有理数全章测试7

合集下载

人教版七年级上有理数全章总复习及试题

人教版七年级上有理数全章总复习及试题

人教版七年级上有理数全章总复习及试题1.1 正数与负数一、必记概念:0既,也。

在实际生活中,常常用正数和负数表示具有意义的量。

如果上升10米记作+10米,那么下降5米记作。

二、练习:1. 下列结论中错误的是()A. 零是整数B. 零不是正数C. 零是偶数D. 零不是自然数2. 如果顺时针旋转30°记作-30°,那么逆时针旋转45°记作。

3. 某人向东走5米,又回头向西走5米,此人实际距原地米。

4. 如果中午以后的2小时记作+2小时,那么+2小时前3小时应记作。

5. 观察下面依次排列的一列数,你能发现它们排列的规律是什么吗?后面空格内的三个数是什么,试把它写出来。

(1) 2、-3、4、-5、6、、、、…(2) 1、2、3、5、8、、、、…6. “一个数前面加‘-’,它一定是负数”对吗?1.2 有理数1.2.1 有理数一、必记概念:1. 正整数、零和负整数统称为;正分数和负分数统称为;和统称为有理数。

2. 把一些数放在一起,就组成一个数的,简称数集。

3. 零和正数统称为,零和负数统称为。

4. 正整数和零统称为,又统称为;零和负整数统称为。

二、练习:(一)把下列各数填在相应的集合中:-1、-0.4、35、0、13-、6、9、317-、114、-19正数集合:﹛…﹜负数集合:﹛…﹜整数集合:﹛…﹜分数集合:﹛…﹜非正数集合:﹛…﹜非负数集合:﹛…﹜非正整数集合:﹛…﹜非负整数集合:﹛…﹜(二)判断题:1. 一个有理数不是正数就是分数。

()2. 一个有理数不是整数就是分数。

()3. 有限小数和无限小数都是有理数。

()4. 0C︒表示没有温度。

()(三)选择题:5. 下列说法:(1)零是正数;(2)零是整数;(3)零是有理数;(4)零是非负数;(5)零是偶数。

其中正确的说法的个数为()A. 2个B. 3个C. 4个D. 5个6. 下列说法正确的是()A. 一个有理数不是正数就是负数B. 一个有理数不是整数就是分数C. 有理数是指整数、分数、正有理数、零、负有理数这五类D. 以上结论都不对-表示的数是()7. xA. 负数B. 正数C. 正数或负数D. 以上答案都不对8. 对于有理数a,下面说法正确的是()-表示负有理数A. a表示正有理数B. a-中必有一个是负有理数 D. 以上答案都不对C. a与a(四)填空题:10. 非负整数与正整数的区别是非负整数包括,而正整数不包括。

