平面图形的认识(一)专题练习(解析版)

平面图形的认识(一)专题练习(解析版)
平面图形的认识(一)专题练习(解析版)

一、初一数学几何模型部分解答题压轴题精选(难)

1.如图 1,CE 平分∠ACD,AE 平分∠BAC,且∠EAC+∠ACE=90°.

(1)请判断 AB 与 CD 的位置关系,并说明理由;

(2)如图2,若∠E=90°且AB 与CD 的位置关系保持不变,当直角顶点E 移动时,写出∠BAE 与∠ECD 的数量关系,并说明理由;

(3)如图 3,P 为线段 AC 上一定点,点 Q 为直线 CD 上一动点,且 AB 与 CD 的位置关系保持不变,当点 Q 在射线 CD 上运动时(不与点 C 重合),∠PQD,∠APQ 与∠ BAC 有何数量关系?写出结论,并说明理由.

【答案】(1),理由如下:

CE 平分,AE 平分,

(2),理由如下:

如图,延长AE交CD于点F,则

由三角形的外角性质得:

(3),理由如下:

,即

由三角形的外角性质得:

又,即

即.

【解析】【分析】(1)根据角平分线的定义、平行线的判定即可得;(2)根据平行线的性质(两直线平行,内错角相等)、三角形的外角性质即可得;(3)根据平行线的性质(两直线平行,同旁内角互补)、三角形的外角性质、邻补角的定义即可得.

2.

(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;

(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .

证明:过点 E 作 EH∥AB,

∴∠FEH=∠BFE(▲),

∵AB∥CD,EH∥AB,(辅助线的作法)

∴EH∥CD(▲),

∴∠HEG=180°-∠CGE(▲),

∴∠FEG=∠HFG+∠FEH=▲ .

(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.

【答案】(1)90°

(2)解:∠GEF=∠BFE+180°?∠CGE,

证明:过点 E 作 EH∥AB,

∴∠FEH=∠BFE(两直线平行,内错角相等),

∵AB∥CD,EH∥AB,(辅助线的作法)

∴EH∥CD(平行线的迁移性),

∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),

∴∠FEG=∠HFG+∠FEH=∠BFE+180°?∠CGE ,

故答案为:∠BFE+180°?∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°?∠CGE;

(3)解:∠GPQ+∠GEF=90°,

理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,

∴∠BFQ=∠BFE,∠CGP=∠CGE,

在△PMF中,∠GPQ=∠GMF?∠PFM=∠CGP?∠BFQ,

∴∠GPQ+∠GEF=∠CGE? ∠BFE+∠GEF= ×180°=90°.

即∠GPQ+∠GEF=90°.

【解析】【解答】(1)解:如图1,过E作EH∥AB,

∵AB∥CD,

∴AB∥CD∥EH,

∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,

∵∠CGE=130°,

∴∠HEG=50°,

∴∠GEF=∠HEF+∠HEG=40°+50°=90°;

故答案为:90°;

【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°?∠CGE,两式相加可得∠GEF=∠BFE+180°?∠CGE;(3)如图2,根据角平

分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=

∠GMF?∠PFM=∠CGP?∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.

3.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8

(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,

(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.

【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.

(2)MN=

【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;

(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.

4.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.

(1)当时,的值为________.

(2)如何理解表示的含义?

(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.

【答案】(1)5或-3

(2)解:∵ = ,

∴表示到-2的距离

(3)解:∵点、在0到3(含0和3)之间运动,

∴0≤a≤3, 0≤b≤3,

当时, =0+2=2,此时值最小,

故最小值为2;

当时, =2+5=7,此时值最大,

故最大值为7

【解析】【解答】(1)∵,

∴a=5或-3;

故答案为:5或-3;

【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;

(2)此题就是求表示数b的点与表示数-2的点之间的距离;

(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.

5.探究题

学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题。

(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1、l2内部,探究∠A,∠APB,∠B 的关系.小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=________.

