沪科版八年级数学下册第18章 勾股定理单元测试题
沪科版八年级下《第18章勾股定理》单元检测试卷(有答案)(数学)

第18章勾股定理一、选择题1.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是().A. 1、2、3B. 2、3、4 C. 3、4、5 D. 4、5、62.一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()A. 斜边长为25B. 三角形周长为25 C. 斜边长为5 D. 三角形面积为203.如图,已知O为圆锥的顶点,MN为圆锥底面的直径,一只蜗牛从M点出发,绕圆锥侧面爬行到N点时,所爬过的最短路线的痕迹(虚线)在侧面展开图中的位置是()A.B.C.D.4.如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴在A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A. 9mB. 7 mC. 5mD. 3m5.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD= ,则BC的长为()A. ﹣1 B. +1C. ﹣1 D. +16.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B 在围成的正方体中的距离是()A. 0B.1 C.D.7.适合下列条件的△ABC中,直角三角形的个数为()①a=3,b=4,c=5;②a=6,∠A=45°;③a=2,b=2,c=2 ;④∠A=38°,∠B=52°.A. 1个 B. 2个 C. 3个 D. 4个8.如图字母B所代表的正方形的面积是()A. 12B. 13 C. 144D. 1949.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A. 24cm2B. 36cm2C. 48cm2D. 60cm210.如图,长方体的长为15宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.20B.25C.30D.3211.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A 处向B处爬行,所走最短路程是(◆)A. 40cm B. cmC. 20cm D. cm二、填空题12.如图,有一圆柱体,它的高为8cm,底面周长为12cm.在圆柱的下底面A点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是________ cm.13.请写出两组勾股数:________、________.14.如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块,一只蚂蚁要从顶点A出发,沿长方体的表面爬到和A相对的顶点B处吃食物,那么它需要爬行的最短路线的长是________.15. 北京召开的国际数学家大会会徽取材于我国古代数学家赵爽弦图它是由四全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,下列说法:①a2+b2=13;②b2=1;③a2﹣b2=12;④ab=6.其中正确结论序号是________16.已知甲、乙两人在同一地点出发,甲往东走4km,乙往南走了3km,这时甲、乙两人相距________ km.17.一根旗杆在离底部4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为________18.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为________ .19.学校有一块长方形的花圃如右图所示,有少数的同学为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步(假设1米=2步),却踩伤了花草,所谓“花草无辜,踩之何忍”!20.如图,长为12cm的弹性皮筋直放置在x轴上,固定两端A和B,然后把中点C向上拉升8cm至D点,则弹性皮筋被拉长了________.21. 在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是25,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为________三、解答题22.如图所示,有一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,则这块地的面积.23.如图,四边形ABCD中,∠B=90°,AB=6,BC=8,CD=24,AD=26,求四边形ABCD的面积.24.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形的面积.25.我们运用图(Ⅰ)中大正方形的面积可表示为(a+b)2,也可表示为c3+4(ab),即(a+b)2=c2+4(ab)由此推导出一个重要的结论a2+b2=c2,这个重要的结论就是著名的“勾股定理”.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.(1)请你用图(Ⅱ)(2002年国际数学家大会会标)的面积表达式验证勾股定理(其中四个直角三角形的较大的直角边长都为a,较小的直角边长都为b,斜边长都为c).(2)请你用(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证:(x+2y)2=x2+4xy+4y2.参考答案一、选择题C CD D D C C C A B C二、填空题12. 1013. 3、4、5;6、8、1014.15. ①④16. 5km17. 12米18. 42或3219. 420. 8cm21. 49三、解答题22. 解:如图,连接AC.在△ACD中,∵AD=4米,CD=3米,∠ADC=90°,∴AC=5米,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积= ×5×12﹣×3×4=24(平方米).23. 解:连结AC,在△ABC中,∵∠B=90°,AB=6,BC=8,∴AC= =10,S△ABC= AB•BC= ×6×8=24,在△ACD中,∵CD=24,AD=26,AC=10,∴CD2+AC2=AD2,∴△ACD是直角三角形,∴S△ACD= AC•CD= ×10×24=120.∴四边形ABCD的面积=S△ABC+S△ACD=24+120=144.24. 解:如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则有CD=14﹣x,由勾股定理得:AD2=AB2﹣BD2=152﹣x2, AD2=AC2﹣CD2=132﹣(14﹣x)2,∴152﹣x2=132﹣(14﹣x)2,解之得:x=9,∴AD=12,∴S△ABC= BC•AD= ×14×12=8425. (1)解:S阴影=4×ab,S阴影=c2﹣(a﹣b)2,∴4×ab=c2﹣(a﹣b)2,即2ab=c2﹣a2+2ab﹣b2,则a2+b2=c2;(2)解:如图所示,大正方形的面积为x2+4y2+4xy,也可以为(x+2y)2,则(x+2y)2=x2+4xy+4y2.。
沪科版数学八年级下册第18章勾股定理测试卷带答案

如图,已知AB=21m,CD=15m,CE=1m,
∵∠A=∠ADC=∠AEC=90°,
∴四边形ADCE是矩形,
∴AD=CE=1.
在Rt△BCD中,∵∠CDB=90°,
CD=15,BD=AB-AD=21-1=20,
∴BC= = =25m,
即目测点到杆顶的距离为25m.故选B.
【点睛】
本题考查了解直角三角形的应用,勾股定理,理解题意正确画出图形是解题的关键.
故选B.
5.A
【解析】
解:图(1)中,AB=5m,BC=3m,由勾股定理得AC=4m.∵梯子下滑了1m,
∴AE=1m,∴EC=3m,
图(2)中,EC=3m,ED=5m,由勾股定理得CD=4m,所以梯子向外端下滑了1m.故选A.
点睛:本题考查的是勾股定理的应用,要求熟练掌握.
6.B
【解析】
因为角的度数和它的两边的长短无关,所以得到的新三角形应该是直角三角形,故选B.
3.B
【解析】
试题解析:已知三角形的三边分别是BC=15,AB=20,AC=25,BD是AC上的高,
∵BC=15,AB=20,AC=25,
∴AC2=AB2+BC2,
∴三角形ABC为直角三角形,
∵BD是AC上的高,
∴ BD•AC= AB•BC,
∴BD=12.
故选B.
4.B
【解析】
解:A.因为∠C﹣∠B=∠A,∠C+∠B+∠A=180°,所以2∠C=180°,即∠C=90°.故选项正确;
3.一个三角形的三边长为15,20,25,则此三角形最大边上的高为()
A.10B.12C.24D.48
4.△ABC中,∠A,∠B,∠C的对边分别为a、b、c,下列说法中错误的()
沪科版八年级数学下册《第18章勾股定理》单元检测卷(附带答案)

沪科版八年级数学下册《第18章勾股定理》单元检测卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________一、单选题(本大题共12小题,每小题3分,共36分)1.如图,在四边形ABCD中∠ABC=90°,AB2BC7DC=4,AD=5,则四边形ABCD的面积是()A.614B.16142C.1214+D.122.若3、4、a为勾股数,则a的值为()A7B.5C.5或7D.573.一云梯AB长25米,如图那样斜靠在一面墙上,云梯底端离墙7米,如果云梯的顶端下滑了4米,那么它的底端在水平方向滑动BB'的长是()A.10米B.8米C.6米D.4米4.已知,如图长方形ABCD中3AB=,9AD=将此长方形折叠,使点B与点D重合,折痕为EF,则ABE 的面积为()A .3B .4C .6D .125.在3×3的正方形方格中∠1和∠2的位置和大小分别如图所示,则∠1+∠2=( )A .30°B .45°C .60°D .75°6.如图,在ABC 中3ABC A ∠=∠,CD 平分ACB ∠且BD CD ⊥,BC=10,DC=8,则AC =( )A .18B .20C .22D .257.在正方形网格中网格线的交点称为格点,如图是 3×3 的正方形网格,已知 A ,B 是两格点,C 是不同于点A 和B 的格点,下列说法正确的是( ).A .ΔABC 是直角三角形,这样的点C 有4个B .ΔABC 是等腰三角形,这样的点C 有4个C .ΔABC 是等腰直角三角形,这样的点C 有6个D .ΔABC 是等腰直角三角形,这样的点C 有2个8.如图,在ABC 中3,4,90AC BC C ==∠=︒,若P 是AB 上的一个动点,则AP BP CP ++的最小值是( )A .5.5B .6.4C .7.4D .89.如图,在ABC 中1012AB AC BC ===,,AD 是BC 边上的高,若P ,Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是( )A .4.8B .6C .9.6D .1210.如图,有一块直角三角形纸片,两直角边5AC cm =,12BC cm =现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .3cmB .103cmC .5cmD .8cm11.如图,如果半圆的直径恰为直角三角形的一条直角边,那么半圆的面积为( )2cm .A .4πB .6πC .12πD .24π12.∠ABC 中如果三边满足关系2BC =2AB +2AC ,则∠ABC 的直角是( )A .∠ CB .∠AC .∠BD .不能确定二、填空题(本大题共8小题,每小题3分,共24分)13.