第二章有理数的运算全章综合训练+++2024—2025学年人教版数学七年级上册

第二章有理数的运算全章综合训练+++2024—2025学年人教版数学七年级上册

第二章有理数的运算全章综合训练刷中考 考点1 有理数的加减运算1 计算(-7)-(-5)的结果是 ( ) A.-12 B.12 C.-2 D.22 已知算式5□(-5)的值为0,则“□”内应填入的运算符号为 ( ) A.+ B. - C.× D.÷ 考点2 倒数3 若a ,b 互为相反数,c 的倒数是4,则3a+3b-4c 的值为 ( ) A.-8 B.-5 C.-1 D.164 |-3|的倒数是 ( )A.-3B.−13 C.3 D. 13 考点3有理数的乘除、乘方运算 5 计算-2×(-3)的结果是( )A.6B.-6C.5D.-56 定义:若 10ˣ=N,则x=log ₁₀N,x 称为以10为底的N 的对数,简记为lgN ,其满足运算法则:lgM+lgN=lg(M·N)(M>0,N>0).例如:因为 10²=100,所以2=lg100,亦即 lg100=2;lg4+lg3=lg12.根据上述定义和运算法则,计算 (lg2)2+lg2⋅lg5+lg5的结果为 ( )A.5B.2C.1D.07 已知a ,b 都是有理数,若 |a +1|+(b −2022)²=0,则 aᵇ=. 考点4有理数的混合运算8 如图,输入数值1 921,按所示的程序运算(完成一个方框内的运算后,把结果输入下一个方框继续进行运算),输出的结果为( )A.1 840B.1 921C.1 949D.2 021+1)÷(1-3).9 计算:23×(−12考点5 科学记数法10 新时代我国教育事业取得了历史性成就,目前我国已建成世界上规模最大的教育体系,教育现代化发展总体水平跨入世界中上国家行列,其中高等教育在学总规模达到4 430万人,处于高等教育普及化阶段.4 430 万用科学记数法表示为( )A.443×10⁵B.4.43×10⁷C.4.43×10⁸D.0.443×10⁸11 新时代十年来,我国建成世界上规模最大的社会保障体系.其中基本医疗保险的参保人数由 5.4 亿增加到13.6亿,参保率稳定在95%.将数据13.6 亿用科学记数法表示为1.36×10"的形式,则n的值是 (备注:1 亿=100 000 000).考点6 近似数12 用四舍五入法取近似值,将数0.015 8精确到0.001的结果是( )A.0.015B.0.016C.0.01D.0.02刷章节一、选择题(每小题3分,共30分)1 -5的倒数是 ( ) A.5 B. 15 C.−15 D.-52 温州某一天的天气预报如图所示,则这一天的温差是 ( ) A.-6℃ B.2℃ C.4 ℃ D.6℃3 据新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11 000 亿用科学记数法可表示为 a ×10¹²,则a 的值是 ( ) A.0.11 B.1.1 C.11 D.11 0004 已知n 为正整数,计算 (−1)²ⁿ+(−1)²ⁿ⁺¹的结果是 ( ) A.1 B.-1 C.2 D.05 小明在计算1-3+5-7+9-11+13-15+17时,不小心把八个运算符号中的一个写错了(“+”错写成“-”或“-”错写成“+”),结果算成了-17,则原式从左往右数,运算符号写错的是第( ) A.6个 B.8个 C.4个 D.2个6 新考法 远古美索不达米亚人创造了一套以60进制为主的楔形文记数系统,对于大于59的数,美索不达米亚人则采用六十进制的位值记数法,位值的区分是靠在不同楔形记号组之间留空,例如:rǐ γǐ γǐ,左边的TT 表示 2×60²,中间的YTY 表示3×60,右边的【表示 1 个单位,用十进制写出来是7 381.若楔形文字记数为Y<MY ,用十进制的数表示是(提示:<表示数字10)( )A.4 203B.3 603C.3 723D.44037 将2 019减去它的 12,再减去余下的 13,再减去余下的 14,……,按照这个规律依次类推,最后减去余下的 12019,则最后的差是 ( ) A.12019 B.20182019 C.(20182019)2D.1多云 气温:-2℃~4℃8按如图所示的程序进行计算,如果第一次输入的数是18,当结果不大于100时,就把结果作为输入的数再进行第二次运算,直到符合要求为止,则最后输出的结果为 ( )A.72B.144C.288D.5769 如图所示,按大拇指→食指→中指→无名指→小拇指→无名指→中指→食指→大拇指→食指→…的顺序,依次数正整数1,2,3,4,5,…,以此类推,当第2 022次数到中指时,这个数是( )A.8 088B.8087C.8089D.8 09010 有理数a,b,c,d在数轴上的对应点的位置如图所示,则在下列选项中,正确的是 ( )①若ad>0,则一定会有 bc>0;②若ad<0,则一定会有bc<0;③若bc>0,则一定会有 ad>0;④若bc<0,则一定会有 ad<0.A.①③B.①④C.②③D.②④二、填空题(每小题3分,共12分)11 算式“1+2-3×4÷5=0”是不成立的,请在此算式中添加一组括号,使这个算式成立:.12 设三个互不相等的有理数,既可分别表示为1,a+b ,a 的形式,又可分别表示为4,a ÷b,b 的形式,则(b-a)³的值为 .13 如图,质点P(大小可忽略不计)从距原点 O 1个单位长度的A 点处向原点方向跳动,第一次从A 跳动到 OA 的中点A ₁处,第二次从A ₁跳动到 OA ₁ 的中点 A ₂处,第三次从A ₂跳动到OA ₂的中点A ₃处,…,如此不断地跳下去,则第十次跳动后,该质点到原点的距离为 .14 已知(|x+3|+|x-2l)(ly-4l+ly+2l)(lz-3l+|z+1|)=120,则x+2y-3z 的最大值为 .三、解答题(共58分) 15计算:(1)(−12+34−13)÷(−124); (2)(−6)÷(−13)2−72+2×(−3)3.16 某陶瓷厂计划每个工人一周生产陶瓷工艺品280个,平均每天生产40个,但实际每天的生产量与计划相比有出入,下表是该厂一工人某周的生产情况(以40个为标准,超产记为正,减产记为负):的工艺品的个数.(2)该工人本周实际生产工艺品多少个?(3)已知该厂实行计件工资制,每周结算一次,每生产一个工艺品可得5元,以280个为标准,超过部分每个另奖10元,未达标准的部分每个扣3元,求该工人在这一周实际获得的工资总额.17 若一个四位自然数M 的各个数位上的数字均不为0,且前两位数字之和为5,后两位数字之和为6,则称M 为“卡塔尔数”,把“卡塔尔数”M的前两位数字和后两位数字整.例如:M=1 433,因为1+4=5,3+3=6,所以体交换得到新的四位自然数N,规定P(M)=M−N99=−19;M=1351,因为1+3≠5,5+1=6,所1433是“卡塔尔数”,则P(1433)=1433−331499以1351不是“卡塔尔数”.(1)判断2 342 和4 152 是不是“卡塔尔数”,并说明理由;(2)若自然数.M=1 000a+100b+10c+d是“卡塔尔数”(其中1≤a≤4,1≤b≤4,1≤c≤5,1≤d≤5,且a,b,c,d为整数),若P(M)-2恰好能被5整除,求出所有满足条件的自然数M 的值.。

