值模拟-【第2部分-完结】

Fluent-UDF_Coal-Combustion-Multiphase-Flow-Processes ---Codes for various kinds of heterogeneous reactions 【第二部分-Part2】 DEFINE_HET_RXN_RATE(SteamGasif_Rev_MGAS,c,t,hr,mw,yi,rr,rr_t) { Thread **pt = THREAD_SUB_THREADS(t); Thread *tp = pt[0]; /* gas phase */ int index_phase = Get_Phase_Index(hr); Thread *ts = pt[index_phase]; /* solid phase */ *rr = 0; double direction = 0.0, mol_weight, y_carbon, rr_turb = 1e+20; /* CO + H2 ---> H2O + 1/25 Soot The reverse steam gasification reaction, which is CO + H2 ---> 1/25 Soot + H2O is written as the reaction shown above. So a negative rate means CO and H2 is consumed and H2O and Soot are generated. Note that no C(s) is generated, the stoich coeff for C(s) in the above reation is zero. Set the phase and species indices. Ash species index is initialized to zero, with all other indices. Ash species index is used as a flag to execute SetSpeciesIndex only once. This is done by the first reaction, defined in the heterogeneous reaction panel in FLUENT GUI. */ if(IS_ASH == 0) SetSpeciesIndex(); if(MGAS_Gasif) { double RoRT = C_R(c,tp) * UNIVERSAL_GAS_CONSTANT * C_T(c,tp); double p_h2o = RoRT * yi[IP_H2O][IS_H2O]/mw[IP_H2O][IS_H2O]/ 101325.; double p_co = RoRT * yi[IP_CO][IS_CO]/mw[IP_CO][IS_CO] / 101325.; double p_h2 = RoRT * yi[IP_H2][IS_H2]/mw[IP_H2][IS_H2] / 101325.; y_carbon = yi[IP_SOOT][IS_SOOT]; mol_weight = mw[IP_SOOT][IS_SOOT];

Fluent多相流模型选择

FLUENT多相流模型 分类 1、气液或液液流动 气泡流动:连续流体中存在离散的气泡或液泡 液滴流动:连续相为气相,其它相为液滴 栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡 分层自由流动:由明显的分界面隔开的非混合流体流动。 2、气固两相流动 粒子负载流动:连续气体流动中有离散的固体粒子 气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流 流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。 3、液固两相流动 泥浆流:流体中的大量颗粒流动。颗粒的stokes数通常小于1。大于1是成为流化了的液固流动。 水力运输:在连续流体中密布着固体颗粒 沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。 4、三相流 以上各种情况的组合 多相流动系统的实例 气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。 液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。 栓塞流:管道或容器中有大尺度气泡的流动 分层流:分离器中的晃动、核反应装置沸腾和冷凝 粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动 气力输运:水泥、谷粒和金属粉末的输运 流化床:流化床反应器、循环流化床 泥浆流:泥浆输运、矿物处理 水力输运:矿物处理、生物医学、物理化学中的流体系统 沉降流动:矿物处理。 多相流模型的选择原则 1、基本原则

1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相 模型。 2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴 和粒子负载流动,采用混合模型或欧拉模型。 3)对于栓塞流、泡状流,采用VOF模型 4)对于分层/自由面流动,采用VOF模型 5)对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。 6)对于流化床,采用欧拉模型 7)泥浆和水力输运,采用混合模型或欧拉模型。 8)沉降采用欧拉模型 9)对于更一般的,同时包含多种多相流模式的情况,应根据最感兴趣 的流动特种,选择合适的流动模型。此时由于模型只是对部分流动特 征采用了较好的模拟,其精度必然低于只包含单个模式的流动。 2、混合模型和欧拉模型的选择原则 VOF模型适合于分层的或自由表面流,而混合模型和欧拉模型适合于流动中有相混合或分离,或者分散相的体积分数超过10%的情况(小于10%可使用离散相模型)。 1)如果分散相有宽广的分布(如颗粒的尺寸分布很宽),最好采用混 合模型,反之使用欧拉模型。 2)如果相间曳力规律一直,欧拉模型通常比混合模型更精确;若相间 曳力规律不明确,最好选用混合模型。 3)如果希望减小计算了,最好选用混合模型,它比欧拉模型少解一部 分方程;如果要求精度而不在意计算量,欧拉模型可能是更好的选择。 但是要注意,复杂的欧拉模型比混合模型的稳定性差,可能会遇到收 敛困难。