小聪准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竹竿顶和岸边的水面刚好相齐,则河水的深度为 m .14.如图,数轴上点A 、B 对应的数分别是1,2,过点B 作PQ AB ⊥,以点B 为圆心,AB 长为半径作圆弧,交PQ 于点C ,以原点A 为圆心,AC 长为半径画弧,交数轴于点M ,当点M 在点B 的右侧时,点M 对应的数是 .15.如图,在ABC 中90C ∠=︒,AD 平分BAC ∠,AB=15,9AC =则点D 到AB 的距离是 .16.如图,以直角三角形各边向外作正方形,其中两个正方形的面积分别为225和144,则正方形A 的边长为 .17.如图,在等边ABC 中6AB BD AC =⊥,于点D ,点E F 、分别是BC DC 、上的动点,沿EF 所在直线折叠CEF △,使点C 落在BD 上的点C '处,若BEC '△是直角三角形,则DC '的值为 .18.过线段AB 的一个端点B 作BD AB ⊥,使得12BD AB =,连接DA ,在DA 上截取DE DB =,在AB 上截取AC AE =,AB=2,求AC BC 的值 .19.已知:如图,在四边形ABCD 中∠DAB=90°,AD∠BC ,AD=1,AB=3,将∠ABD 沿直线BD 翻折,点A 恰好落在CD 边上点A '处,则BC 的长20.如图1,点P 从∠ABC 的顶点A 出发,沿A ﹣B ﹣C 匀速运动,到点C 停止运动.点P 运动时,线段AP 的长度y 与运动时间x 的函数关系如图2所示,其中D 为曲线部分的最低点,则∠ABC 的面积是 .三、解答题(本大题共5小题,每小题8分,共40分)21.如图,在ABC 中AD∠BC ,垂足为D ,∠B=60°,∠C=45°(1)求∠BAC 的度数;(2)若BD=2,求CD 的长.22.如图,在梯形ABCD 中,90,8AD BC ABC AB BC ∠=︒==∥,点E 在边AB 上DE CE ⊥,DE 的延长线与CB 的延长线相交于点F .(1)求证:DF CE =;(2)当点E 为AB 中点时,求CD 的长;(3)设,CE x AD y ==,试用x 的代数式表示y .23.如图,在∠ABC 中已知45B ∠=︒,和105C ∠=︒,20AC =求线段AB 的长.24.如图,∠ABC中∠ABC=90°,AB=6,BC=8,AD平分∠BAC,交BC于点D.动点Q从点B出发,按BC—CA的折线路径,以每秒1个单位长度的速度运动,设运动时间为t秒.(1)当点Q在AC边上运动时,线段AQ长为(用含t的代数式表示)(2)当点Q在AC边上运动时,线段BQ长度不可能是.(填序号即可)∠7.2∠5.3∠4.8∠4.5(3)求∠ADC的面积.(4)当∠ABQ为轴对称图形时,请直接写出t的值.25.定义:若一个三角形存在两边平方和等于第三边平方的3倍,则称此三角形为“平方倍三角形”.(1)若一个三角形的三边长分别是52,这个三角形是否为平方倍三角形?请你作出判断并说明理由;(2)若一个直角三角形是平方倍三角形,直角边长为a,b,斜边为c,求a:b:c的值;(3)如图,ABC中BC=2,CD为ABC的中线,且CD=1AB.若ACD是平方倍三角形,求ABC的面2积.参考答案:1.B2.B3.B4.C5.B6.C7.C8.C9.C10.B11.B12.B13.21421/1215.9216.917.633-31851+19.5.20.4821.(1)75°;(2)322.(1)11(2)10 (3)2216488y x x =--23.1031024.(1)18-t (2)∠(3)15(4)6或13或12或54525.(1)这个三角形是“平方倍三角形”;(2)::2a b c =25或2。
沪科版八年级数学下学期第18章勾股定理单元测试卷 (含答案)

沪科版八年级数学下册第18章勾股定理单元检测卷(满分150分,考试时间120分钟)一、选择题(本大题共6题,每题4分,满分24分)1.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要( )A.450a元B.225a元C.150a元D.300a元2.如图,Rt△ABC中,∠C=90°,AC=12,BC=5.分别以AB、AC、BC为边在AB的同侧作正方形ABDE、ACFG、BCIH,四块阴影部分的面积分别为S1、S2、S3、S4.则S1+S2+S3+S4等于()A.90B.60C.169D.1443. 已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.32cm D.122cmcm C.62cm B.424.如图,Rt△ABC中,∠C=90°,CD⊥AB于点D,AB=13,CD=6,则(AC+BC)2等于( )A.25B.325C.2197D.4055. 已知三角形的三边长为a b c 、、,由下列条件能构成直角三角形的是( )A.()()2222221,4,1a m b m c m =-==+B.()()222221,4,1a m b m c m =-==+C.()()222221,2,1a m b m c m =-==+D.()()2222221,2,1a m b m c m =-==+6. 勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( )A .90 B . 100 C . 110 D . 121B . 二、填空题(本大题共12 题,每题4分,满分48分)7.如图,B ,C 是河岸边两点,A 是对岸岸边一点,测得∠ABC =45°,∠ACB =45°,BC =60米,则点A 到岸边BC 的距离是______米.8.在直角三角形中,一条直角边为11cm ,另两边是两个连续自然数,则此直角三角形的周长为______.9.如图,圆柱形容器中,高为120cm ,底面周长为100cm ,在容器内壁离容器底部40cm 的点B 处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm 与蚊子相对的点A 处,则壁虎捕捉蚊子的最短距离为__________cm .(容器厚度忽略不计)10.如图,平面上A、B两点处有甲、乙两只蚂蚁,它们都发现C处有食物,已知点C在A的东南方向,在B的西南方向.甲、乙两只蚂蚁同时从A、B两地出发爬向C处,速度都是30cm/min.结果甲蚂蚁用了2 min,乙蚂蚁2分40秒到达C处分享食物,两只蚂蚁原来所处地点相距_______cm.11. 小明要把一根长为70cm的长的木棒放到一个长、宽、高分别为50cm,40cm,30cm的木箱中,他能放进去吗?______________(填“能”或“不能”).12.如图,△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与△ABC的BC边重叠为止,此时这个三角形的斜边长为__________.13.已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,BC=_______.14.如图,E是边长为4cm的正方形ABCD的边AB上一点,且AE=1cm,P为对角线BD上的任意一点,则AP+EP的最小值是____________cm.15.如图,长方体的底面边长分别为1cm 和2cm,高为4cm,点P在边BC上,且BP=14 BC.如果用一根细线从点A开始经过3个侧面缠绕一圈到达点P,那么所用细线最短需要_________cm.16.小明把一根70cm长的木棒放到一个长宽高分别为30cm,40cm,50cm的木箱中,他能放进去吗?答:__________(选填“能”或“不能”).17. 已知长方形OABC,点A、C的坐标分别为OA=10,OC=4,点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,CP的长为________.18. 如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,∠BAD=________.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)甲乙两船从位于东西走向的海岸线上的港口A同时出发,甲以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,2小时后,甲船到C岛,乙船到达B岛,B、C两岛相距100海里,判断乙船所走方向,说明理由.20.(本题满分10分)如图,△ABC中,∠A=90°,AC=20,AB=10,延长AB到D,使CD+DB=AC+AB,求BD 的长.21.(本题满分10分)如图,四边形ABCD是边长为9的正方形纸片,B'为CD边上的点,CB'=3.将纸片沿某条直线折叠,使点B落在点B'处,点A的对应点为A',折痕分别与AD,BC边交于点M,N.求BN的长.22. (本题满分10分)如图所示,已知D、E、F分别是△ABC中BC、AB、AC边上的点,且AE=AF,BE=BD,CF=CD,AB=4,AC=3,32BDCD=,求:△ABC的面积.23.(本小题满分12分)如图等腰△ABC的底边长为8cm,腰长为5cm,一个动点P在底边上从B向C以0.25cm/s的速度移动,请你探究,当P运动几秒时,P点与顶点A的连线PA与腰垂直.24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.25.(本题满分14分)如图1,四根长度一定的木条,其中AB=6cm,CD=15cm,将这四根木条用小钉绞合在一起,构成一个四边形ABCD(在A、B、C、D四点处是可以活动的).现固定AB边不动,转动这个四边形,使它的形状改变,在转动的过程中有以下两个特殊位置.位置一:当点D在BA的延长线上时,点C在线段AD上(如图2);位置二:当点C在AB的延长线上时,∠C=90°.(1)在图2中,若设BC的长为x,请用x的代数式表示AD的长;(2)在图3中画出位置二的准确图形;(各木条长度需符合题目要求)(3)利用图2、图3求图1的四边形ABCD中,BC、AD边的长.参考答案一、选择题(本大题共6题,每题4分,满分24分)12 3 4 5 6 C C C D C D二、填空题(本大题共12 题,每题4分,满分48分)7.【答案】30;8.【答案】132cm ;【解析】由题意()222111n n +=+,解得60n =,所以周长为11+60+61=132.9.【答案】130;10.【答案】100;【解析】依题知AC =60cm ,BC =80cm ,∴ AB2=602+802=1002,AB=100cm . 11.【答案】能;【解析】可设放入长方体盒子中的最大长度是xcm ,根据题意,得x2=502+402+302=5000, 702=4900,因为4900<5000,所以能放进去.12.【答案】81; 13.【答案】14或4;【解析】当△ABC 是锐角三角形时,BC =9+5=14;当△ABC 是钝角三角形时,BC =9-5=4. 14.【答案】5【解析】作E 点关于直线BD 的对称点E ′,连接AE ′,则线段AE ′的长即为AP+EP 的最小值5.15.【答案】5【解析】∵长方体的底面边长分别为1cm 和2cm ,高为4cm ,点P 在边BC 上,且BP=14BC ,∴AC=4cm ,PC=34BC=3cm ,根据两点之间线段最短,AP=5. 16.【答案】能;【解析】解:可设放入长方体盒子中的最大长度是xcm ,根据题意,得x2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.17.【答案】3,2, 8;【解析】以O 为等腰三角形的顶点,作等腰三角形1OPD ,因为1OP =5,114PH OC ==,所以由勾股定理求得13OH =,所以13CP =,同理,以D 为等腰三角形的顶点,可求出232,8CP CP ==.如图所示.18.【答案】90°;【解析】延长AD 到M ,使DM =AD ,易得△ABD ≌△MCD .