《有理数》全章测试题

《有理数》全章测试题

《有理数》全章测试题一.选择题(每小题2分,共20分) 1. 零是( )A 正有理数B 正数C 非正数D 有理数 2.下列说法不正确的是( )A 0小于所有正数B 0大于所有负数C 0既不是正数也不是负数D 0没有绝对值 3.数轴上,原点及原点右边的点所表示的数是( ) A 正数 B 负数 C 非正数 D 非负数 4.下列说法正确的是( )A 正数和负数互为相反;B a 的相反数是负数C 相反数等于它本身的数只有0 Da -的相反数是正数5若两个数的和为正数,则这两个数( )A 至少有一个为正数B 只有一个是正数C 有一个必为0D 都是正数 6.若0<ab,则ba 的值( )A 是正数B 是负数C 是非正数D 是非负数 7.一个有理数的平方一定是( ) A 是正数 B 是负数 C 是非正数 D 是非负数 8.下列说法正确的是( ) A 0.720有两个有效数字 B 3.6万精确到个位 C 5.078精确到千分位 D 3000有一个有效数字9.下列个组数中,数值相等的是( ) A 32和23 ; B -23和(-2)3C -32和(-3)2 ;D —(3×2)2和-3×2210.若a 是负数,则下列各式不正确的是( ) A22)(a a -= B 22a a =C 33)(a a -=D )(33a a --=二.填空题(每小题2分,共20分)1.某蓄水池的标准水位记为0m ,如果水面高于标水位0.23m 表示为0.23m ,那么,水面低于标准水位0.1m 表示为 ;2.写出 3 个小于-1000并且大于-1003的数 。

3.一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度, 到达的终点表示的数是 。

4.相反数等于它本身的数是 。

5. -3.5的倒数数是 。

`6.绝对值等于10的数是 。

7.式子-62的计算结果是 。

8.数轴上,如果点A 表示-87,点B 表示-76,那么离原点较近的点是 。

有理数全章综合测试(含答案)

有理数全章综合测试(含答案)

第一章有理数全章综合测试一、选择题:1.下列说法正确的是()A.所有的整数都是正数B.不是正数的数一定是负数C.0不是最小的有理数D.正有理数包括整数和分数2.12的相反数的绝对值是()A.-12B.2 C.一2 D.123.有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是()A.a>b B.a <b C.ab>0 D.ab>04.在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数5.如果一个有理数的绝对值是正数,那么这个数必定是()A.是正数B.不是0 C.是负数D.以上都不对6.下列各组数中,不是互为相反意义的量的是()A.收入200元与支出20元B.上升l0米和下降7米C.超过0.05mm与不足0.03m D.增大2岁与减少2升7.下列说法正确的是()A.-a一定是负数;B.a定是正数;C.a一定不是负数;D.-a一定是负数8.如果一个数的平方等于它的倒数.那么这个数一定是()A.0 B.1 C.-1 D.±19.如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数()A.互为相反数但不等于零B.互为倒数C.有一个等于零D.都等于零10.若0<m<1,m、m2、1m的大小关系是()A.m<m2<1mB.m2<m<1mC.1m<m<m2D.1m<m2<m11.4604608取近似值,保留三个有效数字,结果是()A.4.60 ×106B.4600000 C.4.61 ×106D.4.605 ×106 12.下列各项判断正确的是()A.a+b一定大于a-b B.若-ab<0,则a、b异号C.若a3=b3,则a=b D.若a2=b2,则a=b13.下列运算正确的是()A.-22÷(一2)2=l B.3123⎛⎫- ⎪⎝⎭=-8127C.-5÷13×35=-25 D.314×(-3.25)-634×3.25=-32.5.14.若a=-2×32,b=(-2×3)2,c=-(2×4)2,则下列大小关系中正确的是()A.a>b>0 B.b>c>a C.b>a>c D.c>a>b15.若x=2,y=3,则x y+的值为()A.5 B.-5 C.5或1 D.以上都不对二、填空题1.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降1l℃,这时气温是____。