(推荐)FLUENT中两相流、多相流中模型的的选择问题

两相流:通常把含有大量固体或液体颗粒的气体或液体流动称为两相流;其中含有多种尺寸组颗粒群为一个“相”,气体或液体为另一“相”,由此就有气—液,气—固,液—固等两相流之分。 两相流的研究:对两相流的研究有两种不同的观点:一是把流体作为连续介质,而把颗粒群作为离散体系;而另一是除了把流体作为连续介质外,还把颗粒群当作拟连续介质或拟流体。 引入两种坐标系:即拉格朗日坐标和欧拉坐标,以变形前的初始坐标为自变量称为拉格朗日Langrangian 坐标或物质坐标;以变形后瞬时坐标为自变量称为欧拉Eulerian 坐标或空间坐标。 一.离散相模型 FLUENT在求解连续相的输运方程的同时,在拉格朗日坐标下模拟流场中离散相的第二相; 离散相模型解决的问题:煤粉燃烧、颗粒分离、喷雾干燥、液体燃料的燃烧等; 应用范围:FLUENT中的离散相模型假定第二相体积分数一般说来要小于10-12%(但颗粒质量承载率可以大于10-12%,即可模拟离散相质量流率等/大于连续相的流动);不适用于模拟在连续相中无限期悬浮的颗粒流问题,包括:搅拌釜、流化床等; 颗粒-颗粒之间的相互作用、颗粒体积分数对连续相的影响未考虑; 湍流中颗粒处理的两种模型:Stochastic Tracking,应用随机方法来考虑瞬时湍流速度对颗粒轨道的影响;Cloud Tracking,运用统计方法来跟踪颗粒围绕某一平均轨道的湍流扩散。通过计算颗粒的系统平均运动方程得到颗粒的某个“平均轨道” 二.多相流模型 FLUENT中提供的模型: VOF模型(Volume of Fluid Model) 混合模型(Mixture Model) 欧拉模型(Eulerian Model) 1.VOF模型(Volume of Fluid Model) VOF模型用来处理没有相互穿插的多相流问题,在处理两相流中,假设计算的每个控制容积中第一相的体积含量为α1,如果α1=0,表示该控制容积中不含第一相,如果α1=1,则表示该控制容积中只含有第一相,如果0<α1<1,表示该控制容积中有两相交界面; VOF方法是用体积率函数表示流体自由面的位置和流体所占的体积,其方法占内存小,是一种简单而有效的方法。 2.混合模型(Mixture Model) 用混合特性参数描述的两相流场的场方程组称为混合模型; 考虑了界面传递特性以及两相间的扩散作用和脉动作用;使用了滑移速度的概念,允许相以不同的速度运动; 用于模拟各相有不同速度的多相流;也用于模拟有强烈耦合的各向同性多相流和各相以相同速度运动的多相流; 缺点:界面特性包括不全,扩散和脉动特性难于处理。 3.欧拉模型(Eulerian Model) 欧拉模型指的是欧拉—欧拉模型; 把颗粒和气体看成两种流体,空间各点都有这两种流体各自不同的速度、温度和密度,这些流体其存在在同一空间并相互渗透,但各有不同的体积分数,相互间有滑移;

多相流模拟知识讲解

多相流模拟

多相流模拟介绍 自然界和工程问题中会遇到大量的多相流动。物质一般具有气态、液态和固态三相,但是多相流系统中相的概念具有更为广泛的意义。在多项流动中,所谓的“相”可以定义为具有相同类别的物质,该类物质在所处的流动中具有特定的惯性响应并与流场相互作用。比如说,相同材料的固体物质颗粒如果具有不同尺寸,就可以把它们看成不同的相,因为相同尺寸粒子的集合对流场有相似的动力学响应。本章大致介绍一下Fluent中的多相流建模。 多相流动模式 我们可以根据下面的原则对多相流分成四类: ?气-液或者液-液两相流: o气泡流动:连续流体中的气泡或者液泡。 o液滴流动:连续气体中的离散流体液滴。 o活塞流动:在连续流体中的大的气泡 o分层自由面流动:由明显的分界面隔开的非混合流体流动。 ?气-固两相流: o充满粒子的流动:连续气体流动中有离散的固体粒子。 o气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。 o流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。从床底不断充入的气体使得颗粒得以悬浮。改变气体的流量,就会有气泡不断的出 现并穿过整个容器,从而使得颗粒在床内得到充分混合。 ?液-固两相流

o泥浆流:流体中的颗粒输运。液-固两相流的基本特征不同于液体中固体颗粒的流动。在泥浆流中,Stokes数通常小于1。当Stokes数大于1时,流动成为 流化(fluidization)了的液-固流动。 o水力运输:在连续流体中密布着固体颗粒 o沉降运动:在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积 层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒 子仍然在沉降。在澄清层和沉降层中间,是一个清晰可辨的交界面。 三相流 (上面各种情况的组合) 多相系统的例子 ?气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷 ?液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗 ?活塞流例子:管道或容器内有大尺度气泡的流动 ?分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝 ?粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动 ?风力输运例子:水泥、谷粒和金属粉末的输运 ?流化床例子:流化床反应器,循环流化床 ?泥浆流例子: 泥浆输运,矿物处理 ?水力输运例子:矿物处理,生物医学及物理化学中的流体系统 ?沉降例子:矿物处理 多相建模方法 计算流体力学的进展为深入了解多相流动提供了基础。目前有两种数值计算的方法处理多相流:欧拉-拉格朗日方法和欧拉-欧拉方法。 欧拉-拉格朗日方法