∴ CM =AB =5 AM =2AD =12 在△ACM 中22251213+= 即222CM AM AC +=∴∠AMC =∠BAD=90°三、解答题:(本大题共7题,满分78分)19.【解析】解:由题意得:甲2小时的路程=30×2=60海里,乙2小时的路程=40×2=80海里, ∵602+802=1002,∴∠BAC=90°,∵C 岛在A 北偏东35°方向,∴B 岛在A 北偏西55°方向.∴乙船所走方向是北偏西55°方向.20.【解析】解:设BD =x ,则CD =30-x .在Rt △ACD 中,根据勾股定理列出()222(30)1020x x -=++, 解得x =5.所以BD =5.21. 【解析】解:点A 与点A ',点B 与点B '分别关于直线MN 对称, ∴AM A M '=,BN B N '=.设BN B N x '==,则9CN x =-.∵ 正方形ABCD ,∴ o 90C ∠=.∴ 222CN B C B N ''+=.∵ C B '=3,∴ 222(9)3x x -+=.解得5x =.∴ 5BN =.22.【解析】 解:∵32BD CD =,设BD =3x ,则CD =2x ,由AE =AF ,BE =BD ,CF =CD , 即AF =3-2x ,AE =4-3x , ∴ 3-2x =4-3x ,解得x =1.∴ BC =3x +2x =5 又∵ 222345+=,即222AC AB BC +=∴ △ABC 是直角三角形,∠A =90°.∴ 1143622ABC S AB AC ==⨯⨯=g △ 23.【解析】解:如图,作AD ⊥BC ,交BC 于点D ,∵BC=8cm ,∴BD=CD=21BC=4cm , ∴AD=3,分两种情况:当点P 运动t 秒后有PA ⊥AC 时,∵AP2=PD2+AD2=PC2﹣AC2,∴PD2+AD2=PC2﹣AC2,∴PD2+32=(PD+4)2﹣52∴PD=2.25,∴BP=4﹣2.25=1.75=0.25t ,∴t=7秒,当点P 运动t 秒后有PA ⊥AB 时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t ,∴t=25秒,∴点P 运动的时间为7秒或25秒.24.【解析】解:(1)过点A 作AD ⊥ON 于点D ,∵∠NOM=30°,AO=80m ,∴AD=40m ,即对学校A 的噪声影响最大时卡车P 与学校A 的距离为40米;(2)由图可知:以50m 为半径画圆,分别交ON 于B ,C 两点,AD ⊥BC ,BD=CD=21BC ,OA=80m , ∵在Rt △AOD 中,∠AOB=30°,∴AD=21OA=21×80=40m , 在Rt △ABD 中,AB=50,AD=40,由勾股定理得:m AD AB BD 3040502222=-=-=,故BC=2×30=60米,即重型运输卡车在经过BD 时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即3006018000=米/分钟, ∴重型运输卡车经过BD 时需要60÷300=0.2(分钟)=12(秒).答:卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间为12秒.25.【解析】解:(1)∵ 在四边形ABCD 转动的过程中,BC 、AD 边的长度始终保持不变,BC =x , ∴ 在图2中,AC =BC -AB =x -6,AD =AC +CD =x +9.(2)位置二的图形见图3.(3)∵ 在四边形ABCD 转动的过程中,BC 、AD 边的长度始终保持不变, ∴ 在图3中,BC =x ,AC =AB +BC =6+x ,AD =x +9.在△ACD 中,∠C =90°由勾股定理得222AC CD AD +=.∴ 222(6)15(9)x x ++=+.整理,得2212362251881x x x x +++=++.化简,得6x =180.解得 x =30.即 BC =30.∴ AD =39.。
2022年沪科版八年级数学下册第18章 勾股定理章节测评试题(含解析)

八年级数学下册第18章勾股定理章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1C.6,8,13 D.5,12,152、如图,数轴上点A所表示的数是()A B C D 13、小亮想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2m,当他把绳子的下端拉开8m 后,下端刚好接触到地面,则学校旗杆的高度为()A.10m B.12m C.15m D.18m4、如图,在Rt△ABC中,∠C=90°,AC=12,AB=13,AB边的垂直平分线分别交AB、AC于N、M两点,则△BCM的周长为()A.18 B.16 C.17 D.无法确定5、如图,在△ABC中,∠A=90°,AB=6,BC=10,EF是BC的垂直平分线,P是直线EF上的任意一点,则PA+PB的最小值是()A.6 B.8 C.10 D.126、下列条件中,能判断△ABC是直角三角形的是()A.a:b:c=3:4:4 B.a=1,b,cC.∠A:∠B:∠C=3:4:5 D.a2:b2:c2=3:4:57、下列命题中,逆命题不正确的是()A.如果关于x的一元二次方程ax2+bx+c=0(a≠0)没有实数根,那么b2﹣4ac<0B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等C.全等三角形对应角相等D.直角三角形的两条直角边的平方和等于斜边的平方8、下列命题属于假命题的是()A.3,4,5是一组勾股数B.内错角相等,两直线平行C.三角形的内角和为180°D.9的平方根是39、下列各组数中,能作为直角三角形三边长的是()A.1,2B.8,9,10 C D10、如图所示,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD,则BC的长为()A B C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、圆锥体的高为4cm,圆锥的底面半径为3cm,则该圆锥的表面积为___________.2、如图,△ABC中,∠ACB=90°,AC=4,BC=3,射线CD与边AB交于点D,点E、F分别为AD、BD中点,设点E、F到射线CD的距离分别为m、n,则m+n的最大值为________.3、禅城区某一中学现有一块空地ABCD如图所示,现计划在空地上种草皮,经测量90∠,B= ====,若每种植1平方米草皮需要300元,总共需投入______元AB BC m CD AD3m,4,13m,12m4、如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”:当AC=6,BC=8时,则阴影部分的面积为_____.5、如图,点A为等边三角形BCD外一点,连接AB、AD且AB=AD,过点A作AE∥CD分别交BC、BD 于点E、F,若3BD=5AE,EF=6,则线段AE的长 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,∠C 90°.(1)用尺规作图,保留作图痕迹,不写作法:在边BC 上求作一点D ,使得点D 到AB 的距离等于DC 的长;(2)在(1)的条件下,若AC =6,AB =10,求CD 的长.2、已知一次函数26y x =--.(1)画出函数图象.(2)不等式26x -->0的解集是_______;不等式26x --<0的解集是_______.(3)求出函数图象与坐标轴的两个交点之间的距离.3、在Rt ACB ∆中,90ACB ∠=︒,6CA CB ==,点P 是线段CB 上的一个动点(不与点B ,C 重合),过点P 作直线l CB ⊥交AB 于点Q .给出如下定义:若在AC 边上存在一点M ,使得点M 关于直线l 的对称点N 恰好在.ACB △的边上...,则称点M 是ACB △的关于直线l 的“反称点”.例如,图1中的点M 是ACB △的关于直线l 的“反称点”.(1)如图2,若1CP =,点1M ,2M ,3M ,4M 在AC 边上且11AM =,22AM =,34AM =,46AM =.在点1M ,2M ,3M ,4M 中,是ACB △的关于直线l 的“反称点”为______;(2)若点M 是ACB △的关于直线l 的“反称点”,恰好使得ACN △是等腰三角形,求AM 的长;(3)存在直线l 及点M ,使得点M 是ACB △的关于直线l 的“反称点”,直接写出线段CP 的取值范围.4、如图,在△ABC 和△DEB 中,AC ∥BE ,∠C =90°,AB =DE ,点D 为BC 的中点,12AC BC =. (1)求证:△ABC ≌△DEB .(2)连结AE ,若BC =4,直接写出AE 的长.5、如图,ABC 是边长为6cm 的等边三角形,点P ,Q 分别从顶点A ,B 同时出发,点P 沿射线AB 运动,点Q 沿折线BC CA -运动,且它们的速度都为1cm/s .当点Q 到达点A 时,点P 随之停止运动连接PQ ,PC ,设点P 的运动时间为(s)t .(1)当点Q在线段BC上运动时,BQ的长为_______(cm),BP的长为_______(cm)(用含t的式子表示);(2)当PQ与ABC的一条边垂直时,求t的值;(3)在运动过程中,当CPQ是等腰三角形时,直接写出t的值.-参考答案-一、单选题1、B【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、52+42≠62,不能构成直角三角形,故不符合题意;B、12+122,能构成直角三角形,故符合题意;C、62+82≠132,不能构成直角三角形,故不符合题意;D、122+52≠152,不能构成直角三角形,故不符合题意.故选:B.【点睛】本题考查勾股定理的逆定理的应用,正确应用勾股定理的逆定理是解题的关键.2、D【分析】先根据勾股定理计算出BC BA=BC AD的长,接着计算出OA的长,即可得到点A所表示的数.【详解】解:如图,BD=1﹣(﹣1)=2,CD=1,∴BC∴BA=BC∴AD2,∴OA=21,∴点A1.故选:D【点睛】本题主要考查了勾股定理,实数与数轴的关系,熟练掌握勾股定理,实数与数轴的关系是解题的关键.3、C【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+2)m,再利用勾股定理即可求得AB的长,即旗【详解】解:根据题意画出图形如下所示:则BC=8m,设旗杆的高AB为xm,则绳子AC的长为(x+2)m,在Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+2)2,解得x=15,故AB=15m,即旗杆的高为15m.故选:C.【点睛】此题考查了学生利用勾股定理解决实际问题的能力,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.4、C【分析】根据勾股定理求出BC的长,根据线段垂直平分线的性质得到MB=MA,根据三角形的周长的计算方法代入计算即可.解:在Rt△ABC中,∠C=90°,AC=12,AB=13,∴由勾股定理得,5BC=,∵MN是AB的垂直平分线,∴MB=MA,∴△BCM的周长=BC+CM+MB=BC+CM+MA=BC+CA=17,故选C.【点睛】本题主要考查了线段垂直平分线的性质,勾股定理,熟知线段垂直平分线的性质是解题的关键.5、B【分析】如图,由线段垂直平分线的性质可知PB=PC,则有PA+PB=PA+PC,然后可知当点A、P、C三点共线时,PA+PB取得最小值,即为AC的长.【详解】解:如图,连接PC,∵EF是BC的垂直平分线,∴PB=PC,∴PA +PB =PA +PC ,∴PA +PB 的最小值即为PA +PC 的最小值,当点A 、P 、C 三点共线时,PA +PB 取得最小值,即为AC 的长,∴在Rt △ABC 中,∠A =90°,AB =6,BC =10,由勾股定理可得:8AC ,∴PA +PB 的最小值为8;故选B .