最新沪科版七年级上册数学 -有理数 全章检测题含答案

最新沪科版七年级上册数学 -有理数  全章检测题含答案

有理数一、选择题1.(-2)3的相反数是( )A .-6B .8C .-16 D.182.下列判断正确的是( )①若a =b ,则|a|=|b|;②若a =-b ,则|a|=|b|; ③若|a|=|b|,则a =b ;④若|a|=|b|,则a =b 或a =-b. A .①②③ B .①③④ C .①②④ D .①③3.有理数a ,b 在数轴上的位置如图所示,下列各式正确的是( )A .-a <-b <a <bB .a <b <-a <-bC .-b <a <-a <bD .b <-a <a <-b4.有理数a ,b 在数轴上的位置如图所示,在-a ,b -a ,a +b ,0中,最大的是( )A .-aB .0C .a +bD .b -a 5.下列说法正确的是( )A .带有负号的数是负数B .零既不是正数也不是负数C .若-a 是负数,则a 不一定是正数D .绝对值是本身的数是0 6. 设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a -b -c 的值是( ) A .-1 B .0 C .1 D .27.已知|a|=3,|b|=2,且a -b <0,则a +b 的值等于( ) A .-5或-1 B .5或1 C . 5或-1 D .-5或1 8.冰箱冷冻室的温度是-6 ℃,此时房屋内的温度为20 ℃,则房屋内的温度比冰箱冷冻室的温度高( )A .26 ℃B .14 ℃C .-26 ℃D .-14 ℃ 9.下列运算中错误的是( )A .(-6)×(-5)×(-3)×(-2)=180B .(-938)÷(-3)=-278C .(-3)×13÷(-13)×3=9D .12×(13-14)=110.填在下面各正方形中的四个数字之间有相同的规律,则m 的值是( )A .38B .52C .66D .74二、填空题11. 在(-2)2,-(-3),-|-4|,-23,0中,负数共有 个 12. 比较下列各对数的大小.-15____-7;-π____-3.14.13. 近似数0.034万精确到____位,用科学记数法表示为.14. 按照下图操作,若输入x的值是5,则输出的值是____ .15. 对于式子-(-8),下列说法:①可表示-8的相反数;②可表示-1与-8的积;③结果是8;④与(-2)3相等.其中错误的是(填序号)16. 已知|x+6|+(y-8)2=0,则x-2y的解为_______.17. 如图,数轴上的A,B,C三点所表示的数分别为a,b,c,其AB=BC,如果|a|>|c|>|b|.那么该数轴的原点O的位置应该在点与点之间18. 计算:-3×2+(-2)2-5=_________.19.若运用电子计算器进行计算,则按键5x2+2yx3=的结果为________.20. 为了求1+2+22+23+...+2100的值,可令S=1+2+22+23+...+2100,则2S=2+22+23+24+...+2101,因此2S-S =2101-1,所以S=2101-1,即1+2+22+23+ (2100)2101-1,仿照以上推理计算1+3+32+33+…+32 014的值是____.21. 冰冰家新安装了一台太阳能热水器,一天她测量发现18:00时,太阳能热水器水箱内水的温度是80℃,以后每小时下降4℃.第二天,冰冰早晨起来后,测得水箱内水的温度为32℃,请你猜一猜她起来的时间是____________.三、解答题22. 把下列各数用“>”将它们连接起来. -|-3|,0,2.5,-22,-(-2),-21223. 计算:(1)-14-|2-2.5|×14×[4-(-2)3];(2)49-12×(23)2+13÷[(-1.5)2-2];(3)(-770)×(-14)+0.25×24.5+512×25%;(4)2-{8+(-1)2-[(-4)×2÷(-2)+56×(-6)]}.24. 用简便方法计算:(1)(-12)×(-12+13-14+16);(2)(-5)×(+713)+(+7)×(-713)+12×713.25. 知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,试求m2-(a +b +cd)m +(-cd)2 015+(a +b)2 016.26. 已知:|a +4|与(b -2)2互为相反数,求(b a -ab )÷(a +b)的值.27. 小明早晨跑步,他从自己家向东跑了2千米,到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后向东跑回.(1)以小明家为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出中心广场,小彬家和小红家的位置;(2)小彬家距中心广场多远?(3)小明一共跑了多少千米?28. 在某一期《开心辞典》栏目上,五位选手在回答“连线”题目时,根据时间的长短分别得到了如下前进或后退的指令(“+”表示前进,“-”表示后退):+4,-3,-4,+3,+1.请问:这五位选手总的来说是前进了,还是后退了?若前进,前进了几步?若后退,后退了几步?29. 某电动车厂一周计划生产1 400辆电动车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正,减产为负,单位:辆):(1)产量最多的一天比产量最少的一天多生产多少辆?(2)该厂实行计件工资制,一周结算一次,每辆车60元,超额完成任务,每辆再奖15元,少生产一辆倒扣15元,那么该厂工人这一周的工资总额是多少元?30. 某儿童服装店老板以32元的价格购进30件连衣裙,针对不同的顾客连衣裙的售价不完全相同,若以47元为标准,超过的钱数记为正,不足的钱数记为负,记录的结果如下表:服装店售完这些连衣裙可赚多少元钱?31. 请根据数字排列的规律,回答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A,B,C,D中的什么位置?(3)第2015个数是正数还是负数?排在对应于A,B,C,D中的什么位置?32. 古希腊数学家将数1,3,6,10,15,21,…叫做三角形数,它有一定的规律,若记第一个三角形数为a1,第二个三角形数记为a2,…,第n个三角形数记为an.(1)请写出21后面的第一位三角形数;(2)通过计算a2-a1,a3-a2,a4-a3,…,由此推算a100-a99;(3)根据你发现的规律求a100的值.答案: 一、1---10 BCCDB CAABD 二、 11. 2 12. < < 13. 十 3.4×102 14. 97 15. ④ 16. -22 17. B C 18. -7 19. 33 20. 32015-1221. 6:00 三、22. 解:2.5>-(-2)>0>-212>-|-3|>-2223. (1) 解:原式=-212(2) 解:原式=149(3) 解:原式=200(4) 解:原式=-824. (1) 解:原式=3(2) 解:原式=025. 解:因为a 与b 互为相反数,所以a +b =0,因为c ,d 互为倒数,所以cd =1. 因为|m|=2,所以m =±2.当m =2时,原式=22-1×2-1+0=4-2-1=1,当m =-2时,原式=4-1×(-2)-1+0=526. 解:因为|a +4|与(b -2)2互为相反数,所以|a +4|+(b -2)2=0,因为|a +4|≥0,(b -2)2≥0,所以a +4=0,b -2=0,所以a=-4,b =2,(b a -a b )÷(a +b)=(2-4--42)÷(-4+2)=-3427. 解:(1)如图:(2)3千米(3)2+1.5+4.5+1=9(千米)28. 解:+4+(-3)+(-4)+(+3)+1=1 这五位选手总的来说是前进了,前进了1步29. 解:(1)26辆(2)根据题意,得一周总产量为205+198+196+213+190+216+191=1 409(辆),因为1 409>1 400,所以超额完成9辆,则该厂工人这一周的工资总额是1 409×60+9×15=84 540+135=84 675(元)30. 解:服装店卖完30件连衣裙所得的钱数为47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(-1)×4+(-2)×5]=1 410+22=1 432(元),共赚了1 432-32×30=472(元)31. 解:(1)正数(2)B,D的位置(3)是正数,C的位置32. 解:(1)28(2)100(3)5 050。