多相流数值计算

FLUENT计算两相流相关问题: 通常把含有大量固体或液体颗粒的气体或液体流动称为两相流; 两相流的研究:对两相流的研究有两种不同的观点:一是把流体作为连续介质而把颗粒群作为离散体系;而另一是除了把流体作为连续介质外,还把颗粒群当作拟连续介质或拟流体。 引入两种坐标系:即拉格朗日坐标和欧拉坐标,以变形前的初始坐标为自变量称为拉格朗日Langrangian坐标或物质坐标;以变形后瞬时坐标为自变量称为欧拉Eulerian坐标或空间坐标。 离散相模型 FLUENT在求解连续相的输运方程的同时,在拉格朗日坐标下模拟流场中离散相的第二相; 离散相模型解决的问题:煤粉燃烧、颗粒分离、喷雾干燥、液体燃料的燃烧等;应用范围:FLUENT中的离散相模型假定第二相体积分数一般说来要小于10-12%(但颗粒质量承载率可以大于10-12%,即可模拟离散相质量流率等大于连续相的流动);不适用于模拟在连续相中无限期悬浮的颗粒流问题,包括:搅拌釜、流化床等; 颗粒颗粒之间的相互作用、颗粒体积分数对连续相的影响未考虑; 湍流中颗粒处理的两种模型: Stochastic Tracking,应用随机方法来考虑瞬时湍流速度对颗粒轨道的影响;Cloud Tracking,运用统计方法来跟踪颗粒围绕某一平均轨道的湍流扩散。通过计算颗粒的系统平均运动方程得到颗粒的某个平均轨道。 多相流模型 FLUENT中提供的模型: VOF模型(V olume of Fluid Model) 混合模型(Mixture Model) 欧拉模型(Eulerian Model) 1.VOF模型(Volume of Fluid Model) VOF模型用来处理没有相互穿插的多相流问题,在处理两相流中,假设计算的每个控制容积中第一相的体积含量为α1,如果α1=0,表示该控制容积中不含第

多相流模型和离散相模型的区别

多相流模型和离散相模型的区别 2008-03-30 10:18 两相流:通常把含有大量固体或液体颗粒的气体或液体流动称为两相流;其中含有多种尺寸组颗粒群为一个“相”,气体或液体为另一“相”,由此就有气—液,气—固,液—固等两相流之分。 两相流的研究:对两相流的研究有两种不同的观点:一是把流体作为连续介质,而把颗粒群作为离散体系;而另一是除了把流体作为连续介质外,还把颗粒群当作拟连续介质或拟流体。 引入两种坐标系:即拉格朗日坐标和欧拉坐标,以变形前的初始坐标为自变量称为拉格朗日Langrangian 坐标或物质坐标;以变形后瞬时坐标为自变量称为欧拉Eulerian 坐标或空间坐标。 离散相模型 FLUENT在求解连续相的输运方程的同时,在拉格朗日坐标下模拟流场中离散相的第二相;← ←离散相模型解决的问题:煤粉燃烧、颗粒分离、喷雾干燥、液体燃料的燃烧等; ←应用范围:FLUENT中的离散相模型假定第二相体积分数一般说来要小于10-12%(但颗粒质量承载率可以大于10-12%,即可模拟离散相质量流率等/大于连续相的流动);不适用于模拟在连续相中无限期悬浮的颗粒流问题,包括:搅拌釜、流化床等; ←颗粒-颗粒之间的相互作用、颗粒体积分数对连续相的影响未考虑; 湍流中颗粒处理的两种模型:Stochastic← Tracking,应用随机方法来考虑瞬时湍流速度对颗粒轨道的影响;Cloud Tracking,运用统计方法来跟踪颗粒围绕某一平均轨道的湍流扩散。通过计算颗粒的系统平均运动方程得到颗粒的某个“平均轨道” 多相流模型 FLUENT中提供的模型: VOF模型(Volume of Fluid← Model) 混合模型(Mixture Model)← 欧拉模型(Eulerian Model)← VOF模型(Volume of Fluid Model) ← VOF模型用来处理没有相互穿插的多相流问题,在处理两相流中,假设计算的每个控制容积中第一相的体积含量为α1,如果α1=0,表示该控制容积中不含第一相,如果α1=1,则表示该控制容积中只含有第一相,如果0<α1<1,表示该控制容积中有两相交界面; ← VOF方法是用体积率函数表示流体自由面的位置和流体所占的体积,其方法占内存小,是一种简单而有效的方法。 混合模型(Mixture Model) 用混合特性参数描述的两相流场的场方程组称为混合模型;← ←考虑了界面传递特性以及两相间的扩散作用和脉动作用;使用了滑移速度的概念,允许相以不同的速度运动; ←用于模拟各相有不同速度的多相流;也用于模拟有强烈耦合的各向同性多相流和各相以相同速度运动的多相流; ←缺点:界面特性包括不全,扩散和脉动特性难于处理。