【点睛】本题主要考查垂直平分线的性质及勾股定理,熟练掌握垂直平分线的性质及勾股定理是解题的关键.6、B【分析】根据勾股定理的逆定理,以及三角形的内角等于180︒逐项判断即可.【详解】A ,设3a x =,4b x ,4=c x ,此时()()()222344x x x +≠,故ABC 不能构成直角三角形,故不符合题意;B ,2221+=,故ABC 能构成直角三角形,故符合题意 C ,::3:4:5A B C ∠∠∠=且180A B C ∠+∠+∠=︒,设3A x ∠=,4B x ∠=,5C x ∠=,则有12180x =︒,所以15x =︒,则75C ∠=︒,故ABC 不能构成直角三角形,故不符合题意;D ,设23a x =,24b x =,25c x =,则345x x x +≠,即222a b c +≠,故ABC 不能构成直角三角形,故不符合题意;故选:B【点睛】本题考查了勾股定理的逆定理,和三角形的内角和等知识,能熟记勾股定理的逆定理内容和三角形内角和等于180 是解题关键.7、C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】解:A.逆命题为:如果一元二次方程ax2+bx+c=0(a≠0)中b2﹣4ac<0,那么它没有实数根,正确,不符合题意;B.逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,不符合题意;C.逆命题为:对应角相等的两三角形全等,错误,符合题意;D.逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,不符合题意.故选:C【点睛】本题考查了原命题、逆命题,命题的真假,一元二次方程根的判别式,线段垂直平分线,全等三角形的判定与性质,勾股定理极其逆定理等知识,综合性较强,准确写出各选项的逆命题并准确判断是解题关键.8、D【分析】利用勾股数的定义、平行线的判定、三角形的内角和及平方根的定义分别判断后即可确定正确的选项.【详解】解:A、3,4,5是一组勾股数,正确,是真命题,不符合题意;B、内错角相等,两直线平行,正确,是真命题,不符合题意;C、三角形的内角和为180°,正确,是真命题,不符合题意;D、9的平方根是±3,故原命题是假命题,符合题意.故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解勾股数的定义、平行线的判定、三角形的内角和及平方根的定义,难度不大.9、A【分析】比较较小的两边的平方和是否等于较长边的平方来判定即可.【详解】解:A、222+=,能构造直角三角形,故符合题意;12B、222081,不能构造直角三角形,故不符合题意;9C、222+≠,不能构造直角三角形,故不符合题意;D、222+≠,不能构造直角三角形,故不符合题意;故选:A.【点睛】此题考查勾股定理的逆定理,三角形的两边的平方和等于第三边的平方,则此三角形为直角三角形,熟练运用这个定理是解题关键.10、B【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【详解】解:∵∠ADC =2∠B ,∠ADC =∠B +∠BAD ,∴∠B =∠DAB ,∴BD =AD ,在Rt△ADC 中,∠C =90°,∴DC,∴BC =BD +DC 故选:B .【点睛】本题考查了等角对等边,勾股定理,求得BD AD =是解题的关键.二、填空题1、224cm π【分析】先利用勾股定理求出SA 的长,再根据表面积公式进行求解即可.【详解】解:∵圆锥体的高为4cm ,圆锥的底面半径为3cm ,∴5cm SA =,∴该圆锥的表面积22=15924cm rl r πππππ+=+=,故答案为:224cm π.【点睛】本题主要考查了圆锥的表面积,勾股定理,求出母线长是解题的关键.2、2.5【分析】连接CE ,CF ,作,EM CD FN CD ⊥⊥,分别交CD 于点M 和点N ,首先根据中线的性质和三角形面积公式得出132FCE ABC S S ∆∆==,然后证明出当CD 的长度最小时,m +n 的值最大,然后根据垂线段最短和等面积法求出CD 的最小值,即可求出m +n 的最大值.【详解】解:连接CE ,CF ,作,EM CD FN CD ⊥⊥,分别交CD 于点M 和点N ,∵点E 是AD 的中点,点F 是BD 的中点,∴CE 是ACD ∆中AD 边上的中线,CF 是BCD ∆中BD 边上的中线, ∴12ACE DCE ACD S S S ∆∆∆==,12BCF DCF BCD S S S ∆∆∆==, ∴11111322222FCE DCE DCF ACD BCD ABC S S S S S S AC BC ∆∆∆∆∆∆=+=+==⨯⨯⨯=, ∴11322CD EM CD FN ++=,∴()132CD EM FN +=,即()132CD m n +=, ∴()6CD m n +=,∴当CD 的长度最小时,m +n 的值最大,∴当CD AB ⊥时,CD 的长度最小,此时m +n 的值最大,∵△ABC 中,∠ACB =90°,AC =4,BC =3,∴AB 5, ∴162CD AB ⨯⨯=,解得:125CD =, ∴将125CD =代入()6CD m n +=得: 2.5m n +=. 故答案为:2.5.【点睛】此题考查了勾股定理,中线的性质,三角形面积的应用,垂线段最短等知识,解题的关键是根据题意作出辅助线,正确分析出当CD AB ⊥时m +n 的值最大.3、10800【分析】仔细分析题目,需要求得四边形的面积才能求得结果,在直角三角形ABC 中可求得AC 的长,由AC 、AD 、DC 的长度关系可得ACD △为直角三角形,CD 为斜边;由此可知,四边形ABCD 由t R ABC 和Rt ACD △构成,即可求解.【详解】解:在t R ABC 中,∵222222=345AC AB BC +=+=,∴AC =5.在ACD △中,2213CD =,2212AD =,而22212513+=,即222AC AD CD +=,∴90DAC ∠=︒, 即:11=22BAC DAC ABCD S SS BC AB CD AC +=+四边形 =11431253622⨯⨯+⨯⨯=.所以需费用:3630010800⨯=(元).故答案为10800.【点睛】本题考查了勾股定理,逆定理的相关知识,以及割补法求图形的面积,熟练掌握勾股定理及其逆定理是解答本题的关键.4、24【分析】根据勾股定理求出AB ,分别求出三个半圆的面积和△ABC 的面积,两小半圆与直角三角形的和减去大半圆即可得出答案.【详解】解:在Rt △ACB 中∠ACB =90°,AC =6,BC =8,由勾股定理得:AB =10,阴影部分的面积2221618111068242222222S πππ⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯+⨯⨯-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故答案为:24.【点睛】本题主要考查勾股定理和圆有关的不规则图形的阴影面积.利用规则图形面积的和差关系求阴影面积是这类题型的关键.勾股定理是解决三角形中线段问题最有效的方法之一.5、9【分析】连接AC交BD于点O,可得AC是BD的垂直平分线,设BD=5x,则AE=3x,求出OF=OB-BF=52x-6,AF=AE-EF=3x-6,证明△BOE是等边三角形,得30AFE∠=︒,利用AF=2OF列出方程求出x的值,进而可得AE的长.【详解】解:如图,连接AC交BD于点O,∵3BD=5AE,∴53 BDAE=,设BD=5x,则AE=3x,∵△BCD是等边三角形,∴BC=CD=BD=5x,∠DCB=∠DBC=60°,∵AB=AD,BC=CD,∴AC是BD的垂直平分线,∴OB=OD=52x,OC平分∠BCD,∴∠DCO=12∠DCB=30°,∵AE ∥CD ,∴∠DCO =30°,∴OC ==, ∵AE ∥CD ,∴∠AEB =∠BCD =60°,∴∠AEB =∠FBE =∠BFE =60°,∴△BEF 是等边三角形,∴BE =BF =EF =6,∴OF =OB -BF =52x -6,AF =AE -EF =3x -6,∵60BFE ∠=︒∴30AFE ∠=︒∴2AF OF = ∴5362(6)2x x -=-解得x =3,∴AE =AF +EF =3x -6+6=3x =9.故答案为:9.【点睛】本题考查了垂直平分线的判定与性质,勾股定理,等边三角形的判定与性质,直角三角形的性质,解决本题的关键是得到AF =2OF 列出方程求解.三、解答题1、(1)图见详解;(2)3.【分析】(1)根据题意作∠BAC 的平分线交BC 于D ,根据角平分线的性质得到点D 满足条件;(2)根据题意作DE ⊥AB 于E ,先根据勾股定理计算出BC =8,再根据角平分线性质得到DC =DE ,通过证明Rt △ACD ≌Rt △AED 得到AE =AC =6,则EB =4,设CD =x ,则BD =8-x ,在Rt △BED 中,利用勾股定理得到x 2+42=(8-x )2,解方程求出即可.【详解】解:(1)如图,点D 即为所作;(2)作DE ⊥AB 于E ,如上图,在Rt △ABC 中,BC ,∵AD 为角平分线,∴DC =DE ,在Rt △ACD 和Rt △AED 中AD AD DC DE =⎧⎨=⎩, ∴Rt △ACD ≌Rt △AED (HL ),∴AE =AC =6,∴EB =AB -AE =10-6=4设CD =x ,则DE =x ,则BD =8-x ,在Rt△BED中,x2+42=(8-x)2,解得x=3,∴CD=3.【点睛】本题考查作图-复杂作图以及全等三角形判定和角平分线定理、勾股定理,注意掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.2、(1)见解析;(2)x<-3;x>-3;(3)BC=【分析】(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x=0时,y=-2x-6=-6,∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);当y=-2x-6=0时,解得:x=-3,∴一次函数y=-2x-6与x轴交点B的坐标为(-3,0).描点连线画出函数图象,如图所示.(2)观察图象可知:当x <-3时,一次函数y =-2x -6的图象在x 轴上方;当x >-3时,一次函数y =-2x -6的图象在x 轴下方.∴不等式-2x -6>0的解集是x <-3;不等式-2x -6<0的解集是x >-3.故答案是:x <-3,x >-3;(3)∵B (-3,0),C (0,-6),∴OB =3,OC =6,∴BC =【点睛】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x 轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.3、(1)2M 和4M ;(2)3或6;(3)03CP <≤【分析】(1)根据反称点的定义进行判断即可;(2)ACN △是等腰三角形分三种情况讨论求解即可;(3)根据“反称点的定义”判断出CP 的取值范围即可.