人教版初中数学七年级上册第一章《有理数》综合测试题含答案

人教版初中数学七年级上册第一章《有理数》综合测试题含答案

人教版初中数学七年级上册第一章《有理数》综合测试题一、正本清源,做出选择(每题3分,共30分)1.检测下列4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数. 从轻重的角度看,最接近标准的是( ).2.德润楼的高度为28米,地下室的高度为-3米,那么该楼的最高点比最低点(包括地下)高( ).A .25米B .-25米C .-31米D .31米3.据CCTV 新闻报道,今年5月我国新能源汽车销量达到104400辆,该销量用科学记数法表示为( )A .0.1044×106辆B .1.044×106辆C .1.044×105辆D .10.44×104辆4.若两个有理数在数轴上的对应点分别位于原点的两侧,那么这两个数的( ).A .和是正数B .积是正数C .商是正数D .平方和是正数5.若a ,b 互为相反数,则下列各组中,不互为相反数的是( ).A .-a 和-bB .2a 和2bC .a 2和b 2D .a 3和b 36.若a=3,∣b ∣=4,且在数轴上表示有理数b 的点在原点的左边,则a -b 的值为( ).A .1B .-1C .7D .-1或77.若a +b >0,且b <0,则a 、b 、―a 、―b 的大小关系为( ).A .―a <b <―b <aB .―a <―b <b <aC .―a <b <a <―bD .b <―a <―b <a8.下列计算正确的是( ).A .17÷4÷4=17÷4×14=17÷1=17 B .-22+(-1)2=-3 C . 2×32=(2×3)2= 62=36 D .6-6÷(2×3)=0÷2×3=09.如果x 是最大的负整数,y 是最小的正整数,那么x 16-y 13+3xy 的值是( ).A .-3B .3C .-5D .510.计算:21-1=1,22-1=3,23-1=7,24-1=15,25-1=31,26-1=63,…,归纳各计算结果中的个位数字规律,猜测22020-1的个位数字是( ).A .1B .3C .5D .7二、有的放矢,圆满填空(每题3分,共24分) 11.某方便面厂生产的100g 袋装方便面外包装印有(100±5) g 的字样.小芳购买了一袋这 样的方便面后,称了一下发现只有96g ,你认为该厂在重量上______欺诈行为.(填“有”或“没有”)12.数轴上A 、B 、C 三点所对应的有理数分别为23-、45-、34,则此三点到原点的距离最近的点为___________.13.在-(-2)、∣-1∣、-∣0∣、-(+2)、-23、(-3)4中,非负数有__________个.14.敏敏手中的纸条上写着a 2,慧慧手中的纸条上写着(-2)2,若这两个数相等,那么a 的值为__________.15.两个数的积为-20,其中一个数比15-的倒数大3,则另一个数为________. 16.定义新运算“⊗”,规定:a ⊗b =13a -4b 2,则12⊗(-1)=_________. 17.下图是一个数值转换机,若输入数为3,则输出数是_________.18.根据指令机器人在数轴上能完成以下动作,(+,a )表示向右移a 个单位,(-,a )表示向左移a 个单位,现在机器人在-5处,接到指令(+,7)机器人应到_________处,此时请你接着给它一个指令___________,使其移到-2处.三、细心解答,运用自如(共66分)19.(每小题3分,共9分)计算下列各题:(1)13311(0.05)244-÷⨯÷- (2)-2×32-(-2×3)2(3)-19-5×(-2)+(-4)2÷(-8)20.(6分)已知A 为-4的相反数与-12的绝对值的差,B 是比-6大5的数.(1)求A -B 的值;(2)求B -A 的值;(3)从(1)和(2)的计算结果,你能知道A -B 与B -A 之间有什么关系吗?21.(6分)数学老师从马小虎的作业中找到两道错题,马小虎不明白错误的原因,聪明的你能帮他找到错误的原因,并帮助他改正吗?(1)-52+(-5)×(-2)=25+(-5)×(-2)=25-10=15.(2)(-3)-10÷5×15=(-3)-10÷1=(-3)-10=-13.22.(8分)在一条东西走向的大街上,一辆出租车第一次从A 地出发向东行驶4km 至B 地,第二次从B 地出发向西行驶8km 至C 地,第三次从C 地出发向东行驶3km 至D 地.(1)记向东为正,点A 为原点,把该出租车先后到达的地点A ,B ,C ,D 四地用数轴直观地描绘出来.