(2)如图2,若AC∥BD,点P在AB、CD外部,∠A,∠B,∠APB的数量关系是否发生变化?请你补全下面的证明过程.

过点P作PE∥AC.

∴∠A=________

∵AC∥BD

∴________∥________

∴∠B=________

∵∠BPA=∠BPE-∠EPA

∴________.

(3)随着以后的学习你还会发现平行线的许多用途.试构造平行线解决以下问题:

已知:如图3,三角形ABC,求证:∠A+∠B+∠C=180°.

【答案】(1)∠APB=∠A+∠B

(2)∠1;PE;BD;∠EPB;∠APB=∠B -∠1

(3)证明:过点A作MN∥BC

∴∠B= ∠1

∠C= ∠2

∵∠BAC+∠1+∠2=180°

∴∠BAC+∠B+∠C=180°

【解析】【解答】解:(1)如图:

由平行线的性质可得:∠1=∠A, ∠2=∠B,

∴∠1+∠2=∠A+∠B

即APB=∠A+∠B

⑵解:过点P作PE∥AC.

∴∠A=∠1

∵AC∥BD

∴ PE ∥ BD

∴∠B=∠EPB

∵∠APB=∠BPE-∠EPA

∴∠APB=∠B -∠1

【分析】根据图形做出平行辅助线,探究角度关系。此类做辅助线的方法变式多,是考试热点问题。

6.如图(1),AB∥CD,在AB、CD内有一条折线EPF.

(1)求证:∠AEP+∠CFP=∠EPF.

(2)如图(2),已知∠BEP的平分线与∠DFP的平分线相交于点Q,试探索∠EPF与∠EQF 之间的关系.

(3)如图(3),已知∠BEQ= ∠BEP,∠DFQ= ∠DFP,则∠P与∠Q有什么关系,说明理由.

(4)已知∠BEQ= ∠BEP,∠DFQ= ∠DFP,则∠P与∠Q有什么关系.(直接写结论) 【答案】(1)证明:如图1,过点P作PG∥AB,

∵AB∥CD,

∴PG∥CD,

∴∠AEP=∠1,∠CFP=∠2,

又∵∠1+∠2=∠EPF,

∴∠AEP+∠CFP=∠EPF

(2)解:如图2

由(1),可得

∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,

∵∠BEP的平分线与∠DFP的平分线相交于点Q,

∴∠EQF=∠BEQ+∠DFQ

(3)解:如图3,

由(1),可得

∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,

∴∠Q=∠BEQ+∠DFQ

(4)解:由(1),可得

∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,

∴∠Q=∠BEQ+∠DFQ

【解析】【分析】(1)如图1,过点P作PG∥AB,根据两直线平行,内错角相等,可得

∠AEP=∠1,∠CFP=∠2,从而可得∠AEP+∠CFP=∠EPF.

(2)由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,利用角平分线的定

义,可得∠EQF=∠BEQ+∠DFQ=(∠BEP+∠DFP),利用平角定义,可得∠BEP+∠DFP=360°-(∠AEP+∠CFP)=360°-∠EPF,从而可得∠EPF+2∠EQF=360°.(3)同(2)方法,即可得出∠P+3∠Q=360°.

(4)同(2)方法,即可得出结论.

7.如图1,已知直线CD∥EF,点A、B分别在直线CD与EF上.P为两平行线间一点.

(1)若∠DAP=40°,∠FBP=70°,则∠APB=________.

(2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由.

(3)利用(2)的结论解答:

①如图2,AP1、BP1分别平分∠DAP、∠FBP,请你写出∠P与∠P1的数量关系,并说明理由.

②如图3,AP2、BP2分别平分∠CAP、∠EBP,若∠APB=β,求∠AP2B(用含β的代数式表示).

【答案】(1)

(2)由(1)可知

∠DAP,∠FBP,∠APB之间的关系为: .