【详解】解:(1)∵CP =1∴M 点到PQ 的距离为1∵M 、N 关于PQ 对称,∴N 点到PQ 的距离为1∴MN =2如图,1N 在ABC ∆外部,3N 在ABC ∆内部,均不符合题意,∵90ACB ∠=︒,6CA CB ==,∴ABC ∆是等腰直角三角形,∴45A B ∠=∠=︒∵222222,2,AM M N M N AC ==⊥∴2N 在AB 边上,∵46AM =,∴4M 与点C 重合,4M 与4N 关于PQ 对称,4N 在BC 上,∴点1M ,2M ,3M ,4M 中,是ACB △的关于直线l 的“反称点”为2M 和4M故答案为:2M 和4M(2)ACN △是等腰三角形分三种情况:如图,①当11AN CN =时,∵ABC ∆是等腰直角三角形∴1N 是AB 边的中点,1116322AM AC ==⨯= ②当2AC AN =时,此时2=6AN∵22M N //BC∴2290AM N ∠=︒∵45A ∠=︒∴22AM N ∆是等腰直角三角形,且222AM M N =∴2222222AM M N AN +=∴22226AM =∴2AM =③当3AC CN =时,此时,3N 与点B 重合,3M 与点C 重合,∴3AM =AC =6综上,AM 的长为3或6;(3)如图,∵M 是AC 边上的点,CB =6∴当03CP <≤时,在AC 边上至少有一个点M 关于PQ 的对称点在AB 边上,当3CP '>时,如图所示,此时AC 上的所有点到P Q ''的距离都大于3,即6MN >,M 关于P Q ''的对称点都在ABC ∆的外部,∴03CP <≤【点睛】本题主要考查了等腰直角三角形的性质,勾股定理,对称的性质等知识,正确理解反对称点的定义是解答本题的关键4、(1)见解析;(2)【分析】(1)根据平行可得∠DBE =90°,再由HL 定理证明直角三角形全等即可;(2)构造Rt AHE ,利用矩形性质和勾股定理即可求出AE 长.【详解】(1)∵AC ∥BE ,∴∠C +∠DBE =180°.∴∠DBE =180°-∠C =180°-90°=90°.∴△ABC 和△DEB 都是直角三角形.∵点D 为BC 的中点,12AC BC =,∴AC =DB . ∵AB =DE ,∴Rt △ABC ≌Rt △DEB (HL ).(2)AE =过程如下:连接AE 、过A 点作AH ⊥BE ,∵∠C =90°,∠DBE =90°.∴AC BH ∥,AH BC ∥,∴AH =BC =4, 122BH AC BC ===,∴2EH EB EH =-=,在Rt AHE 中,AE =【点睛】本题主要考查了直角三角形全等的判定和勾股定理解三角形,解题关键是构造直角三角形,利用用平行线间的距离处处相等得线段AH =BC ,从而利用勾股定理求AE .5、(1)t ;()6t -;(2)当2t =或4t =或8t =时,PQ 与ABC 的一条边垂直;(3)当3t =或9t =时,ΔΔΔΔ为等腰三角形.【分析】(1)根据点的位置及运动速度可直接得出;(2)根据题意分三种情况讨论:①当PQ CB ⊥时,90PQB ∠=︒;②当PQ AB ⊥时,90QPB ∠=︒;③当PQ AC ⊥时,90AQP ∠=︒;作出图形,分别应用直角三角形中30︒角的特殊性质求解即可得;(3)根据题意,分四种情况进行讨论:①当点Q 在BC 边上时,CQ PQ =时;②当点Q 在BC 边上时,CP CQ =时;③当点Q 在BC 边上时,CP PQ =时;④当点Q 在AC 边上时,只讨论CP PQ =情况;分别作出四种情况的图形,然后综合运用勾股定理及解一元二次方程求解即可.【详解】解:(1)点Q 从点B 出发,速度为1/cm s ,点P 从点A 出发,速度为1/cm s ,∴BQ tcm =,AP tcm =,∴()6BP t cm =-,故答案为:t ;()6t -;(2)根据题意分三种情况讨论:①如图所示:当PQ CB ⊥时,90PQB ∠=︒,∵三角形ABC 为等边三角形,∴60A ACB ABC ∠=∠=∠=︒,∴30QPB ∠=︒, ∴12QB PB =,由(1)可得:()162t t =-, 解得:2t =;②如图所示:当PQ AB ⊥时,90QPB ∠=︒,∵60ABC ∠=︒,∴30BQP ∠=︒,∴2QB PB =,由(1)可得:()26t t =-,解得:4t =;③如图所示:当PQ AC ⊥时,90AQP ∠=︒,∵60A ∠=︒,∴30APQ ∠=︒,∴2AP QA =,由(1)可得:()212t t =-,解得:8t =;综上可得:当2t =或4t =或8t =时,PQ 与ABC 的一条边垂直;(3)根据题意,分情况讨论:①当点Q 在BC 边上时,CQ PQ =时,如图所示:过点Q 作QE AB ⊥,∵60ABC ∠=︒,∴30BQE ∠=︒, ∴1122BE BQ t ==,∴QE =, 6CQ t =-,136622PE t t t =--=-,∴PQ ==∵CQ PQ =,∴()2223662t t ⎫⎛⎫-=-+⎪ ⎪⎪⎝⎭⎝⎭,解得:3t =或0t =(舍去);②当点Q 在BC 边上时,CP CQ =时,如图所示:过点P 作PF AC ⊥,∵60CAB ∠=︒,∴30APF ∠=︒, ∴1122AF AP t ==,∴PF =, 6CQ t =-,162CF t =-,∴CP ==∵CP CQ =,∴()2221662t t ⎫⎛⎫-=-+⎪ ⎪⎪⎝⎭⎝⎭, 解得: 0t =(舍去);③当点Q 在BC 边上时,CP PQ =时,如图所示:由图可得:60CQP ∠>︒,60QCP ∠<︒,CQP QCP ∠≠∠,∴这种情况不成立;④当点Q 在AC 边上时,只讨论CP PQ =情况,如图所示:过点Q 作QE AB ⊥,过点C 作CF AB ⊥,∵60CAB ∠=︒,ABC ∆为等边三角形,∴30AQE ∠=︒,3AF BF ==,∴CF =12AQ t =-, ∴162AE t =-,∴)12QE t =-, ∴136622EP t t t ⎛⎫=--=- ⎪⎝⎭,∴PQ ==∵CF =3PF t =-,∴PC =∵PC PQ =,∴()(()222233126342t t t ⎛⎫-+-=+- ⎪⎝⎭, 解得:19t =或26t =(舍去),综上可得:当3t =或9t =时,ΔΔΔΔ为等腰三角形.【点睛】题目主要考查三角形与动点问题,包括勾股定理的应用,含30︒角的直角三角形的特殊性质,等腰三角形的判定和性质,求解一元二次方程等,根据题意,作出相应图形,然后利用勾股定理求解是解题关键.。
沪科版2020-2021学年八年级下册数学 第18章 勾股定理单元测试题及答案

2020-2021学年八年级下册数学沪科新版《第18章勾股定理》单元测试题一.选择题1.在直角三角形中,两个锐角的关系是()A.互余B.互补C.相等D.以上都不对2.下列各组数为勾股数的是()A.1,2,5B.15,8,17C.9,12,13D.3.要登上12 m高的建筑物,为了安全需使梯子底端离建筑物5 m,则梯子的长度至少为()A.12m B.13m C.14m D.15m4.Rt△一直角边的长为11,另两边为自然数,则Rt△的周长为()A.121B.120C.132D.不能确定5.在y轴上,与点A(3,﹣2)的距离等于3的点有()A.1个B.2个C.4个D.0个6.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.cm B.13cm C.cm D.cm7.观察图形,可以验证()A.a2+b2=c2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)2=a2+2ab+b28.以线段AB为一边的等腰直角三角形有()A.1个B.2个C.4个D.6个9.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25B.3,4,5C.3,4,5D.4,7,8二.填空题10.一座桥横跨由西向东的一条河,桥长24m,一小船从桥南头出发,向正北方向驶去,由于水流原因,到达北岸后,发现已偏离桥北头10m,则小船实际行驶了.11.一长方体如图,在A处有一只蚂蚁,它想吃到上底面B点的食物,它沿长方体的侧面爬行的最短距离是.12.写四组勾股数组.,,,.13.(1)如图①,在Rt△A BC中,若AB=AC,AD=AE,∠BAD=40°,则∠EDC=.(2)如图②,∠ACB=90°,E、F为AB上的点,AE=AC,BC=BF,则∠ECF=.14.如图,三个直角三角形(Ⅰ,Ⅱ,Ⅲ)拼成一个直角梯形(两底分别为a、b,高为a+b),利用这个图形,小明验证了勾股定理.请你填写计算过程中留下的空格:S梯形=(上底+下底)•高=(a+b)•(a+b),即S梯形=()①S梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表示相应图形的面积)=++,即S梯形=()②由①、②,得a2+b2=c2.15.直角三角形两直角边的长为8和6,则斜边长为,斜边上的高为.16.设一个直角三角形的两条直角边为a、b,斜边为c,斜边上的高为h,那么,以c+h、a+b、h为边构成的三角形的形状是.17.若点P到x轴的距离为2,到y轴的距离为3,则点P的坐标为,它到原点的距离为.18.已知Rt△ABC的两直角边长分别为3cm,4cm,斜边长为5cm,则斜边上的高等于cm.三.解答题19.试判断以A(﹣1,﹣1)、B(5,﹣1)、C(2,2)为顶点的三角形的形状.20.如图,在Rt△ABC中,CD是斜边AB的高,求证:∠BCD=∠A.21.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,点A,D在BE的同侧,求BD的长.22.4个全等的直角三角形拼成右边图形,你能根据图形面积得勾股定理吗?23.如图,一轮船以16n mi1e/h的速度从港口A出发向东北方向航行,另一轮船以12n mi1e/h 的速度同时从港口出发向东南方向航行,那么离开港口A2h后,两船相距多远?24.葛藤是一种植物,它自己腰杆不硬,为了争夺雨露阳光,常常绕着树干盘旋而上,它还有一个绝招,就是它绕树盘升的路线,总是沿最短路线螺旋前进的.(1)如果树的周长为3m,绕一圈升高4cm,则它爬行路程是多少?(2)如果树的周长为8m,绕一圈爬行10m,则爬行一圈升高多少m?如果爬行10圈到达树顶,则树干多高?25.已知两点P1(﹣2,3),P2(4,﹣5),求P1、P2两点的距离.参考答案与试题解析一.选择题1.解:直角三角形中,两个锐角互余.故选:A.2.解:(1)12+22≠52,故选项错误;(2)152+82=172,故选项正确;(3)92+122≠132,故选项错误;(4)()2+()2=()2,但不都是正整数,故选项错误.故选:B.3.解:如图所示:∵AC=12m,BC=5m,∴在Rt△ABC中,AB==13m,故选:B.4.解:设另一直角边为x,斜边为y.根据勾股定理得:y2=x2+121,即y2﹣x2=121,(y+x)(y﹣x)=121=121×1,∵x,y为自然数,∴x+y=121,y﹣x=1,∴x=60,y=61,∴周长为:11+61+60=132.故选:C.5.解:在y轴上,与点A(3,﹣2)的距离等于3的点有(0,﹣2),即只有1个点.故选:A.6.解:如图:∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5(cm),BD=12﹣3+AE=12(cm),∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===13(cm).故选:B.7.解:梯形面积=,三个三角形面积之和=,,可得:c2=a2+b2,故选:A.8.解:以线段AB为斜边的等腰直角三角形有2个,分别位于线段AB的两侧;以AB为直角边的等腰直角三角形,以A为直角顶点的有2个,分别位于AB的两侧,同理以B为直角顶点的有2个.则以线段AB为一边的等腰直角三角形有6个.故选:D.9.解:A、∵72+242=252,∴能组成直角三角形,故本选项不符合题意;B、∵(3)2+(4)2≠(5)2,∴不能组成直角三角形,故本选项符合题意;C、∵32+42=52,∴能组成直角三角形,故本选项不符合题意;D、∵42+(7)2=(8)2,∴能组成直角三角形,故本选项不符合题意.故选:B.二.填空题10.解:小船要行驶的路程为向南行驶了24米,偏离桥北头的距离为与桥的方向垂直的方向,即AB=24米,BC=10米,在直角△ABC中,AC2=AB2+BC2,所以实际行驶的路程为AC==26(米).故答案为:26m.11.解:展开长方体的侧面(如图),连接AB在图(1)中由勾股定理,得AB==2,在图(2)中由勾股定理,得AB==10,在图(3)中由勾股定理,得AB==2∵10<2<2,∴蚂蚁爬行的最短距离10.