(2)试说出C 地位于A 地的什么方向?距离A 地多远?23.(8分)利用计算器计算下列各式,并将结果填在横线上:(1)10 101×11=___________;10 101×22=___________;10 101×33=___________;(2)你发现了什么规律?(3)请你利用这个规律直接写出10 101×99的结果.24.(9分)环宇自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的实际生产情况(超产为正、减产为负,单位:辆)(1)根据记录可知前三天共生产自行车多少辆?(2)生产量最多的一天比生产量最少的一天多生产自行车多少辆?(3)该厂实行计件工资制,每生产一辆车60元,超额完成任务每辆车奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?25.(10分)我们约定将16=24,写成f (16)=4,例如:根据这个约定,可把64=26写成f (64)=6;将25=52写成g(25)=2,例如:根据这个约定,可把125=53写成g(125)=3.解答下列问题:(1)f (32)=_________,g(______)=1.(2)计算f (128)-g(625)的结果为多少?26.(10分)数学课上,老师随手在黑板上写下了7个有理数.4--,0,12⎛⎫--⎪⎝⎭,3,23-,-2020,-1.(1)请你指出哪些是整数?哪些是负整数?哪些是负分数?(2)若选择其中的四个整数,将这四个整数经过有理数的混合运算后,能否得出结果为-1?若能,写出算式,并写出计算过程;若不能,请说明理由.参考答案:一、正本清源,做出选择1.C;2.D;3.C;4.D;5.C;6.B;7.A.点拨:利用特殊值法,可令a=5,b=-2,所以有-a=-5,-b=2.8.B.点拨:选项A的结果为1716,选项C的结果为18,选项D的结果为5.9.A.点拨:根据题意,得x=-1,y=1,所以(-1)16-113+3×(-1)×1=1-1-3=-3. 10.C.点拨:由于2020=4×505,探究规律知,22020-1与24-1的个位数字相同. 二、有的放矢,圆满填空11.没有;12.23-;13.4;14.2或-2. 点拨:根据题意得,a2= (-2)2 = 4,又(±2)2 = 4,故a =±2. 15.10. 点拨:可列式为(-20)÷(-5+3)=10.16.0.点拨:根据题意,得12⊗(-1)= 13×12-4×(-1)2=4-4=0.17.65.点拨:根据题意,得32-1=8,所以82+1=65.18.2,(-,4). 点拨:可画出数轴,在数轴上操作.三、细心解答,运用自如19.(1)70;(2)-54;(3)7.20.由题意知,A=(4)128----=-,B=(-6)+5=-1;(1)A-B=(-8)-(-1)=-7;(2)B-A=(-1)-(-8)=7;(3)A-B与B-A互为相反数.21.(1)误认为-52的底数是-5;另外同号相乘得正,而不是取相同的符号.正解:原式=-25+(-5)×(-2)=-25+10=-15.(2)错在没有遵循同级运算应按从左到右的顺序进行计算.正解:原式=(-3)-2×15==(-3)-25=175-.22.(1)A,B,C,D四地用数轴表示如下图所示:(2)C地位于A地的西面,距离A地4km..23.(1)111 111;222 222;333 333.(2)10 101与某个个位与十位数字相同的两位数相乘,等于一个六位数,且这个六位数的每个数字都与这个两位数的每位数字相同.(3)10 101×99=999 999.24.(1)根据题意,得[(+5)+(-2)+(-4)]+200×3=599(辆).答:根据记录可知前三天共生产自行车599辆.(2)根据题意,得(+16)-(-10)=26(辆).答:生产量最多的一天比生产量最少的一天多生产自行车26辆.(3)由于(+5)+(-2)+(-4)+(+13)+(-10)+(+16)+(―9)=9(辆),所以(7×200+9)×60+9×15=84675(元).答:该厂工人这一周的工资总额是84675元.25.(1)5,5;(2)因为27=128,所以f (128)=7;因为54=625,所以g(625)=4;故f (128)-g(625)=7-4=3.26.(1)整数:-︱-4︱,0,3,-2020,-1;负整数:-︱-4︱,-2020,-1;负分数:2 3 .(2)能!算式为:0×(-2020)+(-︱-4︱)+3=0-4+3=-1.。