第20章 通用多相流模型--60页 多相流数据后处理

20.通用多相流模型(General Multiphase Models) 本章讨论了在FLUENT中可用的通用的多相流模型。第18章提供了多相流模型的简要介绍。第19章讨论了Lagrangian离散相模型,第21章讲述了FLUENT中的凝固和熔化模型。20.1选择通用多相流模型(Choosing a General Multiphase Model) 20.2VOF模型(Volume of Fluid(VOF)Model) 20.3混合模型(Mixture Model) 20.4欧拉模型(Eulerian Model) 20.5气穴影响(Cavity Effects) 20.6设置通用多相流问题(Setting Up a General Multiphase Problem) 20.7通用多相流问题求解策略(Solution Strategies for General Multiphase Problems) 20.8通用多相流问题后处理(Postprocessing for General Multiphase Problems) 20.1选择通用的多相流模型(Choosing a General Multiphase Model) 正如在Section 18.4中讨论过的,VOF模型适合于分层的或自由表面流,而mixture和Eulerian 模型适合于流动中有相混合或分离,或者分散相的volume fraction超过10%的情形。(流动中分散相的volume fraction小于或等于10%时可使用第19章讨论过的离散相模型)。 为了在mixture模型和Eulerian模型之间作出选择,除了Section18.4中详细的指导外,你还应考虑以下几点: ★如果分散相有着宽广的分布,mixture模型是最可取的。如果分散相只集中在区域的一部分,你应当使用Eulerian模型。 ★如果应用于你的系统的相间曳力规律是可利用的(either within FLUENT or through a user-defined function),Eulerian模型通常比mixture模型能给出更精确 的结果。如果相间的曳力规律不知道或者它们应用于你的系统是有疑问的, mixture模型可能是更好的选择。 ★如果你想解一个需要计算付出较少的简单的问题,mixture模型可能是更好的选择,因为它比Eulerian模型要少解一部分方程。如果精度比计算付出更重要, Eulerian模型是更好的选择。但是请记住,复杂的Eulerian模型比mixture模型 的计算稳定性要差。 三种模型概要的讲述,包括它们各自的局限,在Sections20.1.1,20.1.2,20.1.3中给出。 三种模型详细的讲述在Sections20.2,20.3和20.4中给出。 20.1.1VOF模型的概述及局限(Overview and Limitations of the VOF Model) 概述(Overview) VOF模型通过求解单独的动量方程和处理穿过区域的每一流体的volume fraction来模拟两种或三种不能混合的流体。典型的应用包括预测, jet breakup、流体中大泡的运动(the motion of large bubbles in a liquid)、the motion of liquid after a dam break和气液界面的稳态和瞬态处理(the steady or transient tracking of any liquid-gas interface)。 局限(limitations) 下面的一些限制应用于FLUENT中的VOF模型: ★你必须使用segregated solver. VOF 模型不能用于coupled solvers. ★所有的控制容积必须充满单一流体相或者相的联合;VOF模型不允许在那些空的区域中没有任何类型的流体存在。 ★只有一相是可压缩的。