故答案为:10.12.解:四组勾股数组可以是:3、4、5,5、12、13,7、24、25,9、40、41.故答案为:3、4、5,5、12、13,7、24、25,9、40、41(答案不唯一).13.解:(1)∵在Rt△ABC中,AB=AC,∴∠B=∠C=45°,∴∠ADC=∠B+∠BAD=45°+40°=85°,∵∠DAE=∠BAC﹣∠BAD,∴∠DAE=90°﹣40°=50°,∵AD=AE,∴∠ADE==65°,∴∠EDC=∠ADC﹣∠ADE=85°﹣65°=20°.故答案为:20°;(2)∵AE=AC,BC=BF,∴∠AEC=∠ACE=,∠BFC=∠BCF=,∵∠ACB=90°,∴∠A+∠B=90°,∴∠ECF=∠BCF+∠ACE﹣∠ACB=+﹣90°=﹣90°=135°﹣90°=45°.故答案为:45°.14.解:因为,=Ⅰ+Ⅱ+Ⅲ=ab+c2+ab=,又因为S梯形所以=,得c2=a2+b2.故答案为:a2+2ab+b2,ab,c2,ab,2ab+c2.15.解:∵直角三角形的两直角边分别为6和8,∴斜边==10,设斜边上的高为h,S=×6×8=×10×h,△则h=4.8.故答案是:10;4.8.16.解:∵直角三角形斜边上的高是h,∴h=,∵(a+b)2+h2=a2+b2+2ab+h2,=c2+2ab+h2,∴(c+h)2=c2+h2+2ch,∵h=,∴(c+h)2=c2+h2+2c•=c2+2ab+h2,∴(a+b)2+h2=(c+h)2,∴此三角形是直角三角形.17.解:∵点P到x轴的距离为2,∴点P的纵坐标是2或﹣2;∵点到y轴的距离为3,∴点P的横坐标是3或﹣3,即点P的坐标为(3,2),(﹣3,2),(﹣3,﹣2),(3,﹣2);点P到原点的距离为=.故答案填:(3,2)或(﹣3,2)或(﹣3,﹣2)或(3,﹣2);.18.解:如图,AC=3cm,BC=4cm,AB=5cm,CD为斜边AB上的高=AC•BC=CD•AB,∵S△ABC∴×3×4=×5•CD∴CD=2.4cm.三.解答题19.解:∵AB=5﹣1=6,AC==3,BC==3,∴AC=BC,且AC2+BC2=36=AB2,∴△ABC是等腰直角三角形.20.证明:在Rt△ABC中,∠A+∠B=90°(直角三角形两锐角互余),∵CD⊥AB,∴∠CDB=90°,∴∠BCD+∠B=90°(直角三角形两锐角互余),∴∠A=∠BCD(同角的余角相等).21.解:∵△ABC和△DCE都是边长为4的等边三角形,∴CB=CD=CE=DE=4,∠DCE=∠CDE=60°,∴BE=BC+CE=8,∠BDC=∠DBC=30°,∴∠BDE=30°+60°=90°,在Rt△BDE中,DE=4,BE=8,∴BD===4.22.解:∵大正方形的面积=(a+b)2,四个直角三角形的面积和=4×ab=2ab,中间的正方形的面积=c2∴2ab+c2=(a+b)22ab+c2=a2+b2+2ab∴c2=a2+b223.解:∵一轮船以16n mi1e/h的速度从港口A出发向东北方向航行,另一轮船以12n mi1e/h的速度同时从港口出发向东南方向航行,∴∠BAC=90°,离开港口A2h后,AB=32n mi1e,AC=24n mi1e,∴BC==40(n mi1e).答:离开港口A2h后,两船相距40n mi1e.24.解:(1)如图,以树枝周长为矩形的长,绕树枝一圈上升高为矩形的宽,将树枝的侧面展开,则矩形的对角线为最短路径;以AC=3m,BC=4m作矩形,连接AB,利用勾股定理可知AB==5(m),即它爬行路程是5米.(2)∵树的周长为8m,绕一圈爬行10m,∴爬行一圈升高为:=6m,如果爬行10圈到达树顶,则树干高为:6×10=60(m),答:爬行一圈升高6m,如果爬行10圈到达树顶,则树干60m高.25.解:如图所示,过P1、P2分别作x轴、y轴的垂线相交于A点.则A点的坐标为A(﹣2,﹣5)∴P1A=|﹣5﹣3|=8,P2A=|﹣2﹣4|=6,∴P1P2===10.1、三人行,必有我师。
沪科版八年级数学下《第18单元勾股定理》单元测试题含解析

沪科版8年级数学(下)第18章单元精编试题(含解析)满分:150分一、单选题(共10题;共40分)1.以下列各组数为边长,能组成直角三角形的是()A. 2,3,4B. 10,8,4C. 7,25,24D. 7,15,122.在△ABC中,AB=6,AC=8,BC=10,则该三角形为()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形3.如图所示,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前()米.A. 15B. 20C. 3D. 244.下列几组数据能作为直角三角形的三边长的是()A. 2,3,4B. 5,3,4C. 4,6,9D. 5,11,135.如图,在平面直角坐标系中,有两点坐标分别为(2,0)和(0,3),则这两点之间的距离是()A. B. C. 13 D. 56.以下列各组数作为三角形的三边长,其中不能构成直角三角形的是()A. 1,1,B. 6,8,10C. 8,15,17D. 1,2,27.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A. 90°B. 60°C. 45°D. 30°8.在Rt△ABC中,∠C=90°,AC=5,BC=12,CD是斜边AB边上的中线,则CD=A.2.5B.6C.13D.6.59.若三角形三边的长为下列各组数,则其中是直角三角形的是()A. 6,6,6B. 5,12,13C. 4,5,6D. 5,5,810.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为()A. 50°B. 60°C. 70°D. 80°二、填空题(共4题;共20分)11.现用火柴棒摆一个直角三角形,两直角边分别用了7根、24根长度相同的火柴棒,则斜边需用________根同样的火柴棒.12.如图,正方形网格中的△ABC,若小方格边长都为1,则△ABC是:________三角形.13.如图是一段楼梯,高BC是3米,斜边AC是5米,如果在楼梯上铺地毯,那么至少需要地毯________米.14.一木杆于离地面9m处断裂,木杆顶落于离木杆底部12m处,则木杆在断裂前高________ m.三、解答题(共7题;共60分)15.(8分)一块空地的如图如示,AB=9m、BC=12m、CD=8m、AD=17m、∠ABC=90°,求这块空地的面积.16.(8分)如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?17.(8分)如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船沿那个方向航行吗?18.(8分)如图,在△ABC中,AC=8,BC=6,在△ABE中,DE是AB边上的高,且DE=7,△ABE的面积为35,求∠C 的度数.19.(8分)在右图的正方形网格中,每个小正方形的边长为1.请在图中画一个面积为10的正方形,并写出其边长.(要求:正方形的顶点都在格点上)20.(10分)在四边形ABCD中,AB=3,BC=4,AD=5 ,CD=5,∠ABC=90°,求对角线BD的长.21.(10分)已知:如图,在Rt△ABC中,∠ACB=90°,AB=5 cm,AC=3 cm,动点P从点B出发沿射线BC以1 cm/s的速度移动.设运动的时间为t s.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值.四、综合题(共2题;共30分)22.如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?23.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE= AC,连接AE交OD于点F,连接CE、OE.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.答案解析部分一、单选题1.【答案】C【考点】勾股数【解析】【解答】解:A、不能,因为:22+32≠42;B、不能,因为:82+42≠102;C、能,因为:72+242=252;D、不能,因为:72+122≠152;故选:C.【分析】根据勾股定理的逆定理可知,当三角形中三边的关系为:a2+b2=c2时,则三角形为直角三角形.2.【答案】B【考点】勾股定理的逆定理【解析】【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】在△ABC中,AB=6,AC=8,BC=10,推断出62+82=102,由勾股定理的逆定理得此三角形是直角三角形,故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.【答案】D【考点】勾股定理的应用【解析】【解答】解:因为AB=9米,AC=12米,根据勾股定理得BC= =15米,于是折断前树的高度是15+9=24米.故选D .【分析】根据勾股定理,计算树的折断部分是15米,则折断前树的高度是15+9=24米.4.【答案】B【考点】勾股定理的逆定理【解析】【解答】解:A、22+32≠42,根据勾股定理的逆定理不是直角三角形,故错误;B、32+42=52,根据勾股定理的逆定理是直角三角形,故正确;C、42+62≠92,根据勾股定理的逆定理不是直角三角形,故错误;D、52+112≠132,根据勾股定理的逆定理不是直角三角形,故错误.故选B.【分析】勾股定理的逆定理是判定直角三角形的方法之一.5.【答案】A【考点】勾股定理的应用【解析】【解答】解:∵A(2,0)和B(0,3),∴OA=2,OB=3,∴AB= = = .故选A .【分析】先根据A、B两点的坐标求出OA及OB的长,再根据勾股定理即可得出结论.6.【答案】D【考点】勾股定理的逆定理【解析】【解答】解:A、12+12= 2,符合勾股定理的逆定理,故本选项不符合题意;B、62+82=102,符合勾股定理的逆定理,故本选项不符合题意;C、82+152=172,符合勾股定理的逆定理,故本选项不符合题意;D、12+22=≠22,不符合勾股定理的逆定理,故本选项符合题意.故选D.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.7.【答案】C【考点】勾股定理【解析】【分析】根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.【解答】根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.【点评】本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键.8.【答案】D【考点】勾股定理9.【答案】B【考点】勾股定理的逆定理【解析】【分析】找出四个选项中三个数字中最大的数,求出最大数的平方,剩下两数求出平方和,结果相等可根据勾股定理的逆定理得到此三角形为直角三角形,否则不是直角三角形,利用此方法即可得到的符合题意的选项.【解答】A、三边长都为6,此三角形为等边三角形,不合题意;B、∵52+122=25+144=169,132=169,∴52+122=132,则此三角形为直角三角形,符合题意;C、∵42+52=16+25=41,62=36,∴42+52≠62,则此三角形不是直角三角形,不合题意;D、∵52+52=25+25=50,82=64,∴52+52≠82,则此三角形不是直角三角形,不合题意,故选B.【点评】此题考查了勾股定理的逆定理的运用,勾股定理的逆定理为:三角形中,若一边的平方等于其余两边的平方和,则这条边所对的角为直角,此时三角形为直角三角形.10.【答案】C【考点】勾股定理的逆定理【解析】【解答】解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°,故选C.