第一章 有理数 全章 练习题 2023—2024学年人教版数学七年级上册

第一章 有理数 全章 练习题   2023—2024学年人教版数学七年级上册

第一章《有理数》全章练习题(含答案)一、选择题1.2024的倒数是()A.2024B.2024-C.12024-D.120242.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,将这个数用科学记数法表示为()A.84410⨯B.84.410⨯C.94.410⨯D.104.410⨯3.如图,数轴上点A 和点B 分别表示数a 和b ,则下列式子正确的是()A.0a >B.0ab >C.0a b ->D.0a b +<4.下列几种说法中,不正确的有()个.①绝对值最小的数是0;②最大的负有理数是﹣1;③数轴上离原点越远的点表示的数就越小;④平方等于本身的数只有0和1;⑤倒数是本身的数是1和﹣1.A.4B.3C.2D.15.若|m ﹣2|+(n +3)2=0,则m ﹣的值为()A.﹣5B.﹣1C.1D.56.如图是嘉淇同学的练习题,他最后得分是()A.20分B.15分C.10分D.5分6.如图,数轴上,A B 两点分别对应有理数,a b ,则下列结论:①0ab <;②0a b +>;③1a b ->;④||||0a b -<,⑤220a b -<.其中正确的有()A.1个B.2个C.3个D.4个8.如图是一个数值转换机,若输入x 的值是1-,则输出的结果y 为()A.7B.8C.10D.129.观察1211-=,2213-=,3217-=,42115-=,52131-=,⋯,归纳各计算结果中的个位数字的规律,猜测202221-的个位数字是()A.1B.3C.7D.510.计算1111111111131422363524⎡⎤⎛⎫⎛⎫-+÷÷-⨯+-÷ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的值为()A.2514B.2514-C.114D.114-二、填空题(本大题共6小题)11.-56____-67(填>,<,=)12.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作_____13.数轴上,点A 表示的数是-3,距点A 为4个单位长度的点所表示的数是______.14.若a 与b 互为相反数,m 与n 互为倒数,则()()220212022b a b mn a ⎛⎫+-+= ⎪⎝⎭.15.已知|a |=3,|b |=5,且ab <0,则a +b 的值16.已知m 、n 两数在数轴上位置如图所示,将m 、n 、﹣m 、﹣n 用“<”连接:____________17.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为.18.若x 是不等于1的实数,我们把11x-称为x 的差倒数,如2的差倒数是1112=--,-1的差倒数为()11112=--,现已知113x =-,2x 是1x 的差倒数,3x 是2x 的差倒数,4x 是3x 的差倒数,…,依此类推,则2022x =.三、解答题19.把下列各数填在相应的括号里:﹣8,0.275,227,0,﹣1.04,﹣(﹣3),﹣13,|﹣2|正数集合{…}负整数集合{…}分数集合{…}负数集合{…}.20画一条数轴,在数轴上表示下列有理数,并用“<”号把各数连接起来:2.5-,0,-2,-(-4),-3.5,321.(1)(-534)+(+237)+(-114)-(-47)(2)()155********⎛⎫-+-⨯-⎪⎝⎭(3)-14+14×[2×(-6)-(-4)2](4)(-2)3×(-34)+30÷(-5)-│-3│22.已知a ,b 互为相反数,c ,d 互为倒数,|m |=2,求代数式2m ﹣(a +b ﹣1)+3cd 的值..23.已知x 是最小正整数,y ,z 是有理数,且有|y﹣2|+|z+3|=0,计算:(1)求x,y,z 的值.(2)求3x﹢y﹣z 的值.24.某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负,行车依先后次序记录如下:(单位:km)+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+7(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)若每千米的价格为2.4元,司机一下午的营业额是多少元?25.已知数轴上三点M ,O ,N 对应的数分别为﹣1,0,3,点P 为数轴上任意点,其对应的数为x .(1)MN 的长为;(2)如果点P 到点M 、点N 的距离相等,那么x 的值是:;(3)如果点P 以每分钟2个单位长度的速度从点O 向左运动,同时点M 和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t 分钟时点P 到点M 、点N 的距离相等,求t 的值.参考解答:一、选择题1.D.2.C 3.D4.C5.D6.B7.D8.A .9.B.10..C 二、填空题11.>12.-3分13.1或-714.015.-2或216.m <﹣n <n <﹣m 17.990018.4三、解答题19.解:正数集合{0.275,227,()3--,2-…};负整数集合{8-…};分数集合{0.275,227, 1.04-,13-…};负数集合{8-, 1.04-,13-…}.20解:()2.5 2.5,44,-=--= 在数轴上表示各数如下:∴ 3.5-<2-<0< 2.5-<3<()4--21.解:(1)(-534)+(+237)+(-114)-(-47)3134=5124477⎡⎤⎛⎫⎛⎫⎛⎫-+-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦734=-+=-(2)()155********⎛⎫-+-⨯-⎪⎝⎭()()()()15573636363629612=⨯--⨯-+---182030217=-+-+=-(3)-14+14×[2×(-6)-(-4)2]()1112164=-+⨯--()178=-+-=-(4)(-2)3×(-34)+30÷(-5)-│-3│()38634⎛⎫=-⨯-+-- ⎪⎝⎭6633=--=-22.解: a ,b 互为相反数,c ,d 互为倒数,|m |=2,∴0a b +=,1cd =,2m =±,∴原式=()2201314138⨯--+⨯=++=或原式=()()2201314130⨯---+⨯=-++=.23.解:(1)∵x 是最小正整数∴x=1∵|y﹣2|≥0,|z+3|≥0,且|y﹣2|+|z+3|=0∴|y﹣2|=0,|z+3|=0∴y﹣2=0,z+3=0∴y=2,z=-3.(2)∵x=1,y=2,z=-3∴3x﹢y﹣z=3×1+2-(-3)=3+2+3=8.24.解:(1)9-3-5+4-8+6-3-6-4+7=-3(千米)答:最后出租车离鼓楼出发点3千米,在鼓楼的西方;(2)()9+-3+-5+4+-8++6+-73+6+-4+ 2.4132+-⨯=(元),答:若每千米的价格为2.4元,司机一个下午的营业额是132元.25.解:(1)MN 的长为3﹣(﹣1)=4.(2)x =(3﹣1)÷2=1;(3)①点P 是点M 和点N 的中点.根据题意得:(3﹣2)t =3﹣1,解得:t =2.②点M 和点N 相遇.根据题意得:(3﹣2)t =3+1,解得:t =4.故t 的值为2或4.故答案为4;1.。