T型微通道内两相流动数值模拟和流场

价值工程 —————————————————————— —基金项目:西安市科技计划项目(CXY1134WL09) 。作者简介:王琳琳(1981-),女,陕西西安人,西安文理学院数学 与计算机工程学院,讲师,西安交通大学能动学院博 士生,研究方向为微通道内的两相流动。 0引言 微通道的尺寸非常小,其通道的宽度一般在之间,流量小[1],借助微通道可以进行两相流体的混合、纳米粒子合成、 蛋白质结晶等。在化工方面,要求能够控制微通道内化学物质输运的时间和物质空间的分布[2,3] 。近年来,研究者对不同结构微通道内流动的控制产生了极大的兴趣,成为 一个重要的研究方向[4]。 雷诺数是惯性力和黏性力之比,微通道内雷诺数小,两相流动受到黏性力的影响,在通道壁面约束下,表面张力和挤压力对离散相的形成起到重要作用。微通道的制作工艺精度较高,监测通道内流动的设备需要极其微小,这些都使得采用实验研究微流动的难度和费用较大,而数值模拟能够克服这些缺点。两相流动问题常见的数值模拟方法有:标记网格方法(MAC ),水平集方法(level set method ),相场方法(phase field method ),VOF 法,格子布尔兹曼方法(Lattice Boltzmann method )等,在这些的数值方法中,相场方法利用自由能量描述两相流体的界面,模拟中采用非结构化网格时容易实施,对流场的计算中不用重新初始化,物质的质量损失较小,控制方程中的变量具有一定物理意义,并能够模拟能量耗散的流动[5]。本文采用相场方法,数值模拟工程中常见的错流接触T 型微通道内离散相的形成过程,研究微通道内压强和流场的变化特点。 1控制方程 连续性方程和动量方程为: 塄· v 軆=0坠v 軆坠t +(v 軆·塄)v 軆=塄·[-p ρI+μρ(塄v 軆+(塄v 軆)T ]+1ρ F 軋σ+g 軆軋軋軋軋軋軋軋軋軋軋軋 , 其中v 軆是速度向量,p 是压强,ρ是密度,μ是动力粘性系数,F 軋σ是表面张力,σ是表面张力系数。由相场理论知,两流体间的相互作用可用自由能量密度f mix (准,塄准)=1λ 塄准2+f 0(准 )来表示,式中的第一项1λ塄准2 是两相流体界面内的能量密度,第二项f 0(准 )=λ4∈ 2(准2-1)2 是各个流体的块能量密度,λ是混合能量密度的参数,∈表示两流体界面的厚度,准是相场变量,微通道内离散相和连续 相对应的准值分别是-1和1, 准在-1和1之间变化对应的区域就是两相界面,自由能量密度反映了两相流体间的相互作用。对自由能量密度在计算区域内积分,得到自由能F ,即F=乙v f mix dv ,F 关于相场变量的变化率是化学势G , 即G=坠F 坠准 ,由自由能的定义可得到,G=f ′ 0(准)-λ塄2准。Van der Waals 假定流场中自由能最小处就是平衡的两相界面,因此两相界面满足方程坠F 坠准 =0。通过计算可得到平衡 的一维两相界面的表达式是准(x )=tanh (x 2姨∈ )。平衡 两相界面单位长度的自由能理解成表面张力系数[6],即σ= λ +∞ -∞乙 1(d 准)2 +f 0(准)dx ,结合前面的定义和公式,得到表面张力系数、两相界面厚度和混合能量密度的关系式 σ=22姨3λ∈ 。 表面张力可用化学势表示:F σ 姨=G 塄准。上面方程组结合Cahn-Hilliard 对流方程坠准坠t +v 軆·塄准=塄·(γ塄G )就是计 算微通道内两相流动的控制方程。 2T 型微通道内离散相的形成研究的物理模型是T 型微通道,通道宽度D=111μm ,离散相通道和主通道垂直,两通道长度分别是3D 和45D ,离散相和连续相分别从垂直方向和水平方向同时注入通道,在一定条件下形成间距固定的离散相。微通道内可忽略重力作用,为简化计算,设置两相流体密度相同,表面张 T 型微通道内两相流动数值模拟和流场分析 Numerical Simulation of Two-phase Flow and Flow Field Analysis in a T-junction Micro-channel 王琳琳①②WANG Lin-lin ;胡洪萍①HU Hong-ping (①西安文理学院,西安710065;②西安交通大学,西安710049) (①Xi'an University o f Arts and Science ,Xi'an 710065,China ;②Xi'an Jiaotong University ,Xi'an 710049,China ) 摘要:借助相场方法数值模拟T 型微通道内两相流动,通过改变毛细数大小,得到三种形成机理下的离散相。随着毛细数增大, 离散相形成过程对微通道内压强和速度的影响减弱。 Abstract:The two-phase flow was simulated in a T-junction micro-channel by using the phase field method,and three type droplets were obtained with different capillary number.We found that the influence of droplet formation on pressure and velocity became weak as the capillary number increases. 关键词:相场方法;数值模拟;微通道;毛细数Key words:phase field method ;numerical simulation ;micro-channel ;capillary number 中图分类号:TQ021.1文献标识码:A 文章编号:1006-4311(2012)31-0180-02 ·180·

fluent油水两相流动数值模拟

Fluent油水两相流弯管流动模拟 一、实例概述 选取某输油管道工程管径600mm的90°水平弯管道,弯径比为3,并在弯管前后各取5m直管段进行建模,其几何模型如图所示。为精确比较流体流经弯管过程中的流场变化,截取了图所示的5个截面进行辅助分析。弯管进出口的压差为800Pa,油流含水率为20%。 二、模型建立 1.启动GAMBIT,选择圆面生成面板的Plane为ZX,输入半径Radius为0.3,生成圆面, 如图所示。