【分析】求出OM2+ON2=MN2,根据勾股定理的逆定理得出∠MON=90°,根据平角定义求出即可.二、填空题11.【答案】25【考点】勾股定理【解析】【解答】解:∵两直角边分别用了7根、24根长度相同的火柴棒∴斜边需用=25.【分析】根据勾股定理即可求得斜边需要的火柴棒的数量.12.【答案】直角【考点】勾股定理,勾股定理的逆定理【解析】【解答】解:∵AC2=22+32=13,AB2=62+42=52,BC2=82+12=65,∴AC2+AB2=BC2,∴△ABC 是直角三角形.【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.13.【答案】7【考点】勾股定理的应用【解析】【解答】解:∵△ABC是直角三角形,BC=3m,AC=5m ∴AB= = =4(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=7米.故答案为:7.【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=3m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.14.【答案】24【考点】勾股定理的应用【解析】【解答】解:如图,∵AB=9m,AC=12m,∵∠A=90°,∴AB2+AC2=BC2,∴BC=15m,∴树折断之前有24m.故答案为:24.【分析】根据题意画出图形,利用勾股定理计算出BC的长,即可求得树折断之前的高度.三、解答题15.【答案】解:如图,连接AC.∵AB=9m、BC=12m,∠ABC=90°,∴AC2=AB2+BC2=152.又∵CD=8m、AD=17m,∴AD2=AC2+CD2=289,∴AC⊥CD,∴这块空地的面积=S△ACD+S△ABC = AB•BC+ AC•CD= ×9×12+ ×15×8=114(m2).答:这块空地的面积是114m2.【考点】勾股定理的应用【解析】【分析】由勾股定理逆定理可得△ACD与△ABC均为直角三角形,进而可求解其面积.16.【答案】解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得152+x2=102+(25﹣x)2,x=10.故:E点应建在距A站10千米处.【考点】勾股定理的应用【解析】【分析】关键描述语:产品收购站E,使得C、D两村到E站的距离相等,在Rt△DAE和Rt△CBE 中,设出AE的长,可将DE和CE的长表示出来,列出等式进行求解即可.17.【答案】解:BM=8×2=16海里,BP=15×2=30海里,在△BMP中,BM2+BP2=256+900=1156,PM2=1156,BM2+BP2=PM2,∴∠MBP=90°,180°﹣90°﹣60°=30°,故乙船沿南偏东30°方向航行【考点】勾股定理的逆定理【解析】【分析】先根据路程=速度×时间,求出BM,BP的长,再根据勾股定理的逆定理得到∠MBP=90°,进一步即可求解.18.【答案】解:∵DE=7,S△ABE =DE•AB=35,∴AB=10∵AC=8,BC=6,62+82=102,∴AC2+BC2=AB2由勾股定理逆定理得∠C=90°.【考点】勾股定理【解析】【分析】由S△ABE=35,求得AB=10,根据勾股定理的逆定理得出△ABC为直角三角形,从而得到∠C的度数.19.【答案】解:∵面积为10的正方形的边长为,=,∴面积为5的正方形,如图所示.【考点】勾股定理【解析】【分析】由正方形的面积得出边长,由勾股定理即可得出结果.20.【答案】解:作DM⊥BC,交BC延长线于M,连接AC,如图所示:则∠M=90°,∴∠DCM+∠CDM=90°,∵∠ABC=90°,AB=3,BC=4,∴AC2=AB2+BC2=25,∴AC=5,∵AD=5 ,CD=5,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°,∴∠ACB+∠DCM=90°,∴∠ACB=∠CDM,∵∠ABC=∠M=90°,∴△ABC∽△CMD,∴= = =1,∴CM=AB=5,DM=BC=4,∴BM=BC+CM=9,∴BD= = = .【考点】勾股定理,勾股定理的逆定理【解析】【分析】作DM⊥BC,交BC延长线于M,连接AC,由勾股定理得出AC2=AB2+BC2=25,求出AC2+CD2=AD2,由勾股定理的逆定理得出△ACD是直角三角形,∠ACD=90°,证出∠ACB=∠CDM,得出△ABC∽△CMD,由相似三角形的对应边成比例求出CM=AB=5,DM=BC=4,得出BM=BC+CM=9,再由勾股定理求出BD即可.21.【答案】解:(1)在Rt△ABC中,BC2=AB2-AC2=52-32=16,∴BC=4 cm.(2)由题意知BP=t cm.①如图①,当∠APB为直角时,点P与点C重合,BP=BC=4 cm,即t=4;②如图②,当∠BAP为直角时,BP=t cm,CP=(t-4)cm,AC=3 cm,在Rt △ACP 中,AP 2=32+(t -4)2. 在Rt △BAP 中,AB 2+AP 2=BP 2, 整理,得52+[32+(t -4)2]=t 2, 解得t =254.故当△ABP 为直角三角形时,t 的值为4或254.四、综合题22.【答案】(1)解:由题意得:AB=2.5米,BE=0.7米, ∵AE 2=AB 2﹣BE 2 , ∴AE= =2.4米(2)解:由题意得:EC=2.4﹣0.4=2(米), ∵DE 2=CD 2﹣CE 2 , ∴DE= =1.5(米),∴BD=0.8米【考点】勾股定理的应用【解析】【分析】(1)在Rt △ABE 中利用勾股定理求出AC 的长即可;(2)首先在Rt △CDE 中利用勾股定理求出DE 的长,然后再计算出DB 的长即可.23.【答案】(1)证明:四边形ABCD 是菱形, ∴OA=OC=AC ,AD=CD ,∵DE ∥AC 且DE=AC ,∴DE=OA=OC ,∴四边形OADE 、四边形OCED 都是平行四边形,∴OE=AD ,∴OE=CD ;(2)解:∵AC ⊥BD , ∴四边形OCED 是矩形,∵在菱形ABCD 中,∠ABC=60°,∴AC=AB=2,∴在矩形OCED 中,CE=OD==.∴在Rt △ACE 中,AE==.【考点】勾股定理的应用,菱形的性质,矩形的性质 【解析】【分析】(1)由菱形ABCD 中,DE ∥AC 且DE=AC ,易证得四边形OCED 是平行四边形,继而可得OE=CD 即可;(2)由菱形的对角线互相垂直,可证得四边形OCED 是矩形,根据菱形的性质得出AC=AB ,再根据勾股定理得出AE 的长度即可.。
沪科版八年级下册数学第18章勾股定理单元测试卷(含答案)

沪科版八年级数学第18章 勾股定理 单元测试卷一、选择题(每题3分,共30分)1、在直角三角形中,若勾为3,股为4,则弦为( )A .5B .6C .7D .82、如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组数是( )A. 53,54,1 B.3,4,5 C.6,8,10 D. 2,3,43、如图,在正方形网格中,每个正方形的边长为1,则在△ABC 中,边长为无理数的边数有( )个A .0B .1C .2D .34、如图,数轴上点A 对应的数是0,点B 对应的数是1,BC ⊥AB ,垂足为B ,且BC =3,以A 为圆心,AC 为半径画弧,交数轴于点D ,则点D 表示的数为( )A .2.2B .C .√10D .5、)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.36、有一个三角形的两边长分别是4和5,若这个三角形是直角三角形,则第三边长为( )A.3B.√41C.3或√41D.无法确定7、如图,已知正方形B的面积为144,正方形C的面积为169,那么正方形A的边长为()A.√5B.25C.5D.6.258、.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )A.365B.1225C.94D.3√349、如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD5,则BC的长为()A.3-1B.3+1C.5-1D.5 +110、在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”.设这个人的身高是5尺,秋千的绳索始终拉的很直,则绳索长为()A.12.5尺B.13.5尺C.14.5尺D.15.5尺二、填空题(每小题3分,共24分)11、若CD是△ABC的高,AB=2√3,AC=2,BC=2√2,则CD的长为.12、.如图,在△ABC 中,∠ACB =90°,AC =40,CB =9,点M ,N 在AB 上,且AM =AC ,BN =BC ,则MN 的长为13、三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________.14、如图所示,有两棵树,一棵树高10 m ,另一棵树高4 m ,两树相距8 m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行 米 15、如图,长方形网格中每个小正方形的边长是1,△ABC 是格点三角形(顶点都在格点上),则点C 到AB 的距离为 .16、如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则x 2+(y −4)2的值为_________.17、如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________. M A BCN18、我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为三、解答题(共66分)19、一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.(8分)20、“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)(8分)21、已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,求BC的长(10分)22、如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗? (10分)23、如图,一个长为2.5m的梯子,斜靠在竖直的墙上,这时梯子的底端距离墙面0.7m;如果梯子顶端沿墙下滑0.4m,那么梯子底端将向左滑动多少米?(10分)24、如图,在四边形ABCD中,∠B=∠D=90°,AB=BC=2,CD=1,求AD的长.(8分)25、如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.(1)若∠A=28°,求∠ACD的度数.(2)设BC=a,AC=b.①线段AD的长是方程x2+2ax﹣b2=0的一个根吗?说明理由.②若AD=EC,求的值.(12分)参考答案一、选择题ADDCD CCADC√612、8 13、直角24 14、10 15、1.2二、11、2316、16 17、√4118、24三、19、解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC=√AB2-AC2=√202-102=10√3.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=1BC=5√3,2∴CM=√BC2-BM2=√(10√3)2-(5√3)2=15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5√3,∴CD=CM-MD=15-5√3.20、解:如图,设折断处离地面的高度OA是x尺,根据题意可得:x2+42=(10﹣x)2,解得:x=4.2,答:折断处离地面的高度OA是4.2尺.21、解:分两种情况:①当△ABC是锐角三角形,如图1,∵CD⊥AB,∴∠CDA=90°,∵CD=,AD=1,∴AC=2,∵AB=2AC,∴AB=4,∴BD=4﹣1=3,∴BC===2;②当△ABC 是钝角三角形,如图2,同理得:AC=2,AB=4,∴BC===2; 综上所述,BC 的长为2或2. 