(3)解:①∠P=2∠P1;

由(2)得:,

即∠P=2∠P1;

②由(2)得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,

∵AP2、BP2分别平分∠CAP、∠EBP,

【解析】【解答】(1)证明:过P作PM∥CD,

∴∠APM=∠DAP.(两直线平行,内错角相等),

∵CD∥EF(已知),

∴PM∥CD(平行于同一条直线的两条直线互相平行),

∴∠MPB=∠FBP.(两直线平行,内错角相等),

∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质),

【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等得出∠APM=∠DAP,根据平行于同一条直线的两条直线互相平行得出PM∥CD,根据两直线平行,内错角相等得出∠MPB=∠FBP,根据角的和差及等量代换即可得出

(2)由(1)可知∠DAP,∠FBP,∠APB之间的关系为: .(3)①∠P=2∠P1;根据(2)的结论,得,由角平分线的定义及等量代换得,

②由(2)得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,根据角平分线的定义及角的

和差,等量代换即可得出结论:∴=180°-.

8.如图1,△ABC中,D、E、F三点分别在AB,AC,BC三边上,过点D的直线与线段EF 的交点为点H,∠1+∠2=180°,∠3=∠C.

(1)求证:DE∥BC;

(2)在以上条件下,若△ABC及D,E两点的位置不变,点F在边BC上运动使得∠DEF的大小发生变化,保证点H存在且不与点F重合,探究:要使∠1=∠BFH成立,请说明点F 应该满足的位置条件,在图2中画出符合条件的图形并说明理由.

(3)在(2)的条件下,若∠C=α,直接写出∠BFH的大小________.

【答案】(1)证明:如图1.

∵∠1是△DEH的外角,∴∠1=∠3+∠4.

又∵∠1+∠2=180°,∴∠3+∠4+∠2=180°.

∵∠3=∠C,∴∠C+∠4+∠2=180°,即∠DEC+∠C=180°,∴DE∥BC

(2)解:如图2.

∵∠1是△DEH的外角,∴∠1=∠3+∠DEF,①

∵∠BFE是△CEF的外角,∴∠BFH=∠2+∠C.

当∠1=∠BFH时,∠1=∠2+∠C,②

由①②得:∠3+∠DEF=∠2+∠C.

∵∠3=∠C,∴∠DEF=∠2,即EF平分∠DEC,∴点F运动到∠DEC的角平分线与边BC的交点位置时,∠1=∠BFH成立.

(3)90°+

【解析】【解答】(3)∵EF平分∠DEC,∴∠DEF=∠2.

∵DE∥BC,∴∠DEC+∠C=180°,∴2∠2+α=180°,∴∠2= = .

∵∠BFH=∠2+∠C= = .

【分析】(1)欲证明DE∥BC,只需推知∠DEC+∠C=180°即可,因此先根据外角性质,将∠1转化为∠3+∠4,再根据∠1与∠2互补,得到∠3+∠4+∠2=180°,最后将∠3=∠C代入即可得出结论;(2)点F运动到∠DEC的角平分线与边BC的交点位置时,∠1=∠BFH成立.(3)根据平行线的性质和角平分线的定义,得出∠2的度数,再由三角形外角的性质即可得出结论.

9.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O 处.

(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=________;

(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;

(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD= ∠AOE.求∠BOD的度数.

【答案】(1)30

(2)解:∵OE平分∠AOC,

∴∠COE=∠AOE= ∠COA,

∵∠EOD=90°,

∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,

∴∠COD=∠DOB,

∴OD所在射线是∠BOC的平分线

(3)解:设∠COD=x°,则∠AOE=5x°,

∵∠DOE=90°,∠BOC=60°,

∴6x=30或5x+90﹣x=120,

∴x=5或7.5,

即∠COD=65°或37.5°,

∴∠BOD=65°或52.5°

【解析】【解答】(1)∵∠BOE=∠COE+∠COB=90°,

又∵∠COB=60°,

∴∠COE=∠BOE-∠COB=30°,

故答案为30;

【分析】(1)根据图形得出∠COE=∠BOE-∠COB,代入求出即可;(2)根据角平分线定

义求出∠COE=∠AOE= ∠COA,再根据∠AOE+∠DOB=90°,∠COE+∠COD=90°,可得∠COD=∠DOB,从而问题得证;(3)设∠COD=x°,则∠AOE=5x°,根据题意则可得6x=30或5x+90﹣x=120,解方程即可得.