2.选择圆面,保持Move被选中,在Global下的x栏输入1.8,完成该面的移动操作。 3.选取面,Angle栏输入-90,Axis选择为(0,0,0)→(0,0,1),生成弯管主体,如图所 示。

4.在Create Real Cylinder面板的Height栏输入5,在Radius1栏输入0.3,选择Axis Location 为Positive X,生成沿x方向的5m直管段,如图所示。 5.同方法,改变Axis Location为Positive Y生成沿y方向的5m直管段,如图所示。

6.将直管段移动至正确位置,执行Volume面板中的Move/Copy命令,选中沿y轴的直管 段,在x栏输入1.8,即向x轴正向平移1.8。然后选中沿x轴的直管段,在x栏输入-5,在y栏输入-1.8,最后的模型如图所示。 7.将3个体合并成一个,弹出Unite Real Volumes面板,选中生成的3个体,视图窗口 如图所示。

三、网格划分 1.打开Create Boundary Layer面板,在Edges黄色输入栏中选取线3。选中1:1的边界 层生成方式,并设置第一个点距壁面距离为0.001m,递增比例因子为1.2,边界层为4层。绘制完边界层网格,如图所示。 2.打开Mesh Faces面板,运用Quad单元与Pave方法对该圆面进行划分,在Interval size 栏输入0.05,生成的面网格如图所示。

Fluent多相流模型选择及设定

1.多相流动模式 我们可以根据下面的原则对多相流分成四类: ?气-液或者液-液两相流: o 气泡流动:连续流体中的气泡或者液泡。 o 液滴流动:连续气体中的离散流体液滴。 o 活塞流动: 在连续流体中的大的气泡 o 分层自由面流动:由明显的分界面隔开的非混合流体流动。 ?气-固两相流: o 充满粒子的流动:连续气体流动中有离散的固体粒子。 o 气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。 o 流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。从床底不断充入的气体使得颗粒得以悬浮。改变气体的流量,就会有气泡不断 的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。 ?液-固两相流 o 泥浆流:流体中的颗粒输运。液-固两相流的基本特征不同于液体中固体颗粒的流动。在泥浆流中,Stokes 数通常小于1。当Stokes数大于1 时,流动成为流化(fluidization)了的液-固流动。 o 水力运输: 在连续流体中密布着固体颗粒 o 沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤 积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里 的粒子仍然在沉降。在澄清层和沉降层中间,是一个清晰可辨的交界面。 ?三相流 (上面各种情况的组合) 各流动模式对应的例子如下: ?气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷 ?液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗?活塞流例子:管道或容器内有大尺度气泡的流动 ?分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝 ?粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动 ?风力输运例子:水泥、谷粒和金属粉末的输运 ?流化床例子:流化床反应器,循环流化床 ?泥浆流例子: 泥浆输运,矿物处理 ?水力输运例子:矿物处理,生物医学及物理化学中的流体系统 ?沉降例子:矿物处理 2. 多相流模型 FLUENT中描述两相流的两种方法:欧拉一欧拉法和欧拉一拉格朗日法,后面

质量守恒的LBM多相流模型对液滴飞溅现象的数值模拟

目录 摘要...................................................................................................................................... I Abstract................................................................................................................................. II 目录................................................................................................................................... I II 第1章绪论 (1) 1.1 选题背景及意义 (1) 1.2格子Boltzmann方法的发展及应用 (3) 1.2.1格子Boltzmann方法的研究历史 (4) 1.2.2 格子Boltzmann方法的应用 (5) 1.3 本文主要内容与结构安排 (7) 第2章格子Boltzmann方法的基本原理和模型 (8) 2.1格子Boltzmann方法 (8) 2.2 边界处理 (11) 2.2.1 启发式格式 (11) 2.2.2 动力学格式 (13) 2.2.3 外推格式 (13) 2.3 多相流格子Boltzmann方法 (15) 2.3.1着色模型 (15) 2.3.2 伪势模型 (17) 2.3.3 动理学理论模型 (19) 2.3.4 自由能模型 (20) 2.4 本章小结 (23) 第3章质量守恒的多相流LBM模型 (24) 3.1 改进的Z-S-C模型 (24) 3.1.1多相流LBM方程 (24) 3.1.2 宏观量的计算 (26) 3.2 质量修正项 (26) 3.3 单位转换 (29) 3.4 应用LBM计算的基本流程 (31)