人教版七年级数学有理数全章测试含答案

人教版七年级数学有理数全章测试含答案

第一章 有理數 全章測試班級: 姓名: 學號: 分數一、選擇題(每題3分,共30分)1.有理數﹣2的相反數是( )A .2B .﹣2C .D .﹣2.6的絕對值是( )A .6B .﹣6C .D .﹣ 3.在﹣,0,,﹣1這四個數中,最小的數是( )A .﹣B .0C .D .﹣14.一個數和它的倒數相等,則這個數是( )A .1B .1-C .±1D .±1和05.下列各式中正確的是( )A .22)2(2-=B .33)3(3-=C .22)2( 2-=-D .|3| 333=- 6.下列說法正確的是( )A .一個數的絕對值一定比0大B .一個數的相反數一定比它本身小C .絕對值等於它本身的數一定是正數D .最小的正整數是17.有理數-32,(-3)2,|-33|,13-按從小到大的順序排列是( )A .13-<-32<(-3)2<|-33| B .|-33|<-32<13-<(-3)2C .-32<13-<(-3)2<|-33| D .13-<-32<|-33|<(-3)2 8. 有理數a , b 在數軸上的對應點如圖所示,則下麵式子中正確的是( )b <0<a ; |b | < |a |;●ab >0;❍a -b >a +b .A . B . ❍C . ●D .●❍9.若x 的相反數是3,︱y ︱=5,則x +y 的值為( )A .-8B . 2C . 8或-2D .-8或210.若a a =-,則有理數a 在數軸上的對應點一定在( ).A. 原點左側B.原點或原點左側C. 原點右側D. 原點或原點右側二、填空題(每題3分,共30分)11.比較大小 32- 76-. 12.A 、B 兩地相距6987000m ,用科學記數法表示為_____________m .13. 數軸上表示數-5和表示數-14的兩點之間的距離是_____________.14.在數軸上,若點P 表示-2,則距P 點3個單位長的點表示的數是_____________.15.在數軸上表示數a 的點到原點的距離為3,則a -3=_____________.16.絕對值不大於2的所有整數為____ ______.17.若a <0,b >0 ,且| a |>| b | ,則a+b ________0. (填“<”或“>”“=”)18.有理數b 在數軸的位置在-3和-2之間,則|b+2|=_____________..19.若m n n m -=-,且4m =,3n =,則m +n =_____________.20.(1)設a <0,b >0,且a b >,用“<”號把a 、-a 、b 、-b 連接起來為 .(2)設a <0,b >0,且a +b >0,用“<”號把a 、-a 、b 、-b 連接起來為 .(3)設ab <0,a +b <0,且a <0,用“<”號把a 、-a 、b 、-b 連接起來為 .三、計算題(每題4分,共32分)21.計算(1).5)213(438)414()5.6(++-+--- (2).25.221341221+--(3) .1623()(10)()273-⨯---÷- (4).314322-⨯-+--()()().(5).)61163245(481+-⨯-- (6).12111()()369364-÷-+-+(7).2342(3)()(2)3⎡⎤---⨯---⎢⎥⎣⎦ (8)..22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦四、解答題(每題4分,共8分)22.計程車司機小張某天下午的運營是在一條東西走向的大道上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1・a>Oi b<0, ta|>|b|,用|a|与|b|表示包与b的和,则旳b=_____________
a>0, b<0, |a|<|b|,用圈与冋表示z与b的和,则就炉_______________ -
2. E^Das b c在数轴上K)位宣如圏z
C boa
(1 )用“<”,“〉” 填空:a-c __________ 0, abc ________ 0, a+c _______ Q
(2)按大小顺序用“〉”号连接a2, b2, c2为 ____________ 。

(3)|a-c|= _______ , |a+c|= _______ 。

3. 若|m|=3, |n|=5,且mn<0,贝U m+n二 ________ 。

4. |a-2|+ (a-2) = _______ 。

二、判断正误
1. 两个有理数的差一定小于被减数。

()
2. 当b>0时,在a、a-b、a+b中,最小的数是a-b。

()
3. 如果|a|=3, |b|=5,那么|a+b|=& ()
4. 一42读作负四的平方。

()
5. 当a^0时,-a一定小于a。

()
6. a2|b|不可能是负数。

()
二、选择题
1. a<0,下列各式中能成立的是()
(A) a2 - -a2( B) a3 - -a3
(C) a2=|d| ( D) a3=|a3|
2. 甲、乙两个数都不是0,则它们的和()。

(A)一定比甲数大
(B)一定比乙数大
(C)有可能为0
(D)不可能是负数
3. 如果a与b互为相反数,且a, b都不为0,下列各组数不互为相反数的是()。

(A)-a 与-b (B) -|a与-|b|
(C)手与 (D) -| ^ |与厅丨
4 4
4. 如果a、b互为相反数,那么下面结论中不一定正确的是()。

(A) a+b=0 (B) - = -1
b
(C) ab—a2( D) |a|=|b|
5. 符合下面哪一种情况时,a、b、c三个不为零的有理数相乘的积必为正数()。

(A)a、B、c三数同号
(B)b<0, ac>0
(C)a<0, bc<0
(D)c>0, ab<0
6. 在下列语句中:(1)若x<y<0,则|x|>|y|(2)若m=n,则(m-n)2-2
有最小值-2 (3) -3 (-32)八9 (4)当x=2时,:「2的值为零(5)
x - 4
对任何有理数m、n,都有(m-n)20 (6)若m<0<n,则mn<n-m,
其中正确的个数是()。

(A ) 2
(B ) 3 (C ) 4 (D ) 5
四、计算题
1 2 1 2
2 (一 2)2 匕八3(一2)(一 3)2
5 2 5 1 2 -2 [3 ( ) -4 ( ) 5]亠(1 )
6 6 4
3 3 1 3 1 2 2 1 ()3"(—)3 (-1一)2 0.252 "2 — 2 2 3 2 6 3 3 2 1 1 3
7*7)十4)气七)十2 五、求值:若|x 3| (y-1)^0,求(二的值 y —x
答案与提示
1. |a|-|b ; - (|b|-|a )
2. (1)>,>,v( 2) c 2 a 2 b 2 (3) a-c, -a-c
3. -2 或 2
4. 当a-2> 0时,原式=2a-4,当a-2< 0时,原式=0 1. 2. 3. 4.
二、1.x 2.V 3.x 4.x 5.x 6.V
三、1. C 2. C 3. B 4. B 5. C 6. B
四、1.
五、x=-3, y=1, n 为偶数(二^丁",n 为奇数(二4)、—1 y _x y_x 2. 3. 40 3 —47 39 40
4。

相关文档
最新文档