10.

(1)如图,已知C为线段AB上的一点,AC=60cm,M、N分别为AB、BC的中点.

①若BC=20cm,则MN=________cm;

②若BC=acm,则MN=________cm.

(2)如图,射线OC在∠AOB的内部,∠AOC=60°,OM平分∠AOB,射线ON在∠BOC 内,且∠MON=30°,则ON平分∠BOC吗?并说明理由.

【答案】(1)30;30

(2)解:平分

理由:∵OM分别平分∠AOB,

∴∠BOM= ∠AOB

= (∠AOC+∠BOC)

=30°+ ∠BOC.

又∵∠BOM=∠MON+∠BON=30°+∠BON,

∴∠BON= ∠BOC.

∴ON平分∠BOC.

【解析】【解答】解:(1)①∵BC=20,N为BC中点,

∴BN= BC=10.

又∵M为AB中点,

∴MB= AB=40.

∴MN=MB-BN=40-10=30.

故答案为30;

②当BC=a时,AB=60+a,

BN= a,MB= AB=30+ a,

∴MN=MB-BN=30.

故答案为30;

【分析】(1)①由已知得到AB=80,根据线段中点求出MB和BN的值,计算MB-BN即可得结果;②分别用a表示出BN、MB,根据MN=MB-BN计算即可;(2)根据OM分别平分∠AOB,用∠BOC表示出∠BOM,再用∠BON表示出∠BOM,两个式子进行比较即可得出结论.

11.如图,已知,,,点E在线段AB上,,点F在直线AD上,.

(1)若,求的度数;

(2)找出图中与相等的角,并说明理由;

(3)在的条件下,点不与点B、H重合从点B出发,沿射线BG的方向移动,其他条件不变,请直接写出的度数不必说明理由.

【答案】(1)解:,,

(2)解:与相等的角有:,,.理由:,

两直线平行,内错角相等,

,,

同角的余角相等,

两直线平行,同位角相等,

(3)解:35°或145°

【解析】【解答】解:或

当点C在线段BH上时,点F在点A的左侧,

如图1:

两直线平行,内错角相等,当点C在射线HG上时,点F在点A的右侧,

如图2:

两直线平行,同旁内角互补,

【分析】根据,,可得,再根据,即可得到;根据同角的余角相等以及平行线的性质,即可得到与相等的角;分两种情况讨论:当点C在线段BH上;点C 在BH延长线上,根据平行线的性质,即可得到的度数为或.

12.如图1,,点,分别在,上,射线绕点顺时针旋转至便立即逆时针回转,射线绕点顺时针旋转至便立即逆时针回转.射线转动的速度是每秒度,射线转动的速度是每秒度.

(1)直接写出的大小为________;

(2)射线、转动后对应的射线分别为、,射线交直线于点,若射线比射线先转动秒,设射线转动的时间为秒,求为多少时,直线直线?

(3)如图2,若射线、同时转动秒,转动的两条射线交于点,作,点在上,请探究与的数量关系.

【答案】(1)60°

(2)解:设灯转动t秒,直线直线,

①当时,如图,

解得;

②当时,如图,

,,

,,解得,

综上所述,当秒或秒时直线;

(3)解:和关系不会变化,

理由:设射线AM转动时间为m秒,

作,,,

,,

,,

而,

即,

和关系不变.

【解析】【解答】解:(1)∵

∴,

∴(两直线平行,内错角相等)

故结果为:;

【分析】(1)根据得到,再根据直线平行的性质即可得到答案;(2)设灯转动t秒,直线直线,分情况讨论重合前平行、重合后平行即可得到答案;(3)根据补角的性质表示出,再根据三角形内角和即可表示出,即可得到答案;

相关主题
相关文档
最新文档