自吸泵气液两相流数值模拟分析

2009年9月 农业机械学报 第40卷第9期 自吸泵气液两相流数值模拟分析3 刘建瑞 苏起钦 (江苏大学流体机械工程技术研究中心,镇江212013) 【摘要】 采用Mixture 多相流模型、Realizable 湍流模型与SIMPL EC 算法,应用CFD 软件Fluent 对内混式自吸泵自吸过程的气液两相流进行了数值模拟。通过分析不同含气率条件下流场的压力分布、速度分布、气相分布,探讨了气液两相介质在泵内的运动情况,一定程度上揭示了内混式自吸泵自吸过程的内部流场变化规律,为自吸泵的设计提供更多的参考依据。 关键词:自吸泵 气液两相流 数值模拟 自吸性能中图分类号:TH317 文献标识码:A Numerical Simulation on G as 2liquid Two 2phase Flow in Self 2priming Pump Liu Jianrui Su Qiqin (Technology and Research Center of Fluid M achinery Engineering ,Jiangsu U niversity ,Zhenjiang 212013,China ) Abstract 32D simulation was performed for the gas 2liquid two 2phase turbulent flow in self 2priming pump by using Fluent software with Mixture model ,SIMPL EC algorithm and Realizable turbulence model.The gas 2liquid two 2phase flow in self 2priming pump was investigated in the pressure in the pump ,the velocity in the pump ,the distribution of gas and liquid phase in the pump.To some extent ,the results reveal the self 2suction process of the two 2phase flow in self 2priming pump ,and provide references for self 2priming pump design. K ey w ords Self 2priming pump ,G as 2liquid two 2phase flow ,Numerical simulation ,Self 2priming capability 收稿日期:2008210229 修回日期:20092022193国家“863”高技术研究发展计划资助项目(2006AA100211)和江苏省科技支撑计划项目(BE2008381)作者简介:刘建瑞,教授,博士生导师,主要从事流体机械及工程研究,E 2mail :ljrwjj @https://www.360docs.net/doc/4e12348663.html, 引言 自吸离心泵自20世纪60年代开始研究以来发 展迅速,产品已成系列。然而目前自吸泵的理论还不完善。以往对自吸性能的研究大多采用实验方法,但由于自吸泵自吸过程是气液两相流输送过程,其内部流场较为复杂,而且影响自吸泵自吸性能的因素较多。采用实验方法势必要耗费大量的人力、物力,而且也难以为自吸泵的设计提供准确而充分的理论依据,因此需要对自吸泵自吸过程的内部流场进行深入研究[1]。近年来,随着计算流体力学和相应计算软件的发展,对自吸泵的三维数值模拟已成为可能[2]。本文借助Fluent6.2软件平台提供的Mixture 多相流模型对内混式自吸泵自吸过程的内 部流场进行三维数值模拟。分析泵进口不同含气率条件下的模拟结果,初步揭示内混式自吸泵自吸过程中气液两相流速度场分布、压力场分布、含气率分布规律,以期为自吸泵的优化设计提供更充分的理论依据。 1 数学模型的建立 数值模拟所选内混式自吸泵的结构,如图1所示。111 基本假设 (1)假定整个流场相对运动定常,绝对运动有势,且液相为不可压缩流体、气相为不可压缩理想气体。 (2)流场中气泡的直径较小,可以忽略气泡对流