故答案为:2或2. 22、解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S △ABC =12ab,S △C'A'D'=12ab,S 直角梯形A'D'BA =12(a+b)(a+b)=12(a+b)2,S △ACA'=12c 2.(2)由题意可知S △ACA'=S 直角梯形A'D'BA -S △ABC -S △C'A'D'=12(a+b)2-12ab-12ab=12(a 2+b 2),而S △ACA'=12c 2.所以 a 2+b 2=c 2.23、解:如图AB =CD =2.5米,AO =0.7米,BD =0.4,求AC 的长. 在直角三角形AOB 中,AB =2.5,AO =0.7,由勾股定理,得BO =2.4, ∵BD =0.4,∴OD =2,∵CD =2.5,在直角三角形COD 中,由勾股定理,得OC =1.5,∵OA =0.7,∴AC =0.8.即梯子底端将滑动了0.8米. 24、解:连接AC ,∵∠B =90°∴AC 2=AB 2+BC 2.∵AB =BC =2∴AC 2=8.∵∠D =90°∴AD2=AC2﹣CD2.∵CD=1,∴AD2=7.∴.25、解:(1)∵∠ACB=90°,∠A=28°,∴∠B=62°,∵BD=BC,∴∠BCD=∠BDC=59°,∴∠ACD=90°﹣∠BCD=31°;(2)①由勾股定理得,AB==,∴AD=﹣a,解方程x2+2ax﹣b2=0得,x==﹣a,∴线段AD的长是方程x2+2ax﹣b2=0的一个根;②∵AD=AE,∴AE=EC=,由勾股定理得,a2+b2=(b+a)2,整理得,=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第18章勾股定理一、选择题(每题4分,共40分)1.下列几组数中,为勾股数的一组是()A.5,6,7B.3,-4,5C.0.5,1.2,1.3D.20,48,522.已知a,b,c是三角形的三边长,且满足(a-6)2++|c-10|=0,则该三角形是()A.等腰三角形B.等边三角形C.钝角三角形D.直角三角形3.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草,则他们仅仅少走(假设2步为1 m)()A.2步B.4步C.5步D.10步第3题图第5题图第6题图4.小明从一根长为6 m的钢条上截取一段,截取的钢条恰好与两根长分别为3 m,5 m的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.4 mB. mC.4 m或 mD.6 m5.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.806.如图,将两个大小、形状完全相同的△ABC和△A'B'C'拼在一起,其中点A'与点A重合,点C'落在AB边上,连接B'C.若∠ACB=∠A'C'B'=90°,AC=BC=3.则B'C的长为()A.3B.6C.3D.7.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米第7题图第8题图8.如图,分别以Rt△ABC的三边为边向外作等边三角形,若AB=4,则三个等边三角形的面积之和为()A.8B.6C.18D.129.如图,一张长方形纸片ABCD,AB=6,BC=9,将长方形纸片ABCD折叠,使点C与点A重合,则折痕EF的长为()A. B.2 C.5 D.7第9题图第10题图10.图1是我国著名的“赵爽弦图”,它是由四个全等的直角三角形所围成,将四个直角三角形的较短边(如AF)向外延长1倍分别得到点A',B',C',D',并顺次连接得到图2.若正方形EFGH与正方形A'B'C'D'的面积分别为1 cm2和85 cm2,则图2中阴影部分的面积是()A.15 cm2B.30 cm2C.36 cm2D.60 cm2二、填空题(每题5分,共20分)11.有一组勾股数,知道其中的两个数分别是17和8,则第三个数是.12.如图,校园内有两棵树,相距8 m,一棵树高13 m,另一棵树高7 m,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞m.第12题图第13题图第14题图13.如图是一个底面周长为24 m,高为5 m的圆柱体,一只蚂蚁沿表面从点A到点B所经过的最短路线长为m.14.如图,已知1号、4号两个正方形的面积和为7,2号、3号两个正方形的面积和为4,则a,b,c三个正方形的面积和为.三、解答题(共90分)15.(8分)如图,在△ABC中,AB=10,BC=16,BC边上的中线AD=6.求证:AB=AC.16.(8分)某校要把一块形状是直角三角形的废地开发为小花园,如图,∠ACB=90°,AC=40 m,BC=30 m.计划建一条水渠CD,且点D在边AB上,已知水渠的造价为3 000元/m,点D距点A多远时,此水渠的造价最低?最低造价是多少?请在图上标出点D.17.(8分)如图,在由边长为1的小正方形组成的网格图中,四边形ABCD的顶点都在格点上.(1)求四边形ABCD的周长;(2)判断AD与DC是否垂直?并说明理由.18.(8分)如图所示的是一个十字路口,O是两条公路的交点,A,B,C,D表示公路上的四辆车.某一时刻,OC=8 m,AC=17 m,AB=5 m,BD=10 m,求C,D两辆车之间的距离.19.(10分)如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S1+S2=5,且AC+BC=6,求AB的长.20.(10分)有一艘渔船在海上C处作业时发生故障,立即向搜救中心发出求救信号,此时搜救中心的两艘救助轮一号和二号分别位于海上A处和B处,B在A的正东方向,且距A 100海里.测得点C在A的南偏东60°方向上,在B的南偏东30°方向上,如图所示.若救助轮一号和二号的速度分别为40海里/时和30海里/时,问搜救中心应派哪艘救助轮才能尽快赶到C处救援?(≈1.7)21.(12分)如图,点A是5×5网格中的一个格点,图中每个小正方形的边长为1,请在网格中按下列要求操作(顶点都在格点上的多边形为格点多边形):(1)以点A为其中的一个顶点,在图1中画一个面积等于3的格点直角三角形;(2)以点A为其中的一个顶点,在图2中画一个面积等于的格点等腰直角三角形;(3)以点A为其中的一个顶点,在图3中画一个三边边长比为1∶∶,且最长边的长度为5的格点三角形.22.(12分)在△ABC中,AB=AC,∠BAC=2∠DAE=2α,点D关于直线AE的对称点为F.(1)如图1,若α=45°,求证:DE2=BD2+CE2;(2)如图2,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还成立吗?请说明理由.23.(14分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪灵感.他发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明勾股定理.下面是小聪利用图1证明勾股定理的过程.如图1,△ACB≌△DEA,∠DAB=90°,求证:a2+b2=c2.证明:连接DB,DC,过点D作DF⊥BC交BC的延长线于点F,则DF=EC=b-a.则S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b-a),∴b2+ab=c2+a(b-a),∴a2+b2=c2.请参照上述证法,利用图2证明勾股定理.如图2,△ACB≌△AED,∠DAB=90°,求证:a2+b2=c2.图1 图2答案15. 因为AD是BC边上的中线,所以BD=CD=BC=8,又因为AB=10,AD=6,所以AD2+BD2=AB2,所以△ADB是直角三角形,AD⊥BC.在Rt△ADC中,由勾股定理得AC2=AD2+CD2=62+82=102,所以AC=10,所以AB=AC.16. 如图,过点C作CD⊥AB于点D,则点D为所求的点.在Rt△ABC中,由勾股定理,得AB===50(m).∵S△ABC=AC·BC=AB·CD,∴CD===24(m).在Rt△ACD中,由勾股定理,得AD===32(m).∵水渠的造价为3 000元/m,∴水渠的最低造价为3 000×24=72 000(元).故当点D距点A 32 m时,此水渠的造价最低,最低造价是72 000元.17. (1)由题意可知AB==3,AD==,DC==2,BC==,∴四边形ABCD的周长为AB+BC+CD+AD=3++3.(2)AD⊥DC,理由如下:连接AC.∵AD=,DC=2,AC=5,∴AD2+CD2=AC2,∴△ACD是直角三角形,且∠ADC=90°,∴AD⊥DC.18. 在Rt△AOC中,由勾股定理得OA2+OC2=AC2,∴OA===15(m),∴OB=OA+AB=20 m.在Rt△BOD中,由勾股定理得BD2=OB2+OD2,∴OD===10(m),∴CD=OD-OC=10-8=2(m).19. 由勾股定理,得AC2+BC2=AB2,∴由题图可知S1+S2=π×()2+π×()2+×AC×BC-π×()2=(AC2+BC2-AB2)+×AC×BC=×AC×BC,∵S1+S2=5,∴AC×BC=10,∴AB===4.20. 如图,过点C作CD⊥AB交AB的延长线于点D.由题意得∠EAC=60°,∠FBC=30°,∴∠1=30°,∠2=60°.∵∠1+∠BCA=∠2,∴∠BCA=30°,∴∠1=∠BCA,∴BC=AB=100海里.在Rt△BDC中,BD=BC=50海里,∴DC==50海里,AD=AB+BD=150海里.在Rt△ADC中,由勾股定理,得AC==100 海里,∴救助轮一号所用的时间t1==≈4.25(时),救助轮二号所用的时间t2==≈3.33(时),∵3.33<4.25,∴搜救中心应派救助轮二号才能尽快赶到C处救援.21. (1)如图1所示.(画法不唯一)(2)如图2所示.(画法不唯一)(3)∵三角形的三边边长比为1∶∶,且最长边的长度为5,∴三边长分别为,,5,满足题意的格点三角形如图3所示.(画法不唯一)22. (1)∵点D,F关于直线AE对称,∴AD=AF,DE=EF,∠FAE=∠DAE=α.∴∠DAF=2α=∠BAC,∴∠DAF-∠DAC=∠BAC-∠DAC,即∠CAF=∠BAD,又∵AB=AC,AD=AF,∴△BAD≌△CAF,∴BD=CF,∠ACF=∠ABD.∵∠BAC=2α=90°,AB=AC,∴∠ABD=∠ACB=45°,∴∠ACF=45°,∴∠ECF=∠ACB+∠ACF=90°,∴EF2=EC2+CF2.∵BD=CF,DE=EF,∴DE2=BD2+CE2.(2)成立.理由如下:∵点D,F关于直线AE对称,∴AD=AF,DE=EF,∠FAE=∠DAE=α,∴∠DAF=2α=∠BAC,∴∠DAF-∠DAC=∠BAC-∠DAC,即∠CAF=∠BAD,又∵AB=AC,AD=AF,∴△BAD≌△CAF,∴BD=CF,∠ACF=∠ABD.∵∠BAC=2α=90°,AB=AC,∴∠ABD=∠ACB=45°,∴∠ACF=45°,∴∠ECF=180°-∠ACB-∠ACF=90°,∴EF2=CF2+CE2.∵EF=DE,CF=BD,∴DE2=BD2+CE2.23. 如图,连接BD,BE,过点B作BF⊥DE交DE的延长线于点F,则S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab. 又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b-a),∴ab+b2+ab=ab+c2+a(b-a),∴a2+b2=c2.。