如何在fluent中设置多相流

3 设置一般的多相流问题(Setting Up a General Multiphase Problem) 设置和求解一般多相流问题的步骤的要点如下,各个子部分详细的讲述在随后的章节中。记住这里给出的仅是与一般多相流计算相关的步骤。有关你使用的其它模型和相关的多相流模型的输入的详细信息,将在这些模型中合适的部分给出。 1)选中你想要使用的多相流模型(VOF, mixture, or Eulerian)并指定相数。 Define Models Multiphase... 2)从材料库中复制描述每相的材料。 Define Materials... 如果你使用的材料在库中没有,应创建一种新材料。 !!如果你的模型中含有微粒(granular)相,你必须在fluid materials category中为它创建新材料(not the solid materials category.) 3)定义相,指定相间的相互作用(interaction)(例如,使用欧拉模型时的drag functions) Define Phases... 4)(仅对欧拉模型)如果流动是紊流,定义多相紊流模型。 Define Models Viscous... 5)如果体积力存在,turn on gravity and specify the gravitational acceleration. Define Operating Conditions... 6)指定边界条件,包括第二相体积份额在流动边界和壁面上的接触角。 Define Boundary Conditions... 7)设置模拟具体的解参数 Solve Controls Solution... 8)初始化解和为第二相设定初始体积份额。 Solve Initialize Patch... 9)计算求解和检查结果 *欧拉多相流模拟的附加指南(Additional Guidelines for Eulerian Multiphase Simulations)一旦你决定了欧拉多相流模型适合你的问题,你应当考虑求解你的多相流问题的需求计算能力。要求的计算能力很强的依赖于所求解的输运方程的个数和耦合程度。对欧拉多相流模型,有大数量的高度耦合的输运方程,计算的耗费将很高,在设置你的问题前,尽可能减少问题的statement到最简化的可能形式。 在你开始第一次求解尝试,取而代之尽力去求解多相流动的所有的复杂方面,你可以以简单近似地开始并且知道问题定义的最终形式。简化多相流问题的一些建议列举如下: 1.使用六面体或四边形网格(而不用四面体或三角形网格)。 2.减少相的数目。 你会发现即使简单的近似也会给你的问题提供有用的信息。 3.2选用多相流模型并指定相数(Enabling the Multiphase Model and Specifying the Number of Phases) 为了选VOF, mixture, Eulerian多相流模型,在Multiphase Model panel下选Volume of Fluid, Mixture, or Eulerian as the Model。 Define Models Multiphase... 如果你选的欧拉模型,输入如下: ?number of phases:为了给多相流计算指定相数,在Number of Phases下输入合适的值。你最多可以指定20相。 ?(optional) cavitation effects:包含气穴影响(Including Cavitation Effects) 对混合的欧拉模型计算,包含气穴影响是可能的。为了选气穴模型,在Multiphase Model panel中Interphase

在fluent中设置多相流

如何在fluent中设置多相流

————————————————————————————————作者:————————————————————————————————日期:

3 设置一般的多相流问题(Setting Up a General Multiphase Problem) 3.1使用一般多相流模型的步骤(Steps for Using the General Multiphase Models) 设置和求解一般多相流问题的步骤的要点如下,各个子部分详细的讲述在随后的章节中。记住这里给出的仅是与一般多相流计算相关的步骤。有关你使用的其它模型和相关的多相流模型的输入的详细信息,将在这些模型中合适的部分给出。 1)选中你想要使用的多相流模型(VOF, mixture, or Eulerian)并指定相数。 Define Models Multiphase... 2)从材料库中复制描述每相的材料。 Define Materials... 如果你使用的材料在库中没有,应创建一种新材料。 !!如果你的模型中含有微粒(granular)相,你必须在fluid materials category中为它创建新材料(not the solid materials category.) 3)定义相,指定相间的相互作用(interaction)(例如,使用欧拉模型时的drag functions) Define Phases... 4)(仅对欧拉模型)如果流动是紊流,定义多相紊流模型。 Define Models Viscous... 5)如果体积力存在,turn on gravity and specify the gravitational acceleration. Define Operating Conditions... 6)指定边界条件,包括第二相体积份额在流动边界和壁面上的接触角。 Define Boundary Conditions... 7)设置模拟具体的解参数 Solve Controls Solution... 8)初始化解和为第二相设定初始体积份额。 Solve Initialize Patch... 9)计算求解和检查结果 *欧拉多相流模拟的附加指南(Additional Guidelines for Eulerian Multiphase Simulations)一旦你决定了欧拉多相流模型适合你的问题,你应当考虑求解你的多相流问题的需求计算能力。要求的计算能力很强的依赖于所求解的输运方程的个数和耦合程度。对欧拉多相流模型,有大数量的高度耦合的输运方程,计算的耗费将很高,在设置你的问题前,尽可能减少问题的statement到最简化的可能形式。 在你开始第一次求解尝试,取而代之尽力去求解多相流动的所有的复杂方面,你可以以简单近似地开始并且知道问题定义的最终形式。简化多相流问题的一些建议列举如下: 1.使用六面体或四边形网格(而不用四面体或三角形网格)。 2.减少相的数目。 你会发现即使简单的近似也会给你的问题提供有用的信息。 3.2选用多相流模型并指定相数(Enabling the Multiphase Model and Specifying the Number of Phases) 为了选VOF, mixture, Eulerian多相流模型,在Multiphase Model panel下选Volume of Fluid, Mixture, or Eulerian as the Model。 Define Models Multiphase... 如果你选的欧拉模型,输入如下: ?number of phases:为了给多相流计算指定相数,在Number of Phases下输入合适的值。你最多可以指定20相。?(optional) cavitation effects:包含气穴影响(Including Cavitation Effects) 对混合的欧拉模型计算,包含气穴影响是可能的。为了选气穴模型,在Multiphase Model panel中Interphase Mass Transfer下打开Cavitation。 由于气穴影响,接下来你应指定在使用传质计算时的两个参数。这些参数的指定应当于调查下的流动特征参数

相关文档
最新文档